)
Molecular Cancer Bioted Cental

Research

Can gene expression profiling predict survival for patients with
squamous cell carcinoma of the lung?

Zhifu Sun!, Ping Yang*!, Marie-Christine Aubry?, Farhad Kosari3,
Chiaki Endo!, Julian Molina* and George Vasmatzis3

Address: 'Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA, 2Division of Anatomic Pathology, Mayo
Clinic, Rochester, Minnesota 55905, USA, 3Laboratory of Bioinformatics and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
and 4Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA

Email: Zhifu Sun - sun.zhifu@mayo.edu; Ping Yang* - yang.ping@mayo.edu; Marie-Christine Aubry - aubry.mariechristine@mayo.edu;
Farhad Kosari - kosari.farhad@mayo.edu; Chiaki Endo - endo.chiaki@mayo.edu; Julian Molina - molina.julian@mayo.edu;
George Vasmatzis - vasmatzis.george@mayo.edu

* Corresponding author

Published: 03 December 2004 Received: 07 July 2004
Molecular Cancer 2004, 3:35  doi:10.1 186/1476-4598-3-35 Accepted: 03 December 2004
This article is available from: http://www.molecular-cancer.com/content/3/1/35

© 2004 Sun et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Lung cancer remains to be the leading cause of cancer death worldwide. Patients
with similar lung cancer may experience quite different clinical outcomes. Reliable molecular
prognostic markers are needed to characterize the disparity. In order to identify the genes
responsible for the aggressiveness of squamous cell carcinoma of the lung, we applied DNA
microarray technology to a case control study. Fifteen patients with surgically treated stage |
squamous cell lung cancer were selected. Ten were one-to-one matched on tumour size and grade,
age, gender, and smoking status; five died of lung cancer recurrence within 24 months (high-
aggressive group), and five survived more than 54 months after surgery (low-aggressive group). Five
additional tissues were included as test samples. Unsupervised and supervised approaches were
used to explore the relationship among samples and identify differentially expressed genes. We also
evaluated the gene markers' accuracy in segregating samples to their respective group. Functional
gene networks for the significant genes were retrieved, and their association with survival was
tested.

Results: Unsupervised clustering did not group tumours based on survival experience. At p < 0.05,
294 and 246 differentially expressed genes for matched and unmatched analysis respectively were
identified between the low and high aggressive groups. Linear discriminant analysis was performed
on all samples using the 27 top unique genes, and the results showed an overall accuracy rate of
80%. Tests on the association of 24 gene networks with study outcome showed that 7 were highly
correlated with the survival time of the lung cancer patients.

Conclusion: The overall gene expression pattern between the high and low aggressive squamous
cell carcinomas of the lung did not differ significantly with the control of confounding factors. A
small subset of genes or genes in specific pathways may be responsible for the aggressive nature of
a tumour and could potentially serve as panels of prognostic markers for stage | squamous cell lung
cancer.
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Background

Lung cancer remains to be the leading cause of cancer
death in many European and North American countries
[1,2]. It accounts for 13% of all cancer diagnoses but is
responsible for nearly 30% cancer deaths in the United
States [2]. Substantial effort has been made to identify
prognostic factors that can be used for better patient man-
agement and improved survival. As of 2001, as many as
169 prognostic factors were identified in Non-Small Cell
Lung Cancer (NSCLC) [3]. However, only very few such as
TNM stage or patient performance status are consistent
predictors, but they still can not predict individuals' prog-
nosis accurately within a stage. Indeed, why do some
patients with stage I lung cancer progress very quickly
while others survive for a long time cancer free? This puz-
zle naturally has prompted researchers to contemplate
whether the aggressive nature of NSCLC is genetically pre-
determined and whether the difference in gene expression
could be identified as a more reliable clinical outcome
predictor.

Searching for molecular prognostic markers is tradition-
ally carried out by analyzing one or several gene expres-
sion products at a time, which can only touch a very small
fraction of expressed genes in the genome. Fortunately,
recently developed high-throughput technologies such as
DNA microarray provide promising and efficient screen-
ing tools for this purpose. It has been used in lung cancer
research to identify the subclasses associated with tumour
differentiation and patient survival [4,5], to predict
patient survival or potential metastasis of a tumour based
on gene expression profiles [6-8], and to compare two
predefined classes such as tumour vs. normal or smokers
vs. non-smokers to reveal differentially expressed genes
[9-13]. However, some of these findings are simply a reit-
eration of diagnoses that can be easily made by standard
pathologic evaluation, and their added clinical values are
limited. In addition, two major issues exist in most of
those studies to search for prognostic markers: (1) Case
selection criteria were not clearly defined. Different
tumour type, grade, stage, treatment, and smoking history
were often mixed together, making it difficult to assess
whether gene expression profiling discriminated patient
survival independent of other known predictors.
Although tumour type and grade of differentiation are not
consistently documented as prognostic factors, they are
very important in determining a sample's class member-
ship in gene expression profiling [4-6]. (2) A clustering
approach has been used as a major analytical tool to char-
acterize cancer phenotypes including histological type,
metastatic potential or patient survival. However, cluster-
ing is more appropriate to visualize gene expression pat-
terns, and its results are heavily affected by the distance
matrix and linkage method selected [14]. The existing evi-
dence supports the notion that a clustering algorithm
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Hierarchical clustering for 15 samples. 2810 probe sets
filtered by: standard deviation/mean across all samples >
0.06; and the expression level on the log2 scale > 4.00 in >
60% of the samples. H: indicates high aggressive tumors.

mainly groups samples based on histology, a variable not
yet proven as an independent factor in NSCLC prognosis.
This reemphasizes a central question of whether a cluster-
ing approach can discern the aggressive nature of a
tumour with the same histological type.

In order to answer the question why do some patients
with stage I squamous cell carcinoma progress rapidly
after curative resection while others survive a long time
without disease recurrence, we designed a case control
study matching on important prognostic factors so that
only the tumour genetic factor was assumed to be a major
determinant in patients' prognosis. We explored whether
the widely-used hierarchical clustering was applicable in
our study and whether the differentially expressed genes
or functionally related groups of genes had any predictive
value in an independent group of similar patients.

Results

Clinical Characteristics of Selected Patients

The clinical characteristics of the 15 stage I squamous cell
carcinoma patients in our study is provided in the Addi-
tional file 1. Since the first ten samples were matched and
used for the initial marker selection, the two groups (sam-
ple# 1-5 vs. 6-10) were well balanced in terms of age,
gender, tumour size, smoking history, and treatment. The
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Figure 2

Distribution of significant genes from matched analysis. 294 significant genes (P < 0.05) selected by matched analysis
are plotted by fold difference (x-axis) vs. p value using t-test (y-axis) A y-axis greater than 1.3 is equivalent to a p value less than
0.05, and greater than 2 is equivalent to a p value less than 0.01. A positive or negative value at the x-axis indicates genes are up
or down regulated in the high-aggressive group compared to the low aggressive group.

characteristics of the additional five test samples were very
similar to the group of low aggressive samples.

Unsupervised Clustering

When a subset of 2810 filtered genes was used to conduct
hierarchical clustering for all 15 samples, two main clus-
ters were formed (Figure 1). However, the clusters did not
distinguish the two groups by survival outcome: high-
aggressive and low-aggressive tumours were almost evenly
distributed within each cluster. Three of the high-aggres-
sive tumours were present in the left cluster and two in the
right. For the ten low-aggressive tumours, five were in the
left cluster and five were in the right.

Class Comparison and Top Candidate Gene Selection
To identify a panel of genes that are differentially
expressed between the high and low aggressive groups as

potential prognostic biomarkers, we applied matched
(pair of 1-6, 2-7, 3-8, 4-9, 5-10) and unmatched (group
1-5vs. 6-10) t statistics to the ten well-matched samples.
At p < 0.05, 294 and 246 genes were significant in
matched and unmatched comparison, respectively, with
126 selected by both. The majority of significant genes
were within a two-fold mean difference between the two
comparison groups with p values ranging from 0.05 to
0.01 (Figure 2, 3).

From the list generated by matched analysis, we used 1-
10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250,
and 294 genes each time and evaluated their discriminat-
ing capability for training samples by leave-one-out algo-
rithm as illustrated in Figure 4. As few as 10 genes were
found sufficient to achieve 100% accuracy. The same pro-
cedure was performed for the gene list generated by
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Figure 3

Distribution of significant genes from unmatched analysis. 246 significant genes (p < 0.05) selected by unmatched anal-
ysis are plotted by fold difference (x-axis) vs. p value using t-test (y-axis) A y-axis greater than 1.3 is equivalent to a p value less
than 0.05, and greater than 2 is equivalent to a p value less than 0.01. A positive or negative value at the x-axis indicates genes
are up or down regulated in the high-aggressive group compared to the low aggressive group.

unmatched analysis and similar results were obtained.
The first 20 genes from each procedure, which had the
highest signal-to-noise ratio and therefore accurately dis-
tinguished the training samples with contrasting out-
come, were selected and combined. Table 1 lists the 27
unique genes between the two procedures. (There were 2
selected probe sets for each gene ATP1B1 and IGFBP3, and
they were counted once.)

Linear Discrimination Analysis

We applied linear discrimination analysis to the 27 genes
selected from the previous step to assess the accuracy of
class membership prediction for both the training and the
test samples (Table 2). The overall error rate was 20% (3/
15). Interestingly, the linear discrimination score of incor-
rectly classified samples was among the lowest (absolute
value), suggesting a borderline expression pattern
between the high and low aggressive tumours.

Gene Network Analysis

The test statistics for all genes (22215) using R-package
"global test" was not significant, indicating that the over-
all pattern was similar between high-aggressive and low
aggressive groups in our study sample. Using the 126
overlapped genes between matched and unmatched com-
parisons, we found 24 gene networks from Ingenuity
Pathways Knowledge Base. We performed an association
test on each network and found that seven were strongly
associated with survival (Table 3). We then used the genes
in each of the seven networks to predict all 15 samples
separately and detected an error rate ranging from 0 to
47%, with RABGA network genes predicting all samples
correctly.

Discussion
To address the critical clinical question of whether the
aggressive nature of squamous cell carcinoma of the lung
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Figure 4

Leave-one-out prediction on training samples. The x-axis represents different numbers of significant genes from
matched analysis that was used to predict a membership of a sample by the leave-one-out algorithm. The y-axis shows the cor-

rect prediction rate for the 10 training samples.

is genetically pre-programmed, we conducted a matched
experiment using DNA microarray. The purpose of the
design is to control for known confounding factors so that
the true association between gene expression and patient
survival can be determined. Our results have shown that
microarray technology provides both opportunities and
challenges in the identification of potential molecular
prognostic markers.

In our study, unsupervised clustering did not accurately
separate patients based on their clinical outcome behav-
ior. This is in contrast to some investigators [4,5] who,
using a similar approach, have identified subclasses of
tumours showing differing gene expression profiles corre-
lated with varied clinical outcomes. Using the 19.2 K
c¢DNA microarray chip, Wigle et al [7] successfully parti-

tioned 39 mixed histological types and stages of non-
small cell lung cancer into two distinct clusters, those with
early recurrence and those without recurrence regardless
of tumour types. There are several possible explanations
for discrepant results between the studies. First, the forma-
tion of clusters is heavily affected by the number of genes
used for clustering, the gene selection method, and the
clustering algorithm. Highly varied genes generally domi-
nate the clustering process and thus explain why highly
different groups such as among subtypes of non-small cell
lung cancer (squamous cell carcinoma vs. adenocarci-
noma), primary vs. metastatic cancer, or cancer vs. normal
tissue, can be reliably differentiated using this technique.
However, for the same primary tumour where the clinical
outcome is the only noticeable difference, as in our study,
this approach might not be as useful. Second, it is not
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Table I: The top 27 unique genes with highest signal-to-noise ratios
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Gene symbol Gene name

Unmatched Matched

Up-regulated genes ATPIBI ATPase, Na+/K+ transporting, beta | polypeptide v v
TP53 tumor protein p53 (Li-Fraumeni syndrome) v v
CYP26AI cytochrome P450, family 26, subfamily A, polypeptide | v v
SYCP2 synaptonemal complex protein 2 v v
IGFBP3 insulin-like growth factor binding protein 3 v v
CPOX coproporphyrinogen oxidase (coproporphyria, harderoporphyria) v
MAGEA| melanoma antigen, family A, | (directs expression of antigen MZ2-E) v
HIFO H| histone family, member 0 v
MAGEA |2 melanoma antigen, family A, 12 v

* Homo sapiens clone 23705 mRNA sequence
* Homo sapiens cDNA: FLJ21672 fis, clone COL09025.
FLJ20477 Homo sapiens cDNA FLJ39734 fis, clone SMINT2016146. v

Down-regulated genes  P2RY5 purinergic receptor P2Y, G-protein coupled, 5 v v
DKFZp586G0123  hypothetical protein DKFZp586G0123 v
EPB41L3 erythrocyte membrane protein band 4.1-like 3 v v
DKFZP586A0522 DKFZP586A0522 protein v v
CSAD cysteine sulfinic acid decarboxylase v v
BRIPI BRCA I -interacting protein | v v
MYC v-myc myelocytomatosis viral oncogene homolog (avian) v
PDCD4 programmed cell death 4 (neoplastic transformation inhibitor) v
TAF6L TAF6-like RNA polymerase Il, p300/CBP-associated factor (PCAF)-

associated factor, 65 kDa v
ABCAI2 ATP-binding cassette, sub-family A (ABCI), member 2 v
ZNF198 zinc finger protein 198 v
NOTCH2 Notch homolog 2 (Drosophila) v
TncRNA Human clone 137308 mRNA, partial cds. v
CLKI CDC-like kinase | v
POGZ pogo transposable element with ZNF domain v

v Significant in that particular analysis (matched or unmatched)
* No gene symbol for these genes

clear in Bhattacharjee et al and Garber et al studies [4,5]
whether the gene expression profile was influenced by
other prognostic factors such as stage, or whether it was
truly a specific and an independent prognostic factor.
Finally, differences in tumour series, microarray chip plat-
forms, or data pre-processing could affect results across
studies, even within a study [15].

In searching for genes responsible for tumour behavior
and patient survival, a case control comparison between
two different clinical outcomes (long survival vs. short
survival or disease free vs. quick recurrence) or a survival

cohort using Cox's proportional hazards model to find
gene-outcome association are among the most common
options [6,7,9,13]. However, a careful design and imple-
mentation for this type of study needs to be taken into
consideration since a case-control or survival cohort
design is prone to selection bias, i.e., patients enrolled in
comparison groups are different other than the factors
under study, which makes them incomparable [16]. With-
out taking any strategy such as randomization, matching,
or stratification to deal with the potential biases, the study
results should be reviewed with skepticism [16]. Specifi-
cally for microarray study of lung cancer outcome, there
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Table 2: LDA classification using 27 top genes
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Sample LD score Class Prediction Probability Correct?
48521 -0.52 | | 0.75 Yes
48536 -0.94 | | 0.87 Yes
41923 -0.26 | | 0.63 Yes
48549 -0.52 | | 0.74 Yes
44680 -2.9 | | | Yes
42613 1.0 2 2 0.89 Yes
76981 0.52 2 2 0.75 Yes
44661 2.08 2 2 0.99 Yes
86043 -0.19 2 | 0.59 No
86011 1.71 2 2 0.97 Yes
42616 0.12 ? 2 0.56 No
48556 0.05 ? 2 0.52 No
41932 -0.88 ? | 0.86 Yes
42081 -0.52 ? | 0.75 Yes
44656 -0.08 ? | 0.54 Yes

LD score: Linear discrimination function calculated value for a given sample; Class: a sample's membership to the low aggressive group (1) or high
aggressive group (2), "?" is a test sample whose membership is not known for the procedure and needs to be predicted. Prediction: predicted
sample membership. Probability: probability of a sample belonging to a given class based on the classifiers. "Correct": Whether the prediction is

correct compared to the true class of a sample.

Table 3: Gene networks associated with survival

Network genest Scoret Association test p Prediction error
APLP2, ARL6IP, CASP3, CCNGI, CSFI, DNMTI, EPHA2, ERCC3, ERCCS, F2, F5, 17 0.01* 7/15
FGF2, FUBPI, GPI, HAS2, HMOX2, IGFBP3, LOC283120, LOC9 1768, MDM4, MYC,
P53AIPI, PCNA, PEG3, RARB, RPL21, RPS6, RRM2B, TAGLN2, THBD, TMSB4X,
TP53, TP5313, TP73, WTI
AMSH, AR, ATF2, BAGI, BCL2L1I, CREBBP, CYBA, ENOI, EP300, FOXGIB, HOXA9, 9 0.02* 3/15
HOXC8, HSF2, MADH I, MADH2, MADH3, MADH4, NCFI, NCF2, RBM 14, RNF 14,
RTNI, RUNX2, SIAHI, SP3, TOBI, TP53, UBE2E3, UBE2I, ZNF8
SAC, TEC 2 0.01* 4/15
RIPKI, TRIAD3 2 0.03* 4/15
MIR, TMEM4 2 0.01* 3/15
NSF, PIK3CG, RAB6A, RAB6KIFL 2 0.01* 0/15
ATPI2A, ATPIAI, ATPIA2, ATPIA3, ATPIBI, FXYD7 | 0.004* 3/15

T Genes in bold face are focus genes (among 126 genes submitted to the Ingenuity knowledge base). } Score indicates the probability that a
collection of focus genes could be found in a given network by chance. It is the negative logarithm of the possibility. A score of 2 indicates that
chance is only 1%. * Indicates a strong association between the expressions of genes in a network and survival.

are many tumour, host, and environmental related factors
that are associated with patient prognosis. The imbalance
of these factors between the two comparison groups such
as the extent of disease (stage), the presence of other dis-
eases, and treatment makes it difficult to establish the true
association. Although results have not been consistent in
reporting tumour histology of NSCLC as an independent
prognostic factor, available evidence has indicated that it
could be important in gene profiling as major histological
types could be easily separated by the clustering approach
[4-6]. If we do not take histology into consideration in
case selection and comparison, a distorted result might

occur. In contrast, we focused on one subtype of NSCLC
within the same stage and matched on all potential con-
founding factors of survival. The results showed little
overall difference in the gene expression profile between
the two outcome groups. Less than 300 probe sets were
significant at p < 0.05 from over 22,000 probe sets and
20-30 of them were greater than 1.5 fold change between
the two groups, which were hardly separable from ran-
dom noise.

It is a big challenge for microarray analysis to identify reli-
able genomic prognostic marker panels that can be gener-
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alized to independent samples. In our study, the markers
based on signal-to-noise ratio did not perform very well
on the independent samples although the small sample
size could be partly responsible. The result may suggest:
(1) survival of patients with squamous cell carcinoma
could be the result of genetic and non-genetic factors
acting together. Gene expression difference is only a par-
tial explanation. (2) Gene expression among tumours is
very heterogeneous, even for the same histological type.
By examining our series of tumours, we noticed that even
though cell type and grade were matched, there were still
some other variables hard to control for, such as cancer
cell growth patterns or the constitutions of cancer stroma.
Different amounts of lymphocytes or fibroblasts may con-
tribute to the heterogeneous gene expressions. (3) The
aggressive nature of a tumour may be determined by a
small portion of cells that acquire metastatic capacity
through somatic mutation [17], and it is hard to capture
these cells since microarray analysis can only examine a
very limited portion of a tumour. (4) The genes responsi-
ble for tumour aggressiveness may be part of one or mul-
tiple pathways. The genes within specific pathways may
not be the most differentially expressed and may be often
overwhelmed by background noises across tumours; how-
ever, as a functional group, they could potentially deter-
mine the behavior of a tumour.

We evaluated the pathway hypothesis by finding related
genes in specific gene networks using our candidate genes
and tested the correlation between the genes and
prognosis. Using this strategy, we identified seven gene
networks strongly associated with squamous cell carci-
noma survival. Although the functional explanation of an
entire gene network to survival is yet to be determined, the
association of some individual genes such as p53, c-myc,
and PDCD4 (programmed cell death 4) with lung cancer
survival has been well-documented in the literature [18-
22]. Rab6A and related genes, the network accurately sep-
arated tumours with 100% accuracy in our study, are
involved in intracellular transport. Whether they are func-
tionally relevant to cancer aggressiveness or just surrogate
markers of the true underlying mechanism needs to be
further clarified.

Although using carefully-matched samples could poten-
tially unveil a true association, the subjects eligible for
inclusion are dramatically reduced, often leading to a rel-
atively small sample size and insufficient power to detect
a minor difference or overcome randomness [15]. Facing
the reality of low reproducibility using microarray tech-
nology, it is important that an experiment starts with a
good design to minimize various biases [15]. If results
from a well-controlled study are promising, a larger scaled
follow-up investigation will be warranted.

http://www.molecular-cancer.com/content/3/1/35

Conclusions

We found that the overall gene expression pattern
between the high and low aggressive squamous cell carci-
nomas of the lung was similar after controlling for con-
founding factors. However, our results suggest a difference
between high and low aggressive cancers may be due to a
small number of functionally related genes; these are so-
called pathway genes that are often overlooked by com-
monly used analytical approaches. Whether pathway
genes work collectively as more reliable prognostic mark-
ers or not needs to be further investigated by more studies
with a large number of samples.

Methods

Study Design and Sample Selection

Cases were defined as the patients who survived less than
24 months after surgery (high-aggressive group) and con-
trols were those who survived more than 54 months after
surgery (low-aggressive group). The patient population,
from which the cases and controls were drawn, was
comprised of patients diagnosed with lung cancer from
1997 to 2001 who underwent curative resection at Mayo
Clinic, Minnesota, USA. These patients were prospectively
enrolled and had been actively followed since their initial
surgery [23]. We restricted this study to stage I squamous
cell carcinoma to gain more homogeneity in morphology
and to be focused on a common type of lung cancer. Each
case was matched to a control by tumour size and grade,
age, gender, and smoking status so that the potential con-
founding factors could be minimized. For each potential
patient, we carefully reviewed their medical records and
follow-up data to confirm their clinical outcome and the
cause of death if the patients were deceased. From a pool
of 304 patients with stage [ squamous cell carcinoma, five
well-matched pairs were finally selected (See Additional
file 1) and used for most of the analyses. Five additional
patients who survived more than 52 months were
included as a test group (See Additional file 1).

All enrolled patients and use of their tissue samples in the
study were approved by our Institutional Review Board.
The resected tumour and adjacent lung tissues were fast
frozen in -80°C within 30 minutes after the tissues were
surgically removed.

RNA Extraction and Microarray Hybridization

All tissue specimens were reviewed by a pulmonary
pathologist (MCA) to confirm their diagnosis and ensure
that the tissue was appropriate for the experiments. Specif-
ically, the percentage of total tumour, tumour necrosis,
amount of inflammation associated with tumour, and cel-
lularity of stroma were evaluated. In the frozen tissue
blocks containing cancer, the non-neoplastic tissue was
manually cut away from the block to assure at least 80%
of the cancer component. Thirty mm3 of each tissue were
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sectioned at 20 or 35 pm, collected in a buffer RLT
(Qiagen, Valencia, CA) supplemented with B-mercap-
toethanol, and homogenized using PT 1200C (Kinemat-
ica AG, Luzern, Switzerland) rotor/stator. The total RNA
was isolated using the RNeasy kit (Qiagen, Valencia, CA)
following the manufacturer's specifications. Microarray
experiments were performed at the Mayo Clinic Microar-
ray Core Facility. The quality and quantity of RNA sam-
ples were controlled by spectrophotometry and the
Agilent 2100 Bioanalyzer. Hybridization washes and
scanning were performed following the manufacturer's
protocols (Affymetrix, Santa Clara, CA). The HG-U133A
chip from Affymetrix was used and contains 22,283 probe
sets, which we conveniently refer to as genes in this paper.

Data Processing and Analysis

The Affymetrix Microarray Analysis Suite version 5
(MAS5) was used to process the scanned chip images. This
software generates a cell intensity file for each chip, which
contains a single intensity value for each probe cell (cel
file). Dchip 1.3 [24,25](http://biosun1.harvard.edu/com
plab/dchip/) was used to calculate the Model Based
Expression Index (MBEI). All chips were normalized
against an array with a median overall intensity using the
invariant set method, and their images were visually
inspected for potential problems prior to any data
processing and analysis. The MBEI was calculated using
the Perfect Match (PM) only model with outlier detection
and correction. The calculated expressions were log2
transformed. Control probe sets were excluded in the
down-stream analyses.

As a first step, we employed hierarchical clustering to eval-
uate the similarity and disparity in overall expression pat-
terns among all 15 samples using a subset of 2810 genes,
which were filtered by the following criteria: the standard
deviation/mean across all samples >0.06 and the expres-
sion level on the log2 scale > 4 in at least 60% of the sam-
ples. The distance matrix applied in the clustering was one
minus the Pearson correlation coefficient (1-r), which
measures the closeness between genes or samples, and the
linkage method was centroid, which uses the centers of
newly formed clusters (genes or samples) to calculate the
distance between clusters [26,27].

In order to detect differentially expressed genes between
the high and low aggressive groups, we conducted both
matched and unmatched t statistics for the ten matched
samples at the criteria of p < 0.05 and at least one present
call in each comparison group. Next, we applied a feature
selection process to isolate a subset of genes selected from
the previous step that had a high discriminate power in
separating the two distinct groups of tumours. In each
step, one sample was withheld as a test sample, and a sig-
nal-to-noise ratio as described by Ramaswamy and col-

http://www.molecular-cancer.com/content/3/1/35

leagues [28] was calculated for each gene using the
remaining nine samples in the two groups. Based on the
number of genes (features) specified, the procedure chose
the top genes with highest signal-to-noise ratios and cre-
ated a linear model to predict the membership of the
withheld sample using a weighted-voting algorithm [28].
This process was repeated 10 times (10 samples), and an
error prediction rate was obtained for the specified
number of genes. By trying out different numbers of
genes, a zero error rate for training samples could be
achieved. The minimum number of genes obtaining the
zero error rate was chosen as the best candidates.

Linear Discrimination Analysis [29] was applied using the
subset of genes selected from the previous step to assess
whether the genes can discriminate the high from the low
aggressive nature of the training and test samples. This
method utilizes all input genes (independent variables) to
create a discriminant function that maximizes the ratio of
between-group variance and within-group variance so
that different classes (dependent variable, either low or
high aggressive group in our study) can be better sepa-
rated. Implicitly, each gene is assigned a weight in the
function depending on how a gene separates in the two
groups and how this gene correlates with other genes.
After computation, each sample was given a discriminant
score, predicted class membership, and probability for the
assigned class. The prediction rate was calculated to eval-
uate the performance of the classifiers.

Because of stringent matching criteria, we did not expect
dramatic difference between the two comparison groups,
as reported by other investigators who did not match
comparison groups closely. We hypothesized that genes
in certain pathways might play a role in squamous cell
carcinoma prognosis. We submitted the significant genes
selected by both matched and unmatched analysis to the
Ingenuity Pathways Analysis application (http://
www.ingenuity.com)and generated gene interaction net-
works. A test statistic on the association of gene members
in a network with a clinical outcome was carried out by
using the R package "global test" [30]. If a small p value
(<0.05), particularly permutated when sample size is
small, is obtained, there is a strong indication that the
group of genes, no matter whether they are up or down
regulated in the network, is associated with clinical out-
come, i.e., long or short survival in our study.
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