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Abstract

Background: Tumor cell lines are commonly used as experimental tools in cancer research, but their relevance for the
in vivo situation is debated. In a series of || microsatellite stable (MSS) and 9 microsatellite unstable (MSI) colon cancer
cell lines and primary colon carcinomas (25 MSS and 28 MSI) with known ploidy stem line and APC, KRAS, and TP53
mutation status, we analyzed the promoter methylation of the following genes: h\MLH I, MGMT, p | 6/NK4a (CDKN2A .-
transcript), p | 44RF (CDKN2A B-transcript), APC, and E-cadherin (CDHI). We compared the DNA methylation profiles of
the cell lines with those of the primary tumors. Finally, we examined if the epigenetic changes were associated with
known genetic markers and/or clinicopathological variables.

Results: The cell lines and primary tumors generally showed similar overall distribution and frequencies of gene
methylation. Among the cell lines, 15%, 50%, 75%, 65%, 20% and 5% showed promoter methylation for hMLH I, MGMT,
pl6INK4a | 4ARF- APC, and E-cadherin, respectively, whereas 21%, 40%, 32%, 38%, 32%, and 40% of the primary tumors
were methylated for the same genes. hWMLHI and p|4ARF were significantly more often methylated in MSI than in MSS
primary tumors, whereas the remaining four genes showed similar methylation frequencies in the two groups.
Methylation of p|4ARF, which indirectly inactivates TP53, was seen more frequently in tumors with normal TP53 than in
mutated samples, but the difference was not statistically significant. Methylation of p | 4ARF and p | 6/NK4a was often present
in the same primary tumors, but association to diploidy, MSI, right-sided location and female gender was only significant
for p | 4ARF. E-cadherin was methylated in 14/34 tumors with altered APC further stimulating WNT signaling.

Conclusions: The present study shows that colon cancer cell lines are in general relevant in vitro models, comparable
with the in vivo situation, as the cell lines display many of the same molecular alterations as do the primary carcinomas.
The combined pattern of epigenetic and genetic aberrations in the primary carcinomas reveals associations between
them as well as to clinicopathological variables, and may aid in the future molecular assisted classification of clinically
distinct stages.
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Background

During the last decade, epigenetic changes have been
reported in many cancers and they are now recognized to
be at least as common as genetic changes [1]. Aberrant
methylation of cytosine located within the dinucleotide
CpG is by far the best-categorized epigenetic change. The
genome of the cancer cell demonstrates global hypometh-
ylation [2,3] as well as regional promoter hypermethyla-
tion of several tumor suppressor genes [4].
Hypermethylation of selected CpG sites within CpG
islands in the promoter region of genes is associated with
loss of gene expression and is observed in both physiolog-
ical conditions, such as X chromosome inactivation [5],
and neoplasia [6]. By inactivating various tumor suppres-
sor genes, this epigenetic modification can affect many
important cellular processes, such as the cell cycle (RB,
p15INKdb, p] 6INK4a), the TP53 pathway (p144KF), the WNT
signaling pathway (APC, E-cadherin), DNA repair (MGMT,
hMLH1, BRCA1), apoptosis (DAPK), and the metastasiz-
ing process (E-cadherin, TIMP3) (reviewed in [1,7,8]).

Development of colorectal cancer through various mor-
phological stages has been linked to several genetic and
epigenetic changes. The majority of carcinomas have sev-
eral chromosomal aberrations, a phenotype often referred
to as chromosomal instability. Approximately 15% of the
tumors are near diploid but exhibit microsatellite instabil-
ity (MSI), seen as genome-wide short nucleotide inser-
tions and deletions [9]. This phenotype is caused by a
defect DNA mismatch repair system [9]. Subgroups of
both types of colorectal carcinomas reveal aberrant meth-
ylation of tumor suppressor genes leading to lack of
expression [10,11].

Human cancer cell lines are important tools in cancer
research. Their commercial availability and unrestrained
growth make them well suited for in wvitro studies.
Although many of the known genetic aberrations in colon
cancer cell lines have been comprehensively described
[12], several of these cell lines have not been analyzed for
methylation status of pathogenetically important target
genes.

The frequencies of both methylation and gene mutation
differ among various studies of cell lines and primary
tumors. The genome characteristics, profiles of gene muta-
tions, and methylation status are rarely reported in the
same samples, let alone in large series. In the present
report we address these potentially connected pathoge-
netic mechanisms by presenting methylation profiles of a
set of genes in a series of MSI and microsatellite stable
(MSS) colon cancer cell lines and primary colorectal carci-
nomas. The methylation profiles are compared with vari-
ous known genetic and clinicopathological features of the
same series.
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Results

Methylation status of target genes in colon cancer cell
lines

The colon cancer cell line methylation-specific PCR (MSP)
results are summarized in Table 1 and Figure 1a. Among
the MSI cell lines 3/9, 5/9, 7/9, 8/9, 2/9, and 2/9 showed
promoter hypermethylation of htMLH1, MGMT, p16/NK4a,
p144RF, APC, and E-cadherin, respectively, whereas 0/11, 5/
11, 8/11, 5/11, 2/11, and 1/11 of the MSS cell lines were
hypermethylated for the same genes (Table 2). Hence, the
cell lines with MSI generally showed higher methylation
frequencies than did the MSS cell lines (Figures 1a, 2a). In
most cases, methylation of the target genes was biallelic,
but in 10 of the 20 cell lines, monoallelic methylation
(detection of both methylated and unmethylated MSP gel
bands) was found for one or more of the genes (Table 1).
The MSS V9P was the only cell line unmethylated for all
six genes analyzed.

Methylation status of target genes in primary colorectal
carcinomas. Comparison with colon cancer cell lines
Methylation status was assessable in more than 99% of
the total number of analyses (53 tumors x 6 genes = 318
analyses).

The results of the methylation analyses of 53 primary
colorectal carcinomas (25 MSS and 28 MSI) are shown in
Table 2 and illustrated in Figures 1b and 2b. All the meth-
ylated primary tumors examined showed an unmethyl-
ated band in addition to the methylated one, probably
due to the presence of normal cells. The methylation fre-
quencies varied from 0% among MSS tumors at the
hMLH1 promoter to 61% among the MSI tumors for the
p144RF gene (Table 2).

Several of the primary tumor samples displayed wide-
spread CpG island methylation (Figure 1b). Eighteen of
52 tumors (35%) were methylated in 3 or more of the 6
genes analyzed. Only 5/52 (10%) of the tumor samples
did not show hypermethylation in any of the genes ana-
lyzed. We saw no statistical difference in the number of
methylated target genes in colon cancer cell lines versus
colorectal primary tumors (Mean Rank 32 for primary
tumors versus 38 for cell lines, P = 0.231, Mann-Whitney
test).

Methylation profiles compared with genetic
characteristics

The methylation status of the primary tumors was com-
pared with genetic characteristics of the same tumors
(Table 3). In general, higher frequencies of gene methyla-
tion were found among diploid than among aneuploid
tumors, reflecting the MSI status, but the differences
reached statistical significance only for p144RF (P < 0.001)
and hMLH1 (P = 0.015). Sixteen of 49 primary tumors
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Table I: Promoter methylation of colon cancer cell lines. MSI, microsatellite instable; MSS, microsatellite stable; U, unmethylated; M,
methylated. The references give results in agreement with our own data except when the reference is underlined. Note that reference
I5 does not use the category monoallelic methyaltion, but reports the promoters only as methylated or unmethylated.

Cell line hMLHI MGMT p16/NKda p 14ARF APC E-Cadherin
MSI
Colls Mi2 M M2 M UM U
HCTI5 Ul213.1415 U/Mls.16 MI2.14.15 MI4.15.17 U u's
HCTI16 U!12.13.15.18,19.2021,22 U/Ml5.20 U/M12.15.2021.22.23 U/Ml5.12.21.24 UM ul's
LoVo U1213,1415,1822.26 yisal MI2.14,1522 M!4.15.24.25 U u's
LSI74T u'213182 UM un2 um U U
RKO MI5.18.19.2022.26 y!5.20 M15.202227 Mi5.24 U MLs
SW48 M!2.13.14.15,18.20,22,26,28,29 M!5.20,31 M12,14,15,20,22,27,29 MI4.15.24 U ul's
TC7 un2 U unz U/M U U
TC71 un2 u Mi2 u u UM
MSS

ALA u2 U M2 ) M U
Colo320 U'2141830 M Mi2.1427 U4 BE M
EB 2 M Mi2 u u u
FRI Uiz UM u'2 UM u U
HT29 U12.13.14,15,1821,22,2630 U15313233 MI2.14,15.21.22.27 U!4.1521.24 u3o u's
ISl U221 u Mi22! Mz u u
IS2 u? u u/M!2 M u u
IS3 un? U U2 M u U
LS1034 U213 UM u/M!2 M UM u
SW480 U12.1415,1921,22.2630 U/Mls MI2.14,1521,22.27 U14.1521,2425 BEY u's
V9P U2 U u'2 u u U

Table 2: Methylation frequencies among MSS and MSI colon cancer cell lines and primary colorectal tumors. Abbreviations; MSS,
microsatellite stable; MSI, microsatellite instable; CRC, colorectal cancer; U, unmethylated;M, methylated. Note that the calculated
methylation frequencies of the MSS cell lines includes results from three cell lines derived from the same patient.

MSS MSI Total

Gene Cell lines CRCs Cell lines CRCs Cell lines CRCs

hMLH | 0/11 (0%) 0/25 (0%) 3/9 (33%) 11/28 (39%) 3/20 (15%) 11/53 (21%)
MGMT 5/11 (45%) 10/25 (40%) 5/9 (56%) 11728 (39%) 10/20 (50%) 21/53 (40%)
p | 6INK4a 8/11 (73%) 7/25 (28%) 719 (78%) 10/28 (36%) 15/20 (75%) 17/53 (32%)
p | 4ARF 5/11 (45%) 3/24 (12%) 8/9 (89%) 17/28 (61%) 13/20 (65%) 20/52 (38%)
APC 2/11 (18%) 7/25 (28%) 2/9 (22%) 10/28 (36%) 4/20 (20%) 17/53 (32%)
E-cadherin 1711 (9%) 10/24 (42%) 2/9 (22%) 11/28 (39%) 3/20 (15%) 21/52 (40%)

harbored TP53 mutations, and all of the tumors with
TP53 mutations also harbored unmethylated hMLH1 (P =
0.009). p144RF hypermethylation was less common in
tumors with mutated TP53 than in tumors with wild type
TP53, although this was not statistically significant (P =
0.127). Four tumors displayed a G:C to A:T TP53 muta-
tion and three of them simultaneously harbored a meth-
ylated MGMT gene. Four of 11 tumors with G:C to A:'T
KRAS (KRAS2) mutations were methylated at the MGMT
promoter. Overall, the presence of KRAS mutations was
not associated with the methylation status of the genes

analyzed. Among the 20 tumors with p144RF methylation,
10 were also methylated at the adjacent p16/NK4a gene (P =
0.067). Finally, the APC promoter was methylated in 17/
53 (32%) tumors, and 8/17 (47%) tumors displayed both
APC mutation and methylation.

Among the tumors with widespread methylation (3 or
more methylated genes), 13/18 (72%) tumors demon-
strated MSI, whereas 5/24 (21%) were MSS (P = 0.080).
We found no statistically significant associations between
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Distribution of simultaneously methylated promoters in MSS and MSI colon cancer cell lines and colorectal
carcinomas. The two panels illustrate the percentage of MSS and MSI samples displaying methylation of zero to all of the pro-
moters analyzed in the present study in a) cell lines and b) primary colorectal tumors. Abbreviations: MSS, microsattelite sta-

ble; MSI, microsattelite instable.

tumors with widespread methylation and presence of
TP53, KRAS, or APC mutations.

Methylation profiles and clinicopathological features

The clinicopathological features and methylation status of
the primary tumors are summarized in Table 3. We saw
more methylation among tumors from females than in
those from males for both hMLH1 (P = 0.043) and p144RF
(P =0.050). Tumors from patients younger than the mean
age (68 years) had a lower methylation frequency for
p16INK4a than did tumors from older patients, although
this was not statistically significant (P = 0.074). There was
a strong association between methylation and right-sided
tumor location as 10/11 (91%) tumors methylated in
hMLH1 and 12/19 (63%) of the tumors methylated in
p144RF were located in the right side of the colon (P <
0.001 and P = 0.005, respectively). There was no statisti-
cally significant association between methylation and his-
tological grade. Most of the tumors with APC methylation
(13/17, 76%) belonged to the Dukes' B group, but the dif-
ferences were not statistically significant (P = 0.068).

Tumors with widespread methylation (> 3 loci) are asso-
ciated with right-sided localization; 10/17 (59%), versus
5/17 (29%) left-sided (P = 0.035). We saw no statistically
significant associations between presence of widespread

methylation and the remaining clinicopathological varia-
bles included in the present study.

Discussion

Tumor cell lines are commonly used as experimental tools
in cancer research, including studies designed to assess
epigenetic changes. But whereas the genetic aberrations of
colon cancer cell lines have been comprehensively
described [12], the methylation profiles of potential target
genes in the same or similar cell lines are often described
only sparingly. A literature survey of the 20 colon cancer
cell lines and their methylation status analyzed in this
study showed that some cell lines and genes had been
extensively studied, whereas others were left undescribed
(Table 1). For half of the cell lines included in the present
study, both methylated and unmethylated alleles have
been found for one or more of the genes studied. As non-
neoplastic cells are not found in cultured cancer cell lines,
this can not be caused by the presence of normal cells, and
although several biological and technical explanations
may exist, allele specific methylation seems the most
likely interpretation [23,34]. In contrast, admixture of
normal cells, tumor heterogeneity and/or monoallelic
methylation may explain the coexistence of unmethylated
and methylated bands in primary tumors.
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Promoter hypermethylation in colon cancer cell lines and colorectal primary tumors. Methylation was evaluated
by methylation-specific PCR (MSP). A visible PCR product in Lanes U indicates the presence of unmethylated alleles whereas a
PCR product in Lanes M indicates the presence of methylated alleles. The upper panel (a) illustrates the methylation status of
all the loci analyzed in a MSI cell line (RKO) and a MSS cell line (HT29). The lower panel (b) shows the methylation status of
representative primary colorectal tumors. Abbreviations: NB, normal blood (positive control for unmethylated samples); MP,
methylated placenta (positive control for methylated samples); neg, negative control (containing water as template); U, lane for

unmethylated MSP product; M, lane for methylated MSP product.

It has been debated for some time whether cell lines are
more frequently methylated than primary tumors [35].
Regarding overall CpG island hypermethylation, cancer
cell lines have in general demonstrated an increased fre-
quency of hypermethylation compared with primary
tumors [15]. However, only a limited number of the genes
analyzed have shown a statistically significant difference
in methylation frequency [15]. Among several cancer
types examined, colon cancer cell lines have been shown
to resemble the most their respective primary tumor in
this respect [36]. For the cell lines and primary tumors
included in this study, the fraction of MSI and MSS sam-
ples was about the same and we saw no statistical differ-
ence in the overall number of methylated target genes in

colon cancer cell lines versus colorectal primary tumors.
Seemingly, large methylation percentage differences for
individual genes were seen (Table 2) but they were statis-
tically significant only for p16!NK4a methylation, inde-
pendent of MSI stratification. Comparisons of in vitro
tumor cells with primary tumors of each subtype (MSS
and MSI) have also shown similar frequencies of TP53,
KRAS and APC mutations [12] and ploidy stem line [37],
which further supports the conclusion that the in vitro sys-
tem is a suitable experimental tool that closely reflect the
in vivo situation.

Previously reported variations in promoter hypermethyla-

tion frequencies of different tumor suppressor genes in
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Table 3: CpG island methylation of selected genes compared with the patients clinicopathological features and tumor genetics.
Abbreviations: Gen. Characteristics, Genetic Characteristics; MSI, microsatellite instability; MSS, microsatellite stable; NS, not
significant; Clin. and Path. Features, Clinical and Pathological Features. Comparison of different groups were tested with Fisher exact
test or Pearsons 2 test, P values are two sided and are considered statistically significant when P < 0.05. The table is based on primary
tumors (53) and not patients (52) *Statistically significant Pearsons 2 tests with expected count less than 5.

hMLH| MGMT p | 6/INK4a p | 4ARF APC E-cadherin
M U M U M U M U M U M U
Individuals
No 11/53 42/53 21/53 32/53 17/53 36/53 20/52 32/52 17/53 36/53 21/52 31/52
Gen. Characteristics
Ploidy
Diploid 10 20 10 20 10 20 18 12 Il 19 13 17
Aneuploid | 22 Il 12 7 16 2 20 6 17 8 14
P value 0.02 NS NS <0.001 NS NS
MSiI-status
MSI Il 17 Il 17 10 18 17 Il 10 18 Il 17
MSS 0 25 10 15 7 18 3 21 7 18 10 14
P value <0.001 NS NS 0.001 NS NS
TP53
Wild type Il 22 12 21 Il 22 16 16 8 25 13 19
Mutation 0 16 7 9 5 Il 4 12 7 9 7 9
P value 0.01 NS NS NS NS NS
wt+non G-A mutation Il 33 15 29 14 30 18 25 13 31 17 26
G-A mutation 0 4 3 | | 3 | 3 | 3 2 2
P value NS NS NS NS NS NS
K-Ras
Wild type 8 19 13 14 9 18 12 15 7 20 9 18
Mutation | 14 6 9 3 12 2 12 6 9 6 8
P value NS NS NS 0.08 NS NS
wt+non G-A mutation 8 23 15 16 9 22 13 18 8 23 10 21
G-A mutation | 10 4 7 3 8 | 9 5 6 5 5
P value NS NS NS NS NS NS
APC
Wild type 7 19 12 14 10 16 9 17 9 17 12 14
Mutation 3 23 8 18 7 19 10 15 8 18 9 16
P value NS NS NS NS NS NS
Clin. and Path. Features
Sex
Male 2 23 9 16 8 17 6 19 10 15 8 17
Female 9 19 12 16 9 19 14 13 7 21 13 14
P value 0.04 NS NS 0.05 NS NS
Age (years)
<68 2 21 10 13 4 19 7 16 8 15 9 14
>68 9 21 Il 19 13 17 13 16 9 21 12 17
P value 0.09 NS 0.07 NS NS NS
Location
Right 10 8 7 Il 7 Il 12 6 7 Il 7 Il
Left | 19 8 12 9 Il 5 14 6 14 8 I
Rectum 0 14 6 8 | 13 2 12 4 10 5 9
P value <0.001* NS 0.05 0.0l NS NS
Histologic grade
Poorly differentiated 4 8 7 5 6 6 7 4 5 7 4 7
Moderately differentiated 7 30 13 24 Il 26 12 25 I 26 14 23
Well differentiated 0 3 | 2 0 3 0 3 | 2 2 |
P value NS NS NS NS NS NS
Dukes' classification
A 2 2 3 | | 3 2 2 0 4 | 3
B 5 22 10 17 8 19 9 17 13 14 12 14
C 2 13 4 Il 4 Il 4 Il 3 12 5 10
D 2 5 4 3 4 3 5 2 | 6 3 4
P value NS NS NS NS 0.07 NS
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colorectal cancer can be explained by various ratios of MSI
versus MSS samples in the series analyzed, different
methods for analyzing methylation, the inter-individual
variation in scoring of methylated samples, incomplete
bisulphite modification, tumor heterogeneity, and the
fact that different parts of the gene promoter region in
question have been analyzed. In the present study, we
used primer sets known to only detect methylation in
tumor cells, never in normal tissues from the same
patients [24,31,38-42]. The promoter hypermethylation
in these areas has also shown an impressive correlation
with lack of protein expression, confirming that these are
essential regions for gene expression [24,31,38-42]. The
hMLH1 primers we designed amplify a region of the pro-
moter, in which methylation invariably correlates with
the lack of hMLH1 expression [18,43,44]. Methylation of
this region has only been detected in tumor cells and not
in normal mucosa [18,43,44].

As expected, the MSI primary tumors showed more meth-
ylation overall than did the MSS group. However, this was
only significant for the h(MLH1 and p14ARF genes, whereas
the four additional genes analyzed revealed similar meth-
ylation frequencies in the MSS and MSI groups. Promoter
methylation of the hMLH1 gene was, not surprisingly,
found only in tumors and cell lines with MSI, not in the
MSS samples. The MSS tumors and cell lines per defini-
tion contain functional hMLH1 protein, and transcrip-
tional silencing of h(MLH1 by hypermethylation is known
to be the main cause of MSI in sporadic CRC [26,28,45].
Also p144RF methylation may have a specific role in MSI
tumors, since it seems to be most often inactivated in
tumors with wild type TP53 (see below). However, the rel-
atively high methylation frequencies of the remaining
analyzed genes, and also their overall similar frequency in
MSI and MSS samples, imply that they are important in
colorectal carcinogenesis independently of tumor site and
MSI status.

Inactivation of tumor suppressor genes by promoter
hypermethylation has been recognized to be at least as
common as gene disruption by mutation in tumorigene-
sis [1]. Indeed, most types of primary tumors harbor
several genes inactivated in this way and some genes, like
p16INK4a, have been reported to be methylated consist-
ently in most tumor types analyzed [46]. In colorectal car-
cinomas, the reported p16/NK4e methylation frequencies
vary from 18% [47] to 50 % [48] with most of the obser-
vations centered around 36-40% [11,27,46,49-51], i.e,,
slightly higher than our result. Both p16/NK4a and p14ARF
are more commonly methylated in tumors with MSI than
in MSS [10,11,51-53], although we found that the meth-
ylation frequency of p144RFis higher than that for p16/NK4a
in MSI colorectal carcinomas.

http://www.molecular-cancer.com/content/3/1/28

The DNA repair protein MGMT is able to remove pro-
mutagenic alkyl groups from O¢%-guanine by an irreversi-
ble transfer to an internal cysteine residue [54]. Left
unrepaired, the alkylated O¢-guanine has a tendency to
base pair with thymine during replication, thereby intro-
ducing a G:C to A:T transition mutation in the DNA [55].
Inactivating promoter hypermethylation of the MGMT
gene has previously been reported to be associated with
G:C to A:T mutations in the tumor suppressor gene TP53
[56] and the proto-oncogene KRAS [57,58]. Our data sup-
port this assumption for TP53 but seemingly not for
KRAS, although no certain conclusions can be drawn from
the limited number of samples with G:C to A:T mutations.

The p14ARF protein interacts in vivo with the MDM2 pro-
tein, neutralizing MDM2's inhibition of TP53 [59]. Less
hypermethylation of p144RF in tumors with mutated TP53
than in tumors with wild type TP53 has been reported pre-
viously [24]. Additionally, several reports have described
an inverse relationship between MSI and TP53 mutation
in colorectal carcinomas [60-62]. The frequent methyla-
tion we report for the p144RF gene in MSI tumors with few
TP53 mutations is in agreement with a recent study [53]
and supports the existence of this alternative pathway for
TP53 inactivation.

Inactivation of the APC gene is frequent in colorectal and
other gastrointestinal carcinomas, usually by truncating
mutations [63,64]. An alternative mechanism to inacti-
vate the gene in colorectal tumors is by promoter methyl-
ation, and we report a frequency of APC methylation in
the upper range of what has been seen in previous studies
[51,65,66]. Somatic mutations in APC are common in
colorectal cancer [67,68] and, similar to what has been
seen by others [12,22,69], almost half of the tumors dis-
playing APC mutations in our study were also methylated.
We have not looked at allele-specific mutation, but meth-
ylation and mutation in the same tumor might reflect one
mutated allele and methylation of the other, in accord-
ance with Knudson's two hit hypothesis. This has previ-
ously been demonstrated for APC in colorectal cancer
samples by Esteller et. al [65]. APC has a central role in the
WNT signaling pathway, which is suggested to play a part
in colorectal carcinogenesis by its constitutive activation.
Activation of this pathway results in increased transcrip-
tion levels of genes like MYC and CCND1 (cyclin D1) fur-
ther stimulating cell proliferation [63]. Among the 52
successfully analyzed primary tumors in this study, 35
had altered APC caused by methylation (n = 17) and/or
gene mutation (n = 26). The E-cadherin gene was also
methylated in 14/34 tumors with altered APC, presuma-
bly further stimulating WNT signaling [63]. Interestingly,
APC methylation seemed to be more common in Dukes B
stage tumors.
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The present study confirms that methylation of tMLH1 in
sporadic carcinomas is associated with proximal tumor
location in the large bowel [14,21,45,70], as above 90%
of the primary tumors harboring a methylated hMLH1
promoter were taken from the right side of the colon. An
association between sporadic proximal colon carcinomas
and methylation has also been reported for p16/NK4a and
p144RF[14,21,45]. Among our 53 primary tumors, we can
only confirm this statistically for p144RF. However,
p16NK4a demonstrated the same tendency. Both hMLH]1
and p14A4RF are strongly associated with MSI and MSI is in
turn strongly associated with proximal tumor location
[71,72], hence, it is not unexpected that the methylation
of both genes is associated with proximal location.

When it comes to gene methylation and its association
with other clinicopathological features, contradictory
results have been reported. Our observation that methyl-
ation of p144RF does not exclude p16NK4a methylation, is
in accordance with previous studies [21,24]. Correlation
of p16INK4a or p14ARF methylation with female gender and
increased age has been described in some studies [14,47]
but not in others [11,21,24]. We found such an associa-
tion between female gender and methylation of p144RF
and hMLH]1, but not of p16/NK4a, We also found a weak
association between p16/NK4a methylation and increasing
age. This potential age-specific methylation was not con-
firmed for any of the other genes studied. The gender-
associated methylation of hMLH1 has previously been
described [73,74] and might explain the increased preva-
lence of colorectal tumors of the MSI type in the female
patient group [74].

Like Toyota et. al [51], we found no statistically significant
associations between tumors with widespread methyla-
tion and age, gender, or stage of the colorectal cancer.

Conclusions

The data presented here demonstrate that multiple genes
are methylated in colorectal carcinomas. This underlines
the important role epigenetic inactivation of tumor
suppressor genes plays during the process of tumor devel-
opment. Epigenetic changes in colon cancer cell lines are
overall comparable with those of primary carcinomas of
the large bowel, which make the cell lines relevant models
for the in vivo situation. The methylation profile of specific
genes, in particular iIMLH1 and p14ARF, has strong associ-
ations with genetic and clinicopathological features and
might be related to biologically distinct subsets of color-
ectal tumors.

Methods

Patients and cell lines

Fifty-three primary colorectal carcinomas from 52
patients, including 25 MSS tumors and 28 MSI tumors,

http://www.molecular-cancer.com/content/3/1/28

were submitted to methylation analyses. One of the
tumors was from a patient with hereditary non-polyposis
colorectal cancer (HNPCC), whereas the rest of the cases
were sporadic [71]. The tumors have known DNA ploidy
pattern [75], MSI status [76], as well as mutation status for
TP53, KRAS and APC [62,64,77]. The genetic and clinico-
pathological variables are found in Table 3. Twenty colon
cancer cell lines, 11 MSS and 9 MSI, were also included in
the study. These cell lines have previously been character-
ized for MSI status [61,78-80], 31 different genetic altera-
tions [12], and total genome profiles by Kleivi et. al [37].
The primary tumors included in the present study are
from a series of carcinomas evaluated to contain a mean
number of 84% tumor cells [81]. The DNA was extracted
by standard phenol -chloroform procedure.

Methylation-specific PCR (MSP)

Promoter methylation was studied in hMLH1, MGMT,
p16INKda, p]14ARF APC and E-cadherin by MSP, a method
that distinguishes unmethylated from methylated alleles
of a given gene [38]. After bisulphite treatment of DNA,
which converts unmethylated but not methylated
cytosines to uracil, DNA is amplified by PCR using prim-
ers specific to methylated and unmethylated sequences.

One or two pg DNA from each sample was modified as
described [82]. Previously reported primer sets were used
for amplification of the MGMT [31,82], p16/NK4a [38,82],
p144RF [24], APC [39,40] and E-cadherin fragments [41]
(island 3). The primers for amplifying unmethylated and
methylated htMLH1 fragments were designed in accord-
ance with hMLH1 promoter methylation and gene expres-
sion studies [18,44]. All primer sets (see Additional file 1)
were purchased from Medprobe AS (Oslo, Norway).

All the PCRs were carried out in a total volume of 25 ul
containing 1 x PCR Buffer (15mM MgCl, or no MgCl,;
QIAGEN Inc., Valencia, CA), 200 uM dNTP (Amersham
Pharmacia Biotech Products Inc., Piscataway, NJ), and
0.625 U HotStarTag DNA Polymerase (QIAGEN). PCR
products were loaded onto 7.5% polyacrylamide gels,
stained with ethidium bromide, and visualized by UV
illumination. An independent second "methylated reac-
tion" of the MSP was performed for all the samples
included in the present study. In cases with diverging
results from the two rounds of MSP, we did a third inde-
pendent MSP round.

Human placental DNA (Sigma Chemical Co., St. Louis,
MO) treated in vitro with SssI methyltransferase (New Eng-
land Biolabs Inc., Beverly, MA) was used as a positive con-
trol for MSP of methylated alleles, whereas DNA from
normal lymphocytes was used as a control for unmethyl-
ated alleles. Water was used as a negative PCR control in
both reactions.
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Statistics

All 2 x 2 contingency tables were analyzed using Fisher's
exact test. Three x 2 tables were analyzed by the Pearson
x2 test. Two of the statistically significant cross-tables ana-
lyzed by the Pearson 2 had cells with expected count less
than 5, with a minimum count of 2.96 (Table 3). The
Mann -Whitney test was in addition performed when
appropriate. All P values are derived from two tailed sta-
tistical tests using the SPSS 11.5 software.
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