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Abstract

Background: In order to gain new insights into the molecular mechanisms involved in prostate
cancer, we performed array-based comparative genomic hybridization (aCGH) on a series of 46
primary prostate carcinomas using a | Mbp whole-genome coverage platform. As chromosomal
comparative genomic hybridization (cCGH) data was available for these samples, we compared the
sensitivity and overall concordance of the two methodologies, and used the combined information
to infer the best of three different aCGH scoring approaches.

Results: Our data demonstrate that the reliability of aCGH in the analysis of primary prostate
carcinomas depends to some extent on the scoring approach used, with the breakpoint estimation
method being the most sensitive and reliable. The pattern of copy number changes detected by
aCGH was concordant with that of cCGH, but the higher resolution technique detected 2.7 times
more aberrations and 15.2% more carcinomas with genomic imbalances. We additionally show that
several aberrations were consistently overlooked using cCGH, such as small deletions at 5q, 6q,
I12p, and 17p. The latter were validated by fluorescence in situ hybridization targeting TP53,
although only one carcinoma harbored a point mutation in this gene. Strikingly, homozygous
deletions at 10923.31, encompassing the PTEN locus, were seen in 58% of the cases with 10q loss.

Conclusion: We conclude that aCGH can significantly improve the detection of genomic
aberrations in cancer cells as compared to previously established whole-genome methodologies,
although contamination with normal cells may influence the sensitivity and specificity of some
scoring approaches. Our work delineated recurrent copy number changes and revealed novel
amplified loci and frequent homozygous deletions in primary prostate carcinomas, which may guide
future work aimed at identifying the relevant target genes. In particular, biallelic loss seems to be a
frequent mechanism of inactivation of the PTEN gene in prostate carcinogenesis.
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Background

Prostate cancer is a frequent and heterogeneous malig-
nancy with few established prognostic markers. Increased
knowledge on the genetic basis of this condition is
expected to significantly improve the clinical manage-
ment of these patients. Most of the genetic data currently
available on this malignancy has been obtained using
chromosomal comparative genomic hybridization
(cCGH), a whole-genome screening methodology well
established in the scientific field [1]. We have recently
published a statistical dissection of the cCGH data availa-
ble in the literature and proposed two main genetic path-
ways involved in prostate carcinogenesis, starting either
with 8p or 13q deletions [2]. We showed that 8q gain and
13q loss were good predictors of progression into locally
invasive disease and that losses of 6q and 10q were signif-
icantly associated with metastatic cancers. In addition,
some of these genetic changes have shown prognostic
value independently of tumor grade and stage [3-6].

The recent advent of microarray-based platforms for the
detection of genome-wide copy number changes prom-
ises to uncover novel recurrent genetic aberrations and
provide a more accurate delineation of genomic regions
previously known to be altered in different cancer types.
However, there is still no consensus regarding the scoring
of array-based comparative genomic hybridization
(aCGH) results, making it difficult to objectively compare
findings obtained by different platforms and analysis
tools. A few aCGH studies of prostate cancer cell lines
have been reported [7-11], but most cell lines grow as sta-
ble, uncontaminated cell populations with clonal karyo-
types. This makes the comparison of different platforms
and scoring methods easier than for clinical samples,
which often contain varying degrees of non-neoplastic cell
contamination and thus fail to show the fluorochrome
ratio intensities expected for low-level copy number
changes. Whole-genome aCGH findings have been
reported in small subsets of primary prostate carcinomas
[12-14], and high-resolution platforms have been devel-
oped to study recurrently affected genomic regions
[14,15]. However, Paris et al. were the first to use the
aCGH methodology to study a larger series of clinical
prostate cancer samples [16,17]. The particular scoring
methodology used in those studies resulted in the detec-
tion of a large percentage of single clone alterations of
unclear significance. Furthermore, the concordance
between the previously established chromosomal CGH
and the new array-based CGH platforms could not be
conclusively evaluated, since genetic information
obtained with the former method was available only for a
small subset of the samples.

In the present study, we systematically compared aCGH
and cCGH profiles of 46 primary prostate carcinomas and
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determined the best aCGH scoring methodology to delin-
eate genomic copy number changes relevant for prostate
carcinogenesis.

Results

Quality control

Clones that failed to produce a result in more than 60% of
the sample set were removed from further analysis, as
were those displaying copy number changes in at least two
negative controls. Clones with known polymorphic
regions were not present in the array. Additionally, analy-
sis of the dye-swap experiments and negative controls sug-
gested a dye-specific affinity of several clones on
chromosome X and Y, which are rich in repetitive
sequences. As these seemed to produce copy number aber-
rations (not previously detected by cCGH) in all samples,
we chose to remove them from the analysis. From the
3568 clones in the microarray, 2787 passed these strin-
gent quality criteria. The median percentage of clones
remaining per sample (out of 2787) was 97% in the neg-
ative controls, 96% in the biopsy samples and 89% in the
prostatectomy series.

Comparison of scoring methods

Sample-specific fixed-thresholds, even when stringently
determined, provided a fragmented genetic profile in
which several low-level copy number changes (CNCs)
were not scored and a large number of single clone aber-
rations (average of 5.8 per sample) as well as false positive
findings (average of 3.7 CNCs per control) were obtained.
The data segmentation approach provided by CGH-Plot-
ter was also affected by low intensity ratios, resulting in
most gains and several deletions, confirmed to be present
using cCGH, being missed. On the other hand, the
number of single clone aberrations (0.5 per sample), as
well as false positive findings (0.1 CNCs per control), was
greatly reduced. aCGH-Smooth, by focusing on the detec-
tion of contiguous groups of clones with similar mean
intensities, was able to score a large number of gains and
losses with intensities that did not reach theoretical ratios
for a stroma-free tumor sample. This strategy thus
detected twice as much CNCs than the previous ones,
with the advantage of producing very few single-clone
aberrations (average of 1.4 per sample) and virtually no
false positive findings (average of 0.1 CNCs per control).
Due to their uncertain significance, the few single clone
aberrations were not included in the final scoring. Figure
1 provides a schematic representation of the individual
profiles produced by the three aCGH scoring methodolo-
gies tested on a sample with known copy number aberra-
tions.

Comparison between cCGH and aCGH findings
aCGH confirmed 95% of the 146 copy number changes
detected by cCGH in the 46 prostate carcinomas (Figure
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Comparison of aCGH score results for sample "Bp22" using different automated scoring approaches. (A) Nor-
malized log-2 ratios, with clones ordered according to their genomic position. Note that the theoretical intensity values for
gains and losses are not reached. (B) Results using aCGH-Smooth. (C) Results using sample-specific fixed thresholds calculated
in Normalization Suite. (D) Results using CGH-Plotter. For the purposes of visualization and comparison, all diagrams were
generated in Microsoft Excel based on data provided by the different analysis tools, and thus do not correspond to the visual

outputs provided by each individual software.

2). Most of the non-confirmed aberrations involved single
chromosomal bands located at chromosomal ends. Seven
cases without copy number changes by cCGH were found
to have genomic aberrations upon aCGH analysis, repre-
senting a 15.2% detection increase of abnormal cases.
Regarding individual aberrations, aCGH detected 2.7
times more copy number changes than cCGH (347 versus
146). Forty-five percent of the gained regions spanned
more than 50 clones, whereas a large proportion of lost
regions involved 20 to 50 clones (33.8%). Overall, 73.2%
of all gains and 70% of all losses involved at least 10
clones, which corresponds roughly to the 10 Mb resolu-
tion level estimated for cCGH. Up to 60% of the gains and
50% of the losses larger than 10 clones had been detected
using cCGH. Specifically, deletions of 5q (p = 0.066), 6q
(p = 0.065), 12p (p = 0.014), and 17p (p = 0.072) were
particularly overlooked by cCGH, whereas deletions at 8p
and gains of 7 and 8q were detected by both techniques in
almost identical proportions.

aCGH profile of prostate carcinomas

Overall, 38 cases (83%) displayed copy number changes,
with losses of genomic material being 2.7 times more fre-
quent than gains (Figure 2, Table 1). Seven out of 15 cases
without copy number changes by cCGH were found to
harbor aberrations upon aCGH analysis. Interestingly, 7/
24 prostatectomy and 1/22 biopsy samples did not dis-
play copy number changes even at this level of resolution.
Regions of recurrent genomic loss were located at 8p
(67%), 5q (39%), 16q (37%), 6q (35%), 13q (33%), 10q
(33%), 17p (30%), 12p (24%), and 2q (20%), whereas
frequent copy number gains were observed at 8q (30%),
7 (22%), and 3q (13%) [see Additional file 1]. Amplifica-
tions were detected in a total of four biopsy samples
(Table 2), whereas homozygous deletions were detected
in a total of 10 carcinomas (Figure 3, Table 2), most fre-
quently at 10g23.31 (seven out of 12 tumors with 10q
loss showed homozygous deletion at this locus, involving
a minimum common region of 4 clones).
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Figure 2

Genomic findings in 46 primary prostate carcinomas. (A) Array-CGH findings (38 samples with copy number changes).
(B) Chromosomal CGH findings (31 samples with copy number changes). Arrows indicate relevant differences in the fre-

quency of aberrations detected by both techniques.

FISH and mutation analyses of TP53

Hybridization was successful in all 10 paraffin embedded
core biopsies analyzed by dual-color FISH. These corre-
sponded to samples with (n = 7) and without (n = 3) dele-
tions at 17p13 detected by aCGH. FISH results confirmed
the loss of one or more copies of the TP53 probe (com-
pared to the control probe) in all but one of the cases with
17p loss (Figure 4; the exception was a case deemed unin-
formative due to the small size of the paraffin section ana-
lyzed). The remaining three samples displayed a normal
fluorescent pattern with two signals for both the centro-
meric and the 17p probes. Regarding TP53 mutation
screening of the 51 samples, including the nine with 17p
losses by cCGH, aCGH, or FISH, only one mutation (exon
5, codon 177, CCC->CTC, Pro-> Leu) and a known poly-
morphism (exon 6, codon 213, CGA->CGG, Arg->Arg,
detected in four samples) were present, all in cases with-
out a 17p13 deletion.

Discussion

In this work we used array-based CGH to assess the
genomic profile of a large series of primary prostate carci-
nomas. As these samples had previously been analyzed
using chromosomal CGH, we were able to compare the
two techniques in terms of sensitivity and overall per-
formance, and to test distinct automated scoring
approaches for aCGH data. Whereas most scoring meth-
ods will achieve concordant results if a given sample is
pure and the hybridization quality is excellent, clinical
samples usually contain non-neoplastic cell populations
that influence the interpretation of the results. In the par-
ticular case of the prostate gland, the enriched cellular
content of the stromal component should not be underes-
timated. Combined with the variability within chromo-
some spreads (in cCGH), labeling efficiency, and
hybridization behavior, a certain level of methodological
noise/variability is expected that may seriously influence
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Table I: Overview of aCGH findings in 46 prostate cancer samples
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Frequency (n = 46) SRO! Size (Mb) Genomic position (Mb)
Losses
8p 67.4% 8p21.2-8p22 12.0 15.36-27.36
5q 39.1% 5ql3.1 0.6 66.79-67.41
5q13.2-5q13.3 2.1 71.74-73.87
5q21.1 20 99.03-101.09
5q22.2-5q23.1 77 112.07-119.75
l6q 37.0% l6ql2.1-16q12.2 4.1 49.70-53.86
16922.2-16q22.3 1.7 70.70-72.37
16923.3-16q24.1 3.6 81.20-84.83
6q 34.8% 6ql4.1-6q14.3 35 82.59-86.12
6q16.2-6q22.31 23.6 99.38-123.02
10q 32.6% 10g23.31 1.0 89.69-90.69
10q26.3 2.6 130.01-132.63
13q 32.6% 13q14.1-13q14.3 5.5 39.49-45.03
13921.32-13q21.33 4.7 66.42-71.16
17p 30.4% 17p13.1-17p13.2 23 6.14-8.49
12p 23.9% 12p13.2 1.9 10.93-12.86
Gains
8q 30.4% 8qll.21-8ql2.1 10.8 48.76-59.73
8ql3.2-8q24.23 68.2 68.36—136.56
7q 21.7% 7q11.21-7q11.22 6.3 64.63-71.01
7q21.11-7q22.1 19.5 80.26-99.76

Aberrations occurring in less than 20% of the samples are not displayed.

I'Smallest region of overlap (often more than one per chromosomal arm).

the analysis. In a recent paper by Lai et al. [18], several
automated scoring methodologies were compared using
datasets recreating distinct aberrations and background
noise, and only a few were able to reliably score low-level
copy number changes. Taking this information into
account, and using our cCGH data as a starting point, we
compared three freely available analysis tools represent-
ing common aCGH scoring methodologies. We found
fixed-thresholds to be extremely affected by the quality of
the hybridization and the presence of normal cells, which
resulted in known alterations being missed completely or
scored only partially. The large number of single-clone
aberrations obtained also rendered the distinction
between true copy number changes and false positive
results subject to interpretation and additional validation.
The data segmentation approach of CGH-Plotter pro-
duced minimal levels of single clone aberrations, but was
unable to detect most low-intensity changes. Finally,
aCGH-Smooth consistently detected low-level copy
number changes with only residual levels of single-clone
aberrations and false positive findings, thus providing a
more sensitive and reliable approach to the scoring of our
1 Mb BAC array data.

Using this analytical tool, 95% of the changes detected
using cCGH were confirmed by aCGH. The theoretical 10-
fold increase in resolution of aCGH resulted in an increase
of 15.2% in the proportion of genetically abnormal pros-
tate carcinomas and in the detection of 2.7 times more
copy number aberrations. Strikingly, of the aberrations

involving more than 10 Mb (the estimated resolution
limit of cCGH), 45% had not been scored using cCGH.
We believe this discrepancy reflects two limitations of
cCGH, namely the lack of sensitivity in detecting low-
intensity alterations (independently of the size of the
aberration) and the inherent difficulty in scoring regions
of metaphase chromosomes of smaller size and variable
hybridization behavior (17p, 18p, 19, 20, 21, and 22). It
is noteworthy that deletions at 8p and gains at 8q and 7
were equally detected by both methodologies, whereas
deletions at 5q, 6q, 12p, and 17p were particularly over-
looked using cCGH. Paris et al. [17] have previously
reported such a comparison in a series of 20 formalin-
fixed paraffin embedded prostate cancers. In their work,
90% of the cCGH copy number changes were confirmed
by aCGH, which detected ~3.4 times more alterations. As
they used fixed thresholds to score their data, however,
44% of the aCGH findings consisted of single clone aber-
rations, thus requiring careful interpretation and valida-
tion.

The overall profile obtained for our prostate cancer sam-
ples was comparable to that described in previous aCGH
studies of clinical samples [13,16,17]. It is noteworthy
that most gains were detected in the overall more
advanced group of carcinomas sampled by biopsy,
whereas 77% of the alterations in the prostatectomy series
corresponded to deletions, which according to the litera-
ture are the most common events in prostate carcinogen-
esis [2]. Interestingly, seven prostate cancers sampled by

Page 5 of 11

(page number not for citation purposes)



Molecular Cancer 2006, 5:33

A

Figure 3

Normalized Fluorescence Ratio

Chr #5

Normalized Fluorescence Ratio

+ +
S =
1) o

http://www.molecular-cancer.com/content/5/1/33

Normalized Fluorescence Ratio

+
=]

2

z+

|

i
A YA L

VAT A

~
~

Chr #5

+

5}

Normalized Fluorescence Ratio

+
o

o

Z+

+

+

[

o+

z+

Normalized Fluorescence Ratio

3

¥

g‘»?:.,
v
ks

Chr #5

Normalized Fluorescence Ratio

z+

z+

Mﬂr«,‘_ i

n

=
'J\i ;

Chr #10

v

0

j
iE:

-

i ,{

Chr #10

Chr #10

Examples of homozygous deletions revealed by aCGH (arrow heads). (A) Homozygous deletions at different regions
of 5q. (B) Recurrent homozygous deletions at 10q23.31, encompassing the PTEN gene region.

prostatectomy (early staged tumors) did not display copy
number changes even at this level of resolution, whereas
losses at 8p and 16q and gain at 8q were already present

Table 2: Amplifications and homozygous deletions detected in 46 prostate cancer samples

in a considerable percentage of clinically confined carci-
nomas, indicating these alterations arose early during
tumor progression. We and others have in fact shown that

Cytoband (n° cases) Size (Mb) Genomic position (Mb)
Homozygous deletions
5ql13.1 (1) 0.62 66.79—67.41
5ql15 (1) 0.97 93.62-94.59
5q21.1-5q21.2 (1) 2.01 101.08-103.09
10g23.31 (7) 1.10 89.60-90.70
11923.2-11923.3 (1) 1.10 113.80—114.90
Amplifications
6q24.1-6q25.3 (1) 13.80 142.29-156.09
7q11.22-7q11.23 (I) 5.90 68.97-74.87
7q22.1 (1) 0.72 98.59-99.31
8pl2 () 1.96 36.43-38.39
8q22.2-8q22.3 (1) 3.17 101.35-104.52
8q23.2-8q24.22 (1) 23.83 111.82—-135.65
11922.3-11q23.1 (1) 3.81 107.37-111.18
17p11.2 (1) 0.99 19.18-20.17
17q23.2-17q23.3 (1) 1.40 56.75-58.15
19p13.3 (1) 0.98 5.63-6.61
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Figure 4

Genomic findings using cCGH, aCGH, and FISH in three selected biopsy samples. (A) cCGH results for chromo-
some |7, with a terminal 17p|3 deletion detected in only one case. (B) aCGH findings showing loss of 17p13 in all three cases.
(C) FISH findings confirming the loss of one or more TP53 copies (red) compared to the centromeric probe for chromosome

[7 (green) in all three cases.

8q gain is significantly associated with increased tumor
grade and worse patient outcome [3,5,6,19], therefore
suggesting that some early cancer foci already carry genetic
features of bad prognosis, whereas others do not display
copy number changes at all and possibly correspond to a
subset of less aggressive or even latent lesions.

Loss of 17p, another alteration previously associated with
poor prognosis and frequently overlooked by cCGH,
often occurred together with 8q gain in our sample set.
This led us to perform FISH and mutation screening for
the most likely candidate at this location, the TP53 gene.
Mutation frequencies for TP53 are extremely variable in
prostate cancer studies (ranging from 3-45%), but overall
it is consensual that most clinically confined tumors have
no mutations, whereas metastatic and androgen inde-
pendent cancers harbor a high frequency of TP53 muta-
tions [20,21]. We detected only one mutation in our set of
clinically confined carcinomas, which is in accordance
with the literature and suggests that this genetic event is

more important for the progression, rather than to the
establishment, of prostatic carcinomas. Loss of 8p, on the
other hand, is an early and frequent finding in prostate
cancer with no significant differences between cCGH and
aCGH. It involves a minimum region of overlap spanning
~12 Mb (8p21.2 to 8p22) that encompasses over 50 con-
firmed genes with distinct cellular functions, making it
difficult to pinpoint single candidate targets. Our and pre-
vious aCGH studies have been wunable to find
homozygous deletions at this chromosome arm, suggest-
ing that many genes in this region may thus be working
together on a dosage dependent manner to induce the ini-
tial stages of prostate carcinogenesis [22,23].

Deletions at chromosomal region 10q are also a frequent
finding in prostate cancer cells, albeit associated with
advanced disease. In 12 out of 15 cases with 10q loss in
our series, a common region at 10q23.31 (~1 Mbp long)
was affected. Strikingly, in seven of these 12 carcinomas
the deletion was homozygous. The only cancer-relevant
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gene from the few candidates at this location is PTEN/
MMACI1 [24,25], as it has already been shown that PTEN
expression is reduced in a large subset of advanced pros-
tate cancers [26,27]. Recent work on mouse models [28-
30] suggests that the absence of functional PTEN confers
proliferating cells the ability to overlook apoptosis even
when subjected to apoptotic stimuli. Haploinsufficiency
of PTEN seems to already have a dramatic influence on
the cellular response to apoptosis [28], with the loss of the
second allele being actively selected for during disease
progression [30]. Interestingly, analyses of this multifunc-
tional protein phosphatase generally describe very low
mutations frequencies [31-34], which further indicates
that homozygous deletions, rather than mutations or epi-
genetic silencing, are the major mechanism of gene inac-
tivation at this locus. This hypothesis has been recently
strengthened by the recurrent finding of homozygous
deletions encompassing the PTEN region in several pros-
tate cancer cell lines and xenografts [35,36], as well as in
primary tumors [37]. Homozygous deletions affecting 5q
were also relatively frequent in our series of primary pros-
tate carcinomas, but these were heterogeneous and the
potential target genes remain unknown.

Conclusion

We conclude that aCGH can significantly improve the
detection of genomic aberrations in cancer cells as com-
pared to previously established whole-genome methodol-
ogies, although stromal contamination may significantly
influence the sensitivity and specificity of most automated
scoring approaches. The increased resolution of aCGH
revealed several previously undetected aberrations and
refined the breakpoints of those already found by cCGH.
The recurrent regions of copy number gains and losses in
primary prostate carcinomas highlighted in this study, as
well as the novel amplified loci and frequent homozygous
deletions, may guide future work aimed at identifying the
relevant target genes.

Materials and methods

Prostate carcinoma samples

We have previously reported the genomic findings
detected by cCGH in a series of prostatectomy specimens
containing cancer [2] and in a series of fine- needle biop-
sies from prostate cancer suspects [6]. For the present
aCGH study, 24 samples from the former and 22 samples
from the latter series were selected, because we wanted to
include early-staged tumors, as well as samples from more
advanced, genetically complex cancers. From the prostate-
ctomy series, in which all samples contained >70% tumor
cells, cases were selected to equally represent different
Gleason score categories. From the biopsy series, only
samples with morphological evidence of tumor were used
and selection was based mostly on DNA availability.
From the selected samples, 6/22 biopsies and 9/24 pros-
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tatectomies had displayed no copy number changes using
cCGH. The same DNA stocks were used for cCGH and
aCGH. Additionally, a total of 51 carcinomas for which
good quality DNA was available (46 samples from Ribeiro
et al., 2006a, including the 24 selected for this aCGH
study, and 5 biopsy samples from Ribeiro et al., 2006b,
also included in the present report) were evaluated for
TP53 gene mutations. Several paraffin-embedded tissue
blocks corresponding to biopsy samples analyzed by
aCGH were also selected for FISH validation studies.

Array-based comparative genomic hybridization

Clone set

We used the Human 4 k Genome-wide 1 Mb resolution
Arrays provided by the Norwegian Microarray Consor-
tium (National technology platform supported by the
functional genomics program of the Research Council of
Norway [38]). Each slide consists of 3568 BAC/PAC
probes positioned along the genome at an average resolu-
tion of 1 Mb, printed in duplicate onto two identical
blocks in the array, for a total of four replicates per clone.
Probe DNA was obtained from the 1 Mb BAC/PAC clone
set kindly provided by Dr. Nigel Carter at the Wellcome
Trust Sanger Institute, UK [39], amplified using DOP-
PCR, and spotted onto CodeLink slides (Amersham Bio-
sciences, Chalfont St Giles, UK) using a MicroGrid II
arrayer (BioRobotics, Boston, USA). Mapping informa-
tion (clone location and cytogenetic bands) was retrieved
from the Ensembl Human Genome Browser v36, Decem-
ber 2005 freeze [40].

Labeling and hybridization

DNA from the 46 prostate samples had been extracted
using standard methods. The same commercially availa-
ble male control DNA (Promega Corporation, Madison,
WI) was used as reference for all samples. For each exper-
iment, 500 ng of test and reference DNA were digested
with Dpn II (New England Biolabs, Ipswich, MA), puri-
fied using the QIAquick PCR purification kit (Qiagen Inc,
Valencia, CA), and labeled with Cy3-dCTP (test) or Cy5-
dCTP (reference) (PerkinElmer, Boston, MA) in a ran-
dom-primer reaction with the BioPrime Array CGH
Genomic Labeling Kit (Invitrogen, Paisley, UK). Unincor-
porated nucleotides were removed using micro-spin G50
columns (Amersham Biosciences, Chalfont St Giles, UK).
Labeled DNAs were combined, mixed with 135 ug of
human Cot-1 DNA (Invitrogen, Paisley, UK), precipitated
using ethanol and ressuspended in hybridization buffer
containing 50% formamide, 10% dextran sulphate, 2 x
SSC, 4% SDS, and 10 pg/uL yeast tRNA (Invitrogen, Pais-
ley, UK). Samples were denatured at 72°C for 10 minutes
and incubated at 37°C for 60 minutes before being
hybridized onto the slides in a GeneTAC Hybridization
station (Genomic Solutions Ltd, Huntingdon, UK).
Hybridization took place over 36 hours, followed by auto-
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mated post-hybridization washes in 50% formamide/2 x
SSC (45°C), 2 x SSC/0.1% SDS (37°C), and PN buffer
(37°C). Slides were dried by centrifugation after a brief
wash in 0.05 x SSC and scanned with an Agilent G2565BA
microarray scanner (Agilent Technologies, Palo Alto, CA).
Five control hybridizations (normal male versus normal
female DNA) were performed, as well as five dye-swap
experiments using randomly selected samples. Data from
11 additional negative controls run during the same
period with different batches of reference DNA were
kindly provided by the Microarray Core Facility to vali-
date the clone set.

Image analysis and processing

Analysis of the microarray images was performed in Gene-
Pix Pro 6.0 (Axon Instruments Inc., Foster City, CA), with
the median pixel intensities for each channel (with back-
ground subtraction) being calculated for each spot. For
each sample, Genepix results were exported as a TAB-
delimited "GPR" file into Normalisation Suite [41], where
background-subtracted channel intensities were normal-
ized (local linear normalization) and combined to pro-
duce the final intensity ratios for each feature. For the
automated scoring of copy number aberrations, three
methods were compared: sample-specific fixed-thresh-
olds, calculated as 2.5 times the baseline noise levels for
each sample (Normalisation Suite [42]); a data segmenta-
tion approach using K-means clustering (CGH-Plotter
[41]), and breakpoint estimation (aCGH-Smooth [43]).
The final choice for automated scoring fell upon aCGH-
Smooth. Graphical visualization of the log-2 ratios for
each sample and the overall results for all samples (clones
indexed by their physical location along the genome)
were generated in Normalisation Suite and Microsoft
Excel, respectively. Amplifications were scored whenever
log-2 intensity ratio was larger than 0.75. For determina-
tion of homozygous deletions, the average log-2 intensity
ratios for deleted regions was calculated for each sample,
and clones reaching at least twice this value were scored.

Fluorescent in situ hybridization

For ten selected biopsy samples, four-micron thick sec-
tions from a representative paraffin-embedded block were
cut onto SuperFrost Plus Adhesion slides (Menzel-Glaser,
Braunschweig, Germany). Sample processing, hybridiza-
tion, and analysis were performed as described previously
[6]. A locus-specific probe for the TP53 gene (17p13.1)
and a control probe for the centromere of chromosome
17 (Vysis, Downers Grove, IL) were applied onto each
sample, and fluorescent images corresponding to DAPI,
SpectrumGreen  (CEP17), and  SpectrumOrange
(17p13.1) were sequentially captured using the same
equipment described for cCGH analysis. Only intact, non-
overlapping nuclei were scored. An abnormal population
was considered representative when at least three nuclei
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within the same microscope field presented a given aber-
ration and at least 40 nuclei presented that particular
alteration in the whole sample.

TP53 mutation status

From the 51 samples subject to mutation analysis, direct
sequencing (sense and anti-sense) was performed for each
of exons 5-8 in 14 samples. The remaining 37 samples
were screened for aberrant bands using the temporal tem-
perature gradient electrophoresis (TTGE) method for
exons 5, 6, and 8, whereas exon 7 was directly sequenced.
The TTGE method has a better resolution level than
sequencing, and aberrant bands may be detected in a sam-
ple with <5% mutated alleles [44].
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