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Abstract
Background: Epithelial ovarian tumours exhibit a range of malignant potential, presenting distinct clinical
phenotypes. Improved knowledge of gene expression changes and functional pathways associated with
these clinical phenotypes may lead to new treatment targets, markers for early detection and a better
understanding of disease progression.

Results: Gene expression profiling (Affymetrix, U95Av2) was carried out on 18 ovarian tumours including
benign adenomas, borderline adenocarcinomas of low malignant potential and malignant adenocarcinomas.
Clustering the expression profiles of samples from patients not treated with chemotherapy prior to
surgery effectively classified 92% of samples into their proper histopathological group. Some cancer
samples from patients treated with chemotherapy prior to surgery clustered with the benign adenomas.
Chemotherapy patients whose tumours exhibited benign-like expression patterns remained disease free
for the duration of this study as indicated by continued normal serum CA-125 levels. Statistical analysis
identified 163 differentially expressed genes: 61 genes under-expressed in cancer and 102 genes over-
expressed in cancer. Profiling the functional categories of co-ordinately expressed genes within this list
revealed significant correlation between increased malignant potential and loss of both IGF binding
proteins and cell adhesion molecules. Interestingly, in several instances co-ordinately expressed genes
sharing biological function also shared chromosomal location.

Conclusion: Our findings indicate that gene expression profiling can reliably distinguish between benign
and malignant ovarian tumours. Expression profiles of samples from patients pre-treated with
chemotherapy may be useful in predicting disease free survival and the likelihood of recurrence. Loss of
expression of IGF binding proteins as well as specific cell adhesion molecules may be a significant
mechanism of disease progression in ovarian cancer. Expression levels in borderline tumours were
intermediate between benign adenomas and malignant adenocarcinomas for a significant portion of the
differentially expressed genes, suggesting that borderline tumours are a transitional state between benign
and malignant tumours. Finally, genes displaying coordinated changes in gene expression were often
genetically linked, suggesting that changes in expression for these genes are the consequence of regional
duplications, deletions or epigenetic events.
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Background
Epithelial ovarian cancer is the fifth leading cause of death
for women in the United States [1]. Although early stage
ovarian cancer can be effectively treated, symptoms of
early disease are sufficiently vague that accurate diagnosis
is often delayed until the cancer has progressed into more
advanced stages [2]. Treatment of early staged tumours (I
through IIa) is associated with a 5-year survival rate of
approximately 95% while survival rates drop to less than
30% when diagnosis is delayed until later stages (stage IIb
through IV). To improve these statistics, effective early
diagnosis and treatment strategies must be developed.
Further knowledge of the genes and gene functional path-
ways involved in ovarian cancer are needed in order to
develop these strategies.

Microarray technology has revolutionised the study of
gene function by providing "snapshots" of global gene
expression patterns from different normal and diseased
tissues over multiple stages of development. Nowhere has
the impact of this technology been more pronounced
than in the field of cancer biology where gene expression
profiling has been successfully used to objectively classify
tumours and, in some instances, identify novel tumour
sub-types [3]. Microarray analyses have also been instru-
mental in the elucidation of new biological pathways that
may be involved in tumour development, as well as, in
the identification of new biomarkers of the disease and
potential targets of therapeutic intervention.

Previous microarray studies of ovarian cancers have
focused on the characterisation of differences between
normal ovarian epithelial cells (and cell lines) and various
types and stages of ovarian tumours [4-10]. In this study,
we focus on characterising differences between benign
adenomas, borderline tumours of low malignant poten-
tial and malignant adenocarcinomas in order to identify
changes associated with the acquisition of malignancy
and to avoid the technical difficulties associated with
obtaining sufficient amounts of normal ovarian surface
epithelium. The ovarian tumour tissue samples used in
these microarray studies were chosen to accurately repre-
sent the range of malignant potential observed clinically.

We report here the results of applying clustering and sta-
tistical analyses to the microarray expression profiles of 18
ovarian tumours. Our findings indicate that gene expres-
sion profiling distinguished properly classify 92% of
tumours in this study as benign or malignant. Samples
taken from ovarian cancer patients who had been treated
with chemotherapy prior to surgery were found not to
cluster as a distinct group but rather with either the benign
or malignant (not pre-treated) tumours. Chemotherapy
patients whose tumours clustered with the benign group
remained disease free for the duration of the study as evi-

denced by continued normal serum CA-125 levels. Profil-
ing the functional categories of co-ordinately expressed
genes revealed significant correlation between increased
malignant potential and loss of IGF binding proteins, and
cell adhesion molecules. In several instances co-ordi-
nately expressed genes sharing functional categories also
correlated with chromosomal location.

Results
Unsupervised clustering of gene expression profiles can 
reliably identify ovarian tumour types
To determine if gene expression profiling can distinguish
between histologically determined tumour types, we ana-
lysed the profiles of 13 ovarian tumours (Table 1) by per-
forming clustering using self-organising maps (SOM) and
unsupervised hierarchical clustering (UHC). Self-organis-
ing maps are a type of mathematical cluster analysis used
to recognise and classify features in complex multi-dimen-
sional data [11]. SOMs group samples into a user-defined
number of clusters based on the similarity of the gene
expression profiles. The set of thirteen samples was com-
prised of four benign adenomas (a_64, a_77, a_97,
a_159), four borderline tumours of low malignant poten-
tial (b_15, b_65, b_72, b_120) and five malignant adeno-
carcinomas (c_2, c_4, c_23, c_66, c_79). Analysing all
12,590 probe set values from the 13 samples into four
groups resulted in 92% of the samples being grouped into
clusters consistent with their histopathological classifica-
tion (Figure 1a). One cluster (cluster 0) contained only
adenocarcinomas, two clusters (clusters 1 and 2) con-
tained only borderline tumours, and one cluster (cluster
3) contained all of the benign adenomas and one adeno-
carcinoma sample. In addition, the UHC of the entire data
set (Figure 1b) produced essentially the same clusters as
determined by SOM. The only difference between the
SOM and UHC results was the stratification of borderline
tumours, which are known to be a heterogeneous group
of tumours. The SOM clustered the four borderline sam-
ples into one group of three borderlines (b_65, b_15,
b_72) and one solitary sample (b_120) (Figure 1a). How-
ever, the UHC clustered the four borderline samples into
one group containing b_15 and b_120, and one group
containing b_65, and b_72. Since c_79 was consistently
misclassified, a second tissue sample of c_79 was analysed
by microarray and clustered as above. This independently
obtained expression profile for c_79 produced the same
results.

Since many of the genes in our data set display no differ-
ential expression across the 13 tumours, their contribu-
tion to the SOM is negligible and can be considered noise.
Removing genes whose expression pattern displayed
insignificant variation (low standard deviation) across all
samples, we reduced the data set to1000 probe sets. After
removing probe sets representing the same gene, the
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reduced data set contained expression values representing
700 genes. The SOM and UHC of the reduced data set
yielded identical clusters to those obtained using the
entire data set (Figure 1a and 1b).

To determine the genes most highly correlated with each
cluster identified by the SOM analysis, we performed a
marker analysis (Figure 1c) on the reduced set of 700
genes. Marker analysis helps the user discover which genes
are most closely correlated with a cluster and provides a
measure of how significant that correlation is for each
gene. Marker analysis measures the contribution of each
gene to the SOM groupings based on a signal to noise
ratio calculated from the difference in each gene's mean
expression scaled by the sum of the standard deviations
across all samples. To avoid having one cluster containing
only one sample in the marker analysis, we grouped clus-
ters cluster 1 and cluster 2 containing the borderline sam-
ples together, creating three clusters (Figure 1c) consisting
of the benign adenomas and c79 (SOM_a), borderline
adenocarcinomas (SOM_b), and the malignant adenocar-
cinomas (SOM_c). Genes highly correlated with each
SOM group were expressed strongly in the tumour type
associated with that SOM group and poorly expressed in
the other SOM groups. It is interesting to note that the 10
genes highly correlated with SOM_a were expressed at
intermediate levels in borderline tumours. Similarly, the
10 genes highly correlated with SOM_b were expressed at
intermediate levels in the adenocarcinomas of SOM_c.

Gene expression profiles are correlated with recurrence
Five of the cancer patients in our study were treated with
chemotherapy prior to surgery. We added the microarray
profiles of these patient samples to our analysis in order
to determine if they would cluster into a new distinct
group or into one or more of the existing groups. The
SOM (Figure 1d) and UHC (Figure 1e) clusters resulting
from the analysis of all data (12,590 expression values)
from all eighteen samples into four clusters differ only in
the stratification of the borderline samples. The addition
of the five samples from patients who received chemo-
therapy prior to surgery did not change the cluster assign-
ments of the original thirteen samples. Clustering of the
reduced set of 700 genes (see above), resulted in the same
patterns of clustering as determined using the entire set of
12,590 expression values (Figure 1d and 1e).
Interestingly, the five samples from patients pre-treated
with chemotherapy did not cluster together in a distinct
group but rather were dispersed among the existing four
clusters. Samples cc_29 and cc_76 clustered with the
malignant adenocarcinomas, while samples cc_36 and
cc_9 clustered with the benign adenomas. Sample cc_94
clustered with the borderline tumours.

In an initial effort to test the possible clinical significance
of the differential clustering of samples obtained from
patients pre-treated with chemotherapy, we examined the
post-operative history of these patients. One commonly
used indicator of recurrence is the level of Cancer Antigen-
125 (CA-125) in the blood [12,13]. Although post-opera-
tive CA-125 levels were initially lowered to a significant

Table 1: Tissue Sample Information

Tumor ID Malignant Potential Available Histological Information Stage Chemo

a_64 benign Serous cystadenofibroma - -
a_77 benign Serous cystadenofibroma - -
a_97 benign Serous cystadenoma - -
a_159 benign Serous cystadenofibroma - -
b_15 low/borderline Serous papillary adenocarcinoma III -
b_65 low/borderline Mucinous adenocarcinoma II -
b_72 low/borderline Mucinous adenocarcinoma I -
b_120 low/borderline Serous papillary adenocarcinoma II -
c_2 invasive malignant Serous papillary adenocarcinoma IIb -
c_4 invasive malignant Serous papillary adenocarcinoma III -
c_23 invasive malignant Serous papillary adenocarcinoma IIIa -
c_66 invasive malignant Serous papillary/endometroid adenocarcinoma IV -
c_79 invasive malignant Serous papillary carcinoma III -
cc_9 invasive malignant Serous papillary carcinoma III Yes*
cc_29 invasive malignant Serous papillary carcinoma III Yes#

cc_36 invasive malignant Serous papillary adenocarcinoma IIIc Yes*
cc_76 invasive malignant Serous papillary adenocarcinoma IIIa Yes*
cc_94 invasive malignant Serous carcinoma III Yes*

* Taxol/Carbo 3X prior to surgery #Taxol/Carbo 4X prior to surgery
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Cluster analysis of ovarian tumour expression profilesFigure 1
Cluster analysis of ovarian tumour expression profiles. Gene expression profiles were obtained from eighteen ovarian 
tumours. The profiles were analysed by clustering methods in several groups: (a) self organizing map of he thirteen patients not 
receiving chemotherapy prior to tissue collection, (b) hierarchical clustering of the same 13 patients, (d) self organizing maps of 
all eighteen patients and (e) hierarchical clustering of all 18 patients. Marker analysis (c) identified the top ten gene most highly 
correlated with clusters resulting from (a) and (b).
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extent in all of the patients pre-treated with chemother-
apy, the levels remained consistently low in only those
patients (cc_36, cc_9) whose microarray profiles clustered
with the benign adenomas (Figure 2). The remaining
patients displayed periodic recurrence requiring addi-
tional chemotherapy.

Significant differences in gene expression are associated 
with different ovarian tumour types
To identify genes whose differential expression correlate
with malignant potential, we performed a statistical anal-
ysis comparing the expression profiles of the three tumour
types examined in this study (benign adenoma, low
malignant potential borderline adenocarcinoma, and
malignant adenocarcinoma). Malignant adenocarcinoma
sample c_79 was excluded from this analysis since both
the SOM and UHC classification methods identified this
sample as an outlier of the malignant adenocarcinoma
group (see above). The F statistic was used to test equality
of group means [14]. Genes whose group means were
identified as significantly different (p ≤ 0.001, 299 genes)
in the ANOVA analysis were further analyzed using multi-
ple comparison methods to determine which means differ
from each other. The differences between group means for
all pairwise combinations of groups were calculated and
compared to the least significant difference. Genes were
declared differentially expressed if the pairwise difference
between group means was greater than the least signifi-
cant difference. Probe sets duplicated between pairwise
comparisons and probes sets with a fold change value
below 2.0 were removed, leaving 163 unique genes differ-
entially expressed between the tumour groups. The 15 dif-
ferentially expressed genes with highest statistical
significance are presented in Table 2. The gene name, gene
symbol, chromosomal location, functional classification,
ANOVA rank and p-value of each of these 163 genes are
attached as additional file 1 (complete list.txt).

Hierarchical clustering was performed to visualise gene
expression across tumour types for each of these 163
genes. All 12 tumours were correctly assigned as shown by
the dendogram above the gene expression colour plot
(Figure 3a). Several features within the gene expression
colour plot are worthy of note (Figure 3b,3c,3d,3e,3f).
Thirteen genes (Figure 3b) showed high expression in
both adenoma and borderline. For forty genes expression
levels in borderline tumours was intermediate between
adenoma and cancer (Figure 3c). Eight genes were highly
expressed in either adenoma (3 genes, Figure 3c) or bor-
derline (5 genes, Figure 3d). And finally, thirteen genes
showed high expression in both cancer and borderline
(Figure 3e).

To independently test the validity of the differential
expression patterns determined by microarray, we meas-

ured the expression patterns of 3 representative genes in 6
tissue samples using quantitative real time RT-PCR [15].
Genes were selected from the microarray data set to repre-
sent a spectrum of statistical significance (Table 3). In all
cases, the results of the quantitative RT-PCR analyses con-
firmed the differences detected in the microarray studies
(Figure 4).

Functionally related genes display correlated changes in 
expression between benign malignant tumours
Two expression subgroups were evident in the list of 163
differentially expressed genes (Figure 3a): genes with low
expression in cancer (first 61 genes of colour plot) and
genes with high expression in cancer (last 102 genes of
colour plot). To examine the possibility that these sub-
groups also correlate with differential gene function, we
applied two functional profiling programs, EASE [16] and
Onto Express [17]. Searching the gene ontology assign-
ments for all genes in a list, these programs identify and
assign statistical significance to the over-represented gene
functional categories identifying common biological
processes, molecular functions, cellular and chromo-
somal locations shared by genes in a list. Functional pro-
filing revealed that the expression subgroups exhibited
distinctly different gene functions (Figure 5). Genes in the
expression subgroup with high expression in cancer were
intracellular whereas the genes in the low expression sub-
group were extracellular. Genes whose gene products
function during cell proliferation and DNA metabolism
dominate the high expression subgroup. On the other
hand, gene products involving insulin-like growth factor
binding, regulation of cell growth, cell-cell adhesion, and
calcium transport activity were associated with the low
expression subgroup.

Discussion
Microarray profiles of ovarian tumours are of potential 
diagnostic and prognostic significance
Gene expression profiling via microarray technology has
previously been shown to be an effective tool for the
objective classification of established tumour types
[18,19] and in some instances, for the identification of
previously unrecognized tumour sub-types [20]. Applied
to ovarian cancer, gene expression profiling has aided in
distinguishing clear cell carcinomas [8,9], characterizing
advanced stage ovarian cancer [5,6], and identifying genes
differentially expressed between normal and cancerous
ovarian tissue [4,7,10]. The experiments presented here
were designed to elucidate gene expression changes in
ovarian tumours of differing malignant potential. In
many instances, genes that we identified as differentially
expressed across malignant potential were previously
determined to be differentially expressed between normal
and cancerous ovarian tissue including ERBB3 [10], ubiq-
uitin carrier protein[10], and E-cadherin [4]. We also cor-
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CA-125 levels of patients receiving chemotherapy prior to tissue collectionFigure 2
CA-125 levels of patients receiving chemotherapy prior to tissue collection. CA-125 levels of patients with cancer-
like profiles (a) and adenoma-like profiles (b) were normalized to the earliest post-surgery reading. CA-125 level for patients 
76 and 29, two patients receiving chemotherapy prior to tissue collection, spike dramatically at about 700 days post surgery. 
CA-125 levels for patients 9 and 36 remained low through 700 days past surgery.
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rectly classified 92% of tumours from patients who did
not receive chemotherapy prior to surgery into their
proper histopathological group. These results are
consistent with earlier findings and indicate that gene
expression profiling can effectively distinguish between
malignant and benign ovarian tumours.

One particularly promising result emerging from our
study is that expression profiling may be useful in
predicting recurrence in patients treated with chemother-
apy prior to surgery. We find that the microarray patterns
of ovarian adenocarcinomas obtained from patients
treated with chemotherapy prior to surgery clustered
either with the benign tumours or with the malignant ade-
nocarcinomas. Serum CA-125 levels indicate that patients
whose samples clustered with the benign tumours have
remained disease free for more than 3 years after surgery
while those patients whose samples clustered with the
malignant tumours recurred within 2 years of the initial
treatment. Clearly, the testing of additional patient sam-
ples will be needed before definitive conclusions can be
drawn. However, the preliminary results are consistent
with the hypothesis that gene expression profiles of sam-
ples removed on the day of surgery may predict recurrence
and would therefore be an indicator of the long-term
effectiveness of chemotherapy administered to patients
prior to surgery.

Expression profiles indicate that borderline tumours are 
not a distinct disease
Our microarray data are, in general, most consistent with
the hypothesis that borderline ovarian tumours represent
an intermediate stage between the benign and malignant
tumours. Borderline tumours of the ovary display many
but not all characteristics of malignancy including nuclear

atypia and increased mitotic count, usually in the absence
of stromal invasion [21-24]. Whether the borderline
tumour is a precursor to the fully malignant ovarian carci-
noma or a disease distinct from invasive carcinomas is a
topic that has been debated since the International Feder-
ation of Gynaecologic Oncology added the borderline
tumour to the classification of ovarian tumours in 1972.
Distinct disease states are expected to show discrete gene
expression patterns when analysed by microarray [3]. Our
analysis identified only 5 genes (Figure 3e) with increased
expression distinctly correlated with borderline tumours.
On the other hand, for 40 of the 163 genes displaying a
significant change in expression between benign and
malignant ovarian tumours, borderline tumours display
an intermediate expression level (Figure 3c). In all other
cases, (118 genes) borderline expression mimicked either
the benign adenoma (102 genes) or malignant adenocar-
cinoma (16) tumours. Thus, for these genes, borderline
tumours appear to be a transitional state between the
benign and malignant state. The five genes identified as
characteristic of borderline tumours (Figure 3e) may con-
stitute a reliable marker of borderline tumours. Interest-
ingly, two of these genes, AGR2 and NPTX2, are physically
linked to one another, mapping to p21.3 on chromosome
7.

Many genes displaying altered patterns of expression 
between benign and malignant ovarian tumours are 
genetically linked
Genes physically linked to one another shared changes in
gene expression between tumour types. For those cases
where linked genes displayed a significant reduction in
expression in malignant vs. benign tumours (Table 4), at
least three explanations are possible. Perhaps the most
likely explanation is that the change is due to a small dele-

Table 2: Highest 15 statistically significant genes via ANOVA analysis, their fold change and p-values.

Affy ID Gene Name Gene Symbol FC a:b FC a:c FC c:b ANOVA p-value

1651_at ubiquitin-conjugating enzyme E2C UBE2C 1.16(b) 4.35(c) 3.75(c) 1.2E-07
41583_at flap structure-specific endonuclease 1 FEN1 1.27(b) 3.86(c) 3.04(c) 1.9E-07
31888_s_at tumour suppressing subtransferable candidate 3 TSSC3 3.46(b) 8.15(c) 2.36(c) 2.7E-07
34715_at forkhead box M1 FOXM1 1.06(b) 2.66(c) 2.5(c) 7.5E-07
39109_at chromosome 20 open reading frame 1 C20orf1 1.29(b) 4.91(c) 3.80(c) 2.9E-06
37985_at lamin B1 LMNB1 1.19(b) 3.19(c) 2.69(c) 2.9E-06
41451_s_at SAR1 protein SAR1 1.07(b) 2.27(c) 2.13(c) 3.2E-06
37015_at aldehyde dehydrogenase 1 family, member A1 ALDH1A1 1.86(a) 10.76(a) 5.79(b) 3.3E-06
527_at centromere protein A, 17kDa CENPA 1.08(b) 3.47(c) 3.2(c) 3.9E-06
40619_at ubiquitin carrier protein E2-EPF 1.51(b) 2.74(c) 1.81(c) 4.6E-06
32332_at isocitrate dehydrogenase 2 (NADP+), mitochondrial IDH2 1.28(b) 4.36(c) 3.40(c) 5.4E-06
1058_at WAS protein family, member 3 WASF3 2.03(a) 2.56(a) 1.27(b) 5.7E-06
1943_at cyclin A2 CCNA2 1.05(a) 2.07(c) 2.17(c) 6.4E-06
2039_s_at FYN oncogene related to SRC, FGR, YES FYN 1.05(b) 3.11(a) 2.97(b) 6.4E-06
1868_g_at CASP8 and FADD-like apoptosis regulator CFLAR 0.97(b) 1.78(c) 1.83(c) 7.7E-06
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Patterns of differential expression for the 163 genes of highest statistical significanceFigure 3
Patterns of differential expression for the 163 genes of highest statistical significance. The 300 probe sets with the 
lowest p-values in the ANOVA analysis were filtered for duplicate genes and fold change <2.0. The remaining 163 genes were 
subjected to hierarchical clustering to reveal correlated expression (a). Thirteen genes showed high expression in both benign 
adenomas and borderline tumours (b). Borderline tumours showed intermediate levels of expression for forty genes (c). Three 
genes were high only in benign adenoma (d). Five genes showed high expression in borderline tumours only (e). And 13 genes 
were high in both malignant adenocarcinomas and borderline tumours (f).
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tion in a chromosomal region encompassing the affected
alleles. Such deletional events are believed to be at the
basis of the "loss of allele" (LOA) phenomenon, which is
known to be a relatively common event in tumour devel-
opment [25-27]. Another possibility is that these co-ordi-
nated reductions in gene expression are due to regional
changes in chromatin structure resulting in the reduced
access of transcription factors to genes. Such epigenetic
changes are typically associated with the hypermethyla-
tion of so-called "CpG islands" in or around genes [28-
30]. Indeed, it has been well documented that the silenc-
ing of many tumour suppresser genes and genes involved
in DNA repair and apoptosis in cancer cells is the conse-
quence of DNA hypermethylation [31,32]. The third pos-
sibility is that the coordinated reductions are the result of
completely independent mutational events. However, the
probability that such independent events would repeat-
edly occur at linked loci seems low.

We also observed a co-ordinated increase in gene expres-
sion of physically linked genes in the malignant samples
in several cases (Table 4). These changes may have been
due to regional duplication or amplification events.
Examples of such events have been previously docu-
mented in cancer cells [33-35]. It is also possible that at
least some of these co-ordinated increases in gene expres-
sion are the consequence of regional hypomethylation
events resulting in a more open chromatin configuration
and a consequent increase in transcription factor accessi-
bility. Genes located in proximity to transposable element
sequences may be more prone to such epigenetic events
[36].

In a few instances genes that were physically linked dis-
played opposing changes in gene expression between
benign and malignant tumours (Table 4). It is possible
that these disparate changes were due to independent
mutational events or, perhaps more likely, to a regional
relaxation of chromatin structure that permitted increased
access of both positive and negative transcription factors.

Our finding that a number of the genes displaying a sig-
nificant difference in expression among malignant and

non-malignant tumours indicates that some caution must
be taken in the functional interpretation of microarray
results. For example, significant changes in the expression
of only one gene in a physically linked group may be of
functional significance although correlated changes in
gene expression may result from a regional effect.

Malignant ovarian tumours display expression profiles 
consistent with previously established features of cancer 
cells
Two common features of malignant cancer cells are
increased cell proliferation and loss of cell adhesion [37].
Consistent with these general features, we found that the
majority of differentially expressed genes with high
expression in the malignant tumours belonged to func-
tional categories associated with DNA metabolism and
cell proliferation. We also report here that insulin-like
growth factor binding, cell adhesion and calcium ion
transport were gene functional categories over-repre-
sented among the genes significantly under-expressed in
ovarian cancer.

The IGF system is a complex network of molecules
involved in the normal growth and development of many
cell types [38]. Disregulation of the IGF system through
over-stimulation of the IGF1 receptor (IGF1R) has been
implicated in tumour development and maintenance of
the transformed phenotype [39,40]. The functional
consequences of IGF1R over-stimulation include
increased cell proliferation, cell survival and regulation of
cell adhesion. The six specific IGF binding proteins
(IGFBP-1 through -6) bind IGF in the serum and extracel-
lular matrix, thereby reducing the bioavailability of IGF1
for receptor binding, as well as downstream signalling.
Recently, elevated serum levels of IGFBP-2 at diagnosis
were correlated with the likelihood of relapse, confirming
the prognostic value of serum IGFBP-2 in choosing aggres-
sive treatments for these patients[41]. Measuring serum
levels of IGFBP-3 and IGF1 of healthy women proved use-
ful in predicting a woman's risk of ovarian cancer [42].
Our analysis demonstrated significantly lower expression
of IGFBP-4, -5, and -7 in the malignant adenocarcinomas
than in the benign adenomas or borderline tumours (Fig-

Table 3: Genes expression changes verified with quantitative RT-PCR.

Gene Name Gene Symbol ANOVA rank p-value

ubiquitin-conjugating enzyme E2C UBE2C 1 1.18E-7
cadherin 2, type 1, N-cadherin CDH2 177 0.00042
oviductal glycoprotein 1, 120 kDa OVGP1 739 0.0058
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RT-PCR validation of microarray resultsFigure 4
RT-PCR validation of microarray results. OVGP1 expression (a), CDH2 expression (b) and UBE2C expression as meas-
ured by RT-PCR (◆) and microarray (■). Patterns of change in expression were the same for each method.
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Over-represented functional categories of differentially expressed genesFigure 5
Over-represented functional categories of differentially expressed genes. Differentially expressed genes with low 
expression in cancer were able to bind insulin-like growth factor (p < 6 × 10-6) or functioned in cell adhesion (p < 0.012) and 
calcium channel activity (p < 0.02). Genes with high expression in cancer functioned in nuclear division (p < 8 × 10-8), mitosis (p 
< 5 × 10-5), and DNA metabolism (p < 3 × 10-8).
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ure 6b). IGFBP-2 and -3 were highly expressed but not dif-
ferentially expressed across the tumour types.
Furthermore, no IGF binding proteins appeared in the list
of genes significantly up-regulated in cancer tissue. These
findings suggest that loss of expression of IGFBPs in ade-
nocarcinomas increases IGF signalling and its functional
consequences, processes clearly associated with the clini-
cal phenotypes of ovarian adenocarcinomas.

Over-expression of certain members of the IGF system
increased sensitivity to IGF1 signaling in breast cancer
cells [43] leading to increased cell proliferation. Insulin
receptor substrate 1 (IRS1) is one member of the IGF sys-
tem whose over-expression potentiated the effects of
IGF1. Interestingly, IRS1 was significantly up-regulated in
the benign and LMP tumours of our study (Figure 2).
Considering the documented ability of the IGFBP's to
reduce bioavailability of IGF1, increased expression of
IGFBP's would be an appropriate cellular response to
increased expression of IRS1.

Loss of cell adhesion molecules (CAM) is one mechanism
proposed to induce the tissue invasion and metastatic
capabilities acquired by cells during tumourigenesis[37].
Intra-abdominal spread of ovarian cancer via peritoneal
implants is a hallmark of advanced stage ovarian cancer
and can be linked to loss of cell-cell adhesion [44]. Our
findings support the theory that loss of CAM in ovarian
cancer is instrumental in cancer progression.

Cell-cell adhesion is often mediated through the cadher-
ins, a family of transmembrane glycoproteins that require
calcium to perform their adhesive functions. Well-docu-
mented changes in cadherin subtype expression correlate
with the progression of breast and prostate cancer [45].

Recently, differences in the profile of cadherin subtypes
expressed in normal and cancerous ovarian tissue were
also shown to correlate with disease progression [46].
Support for cadherin switching in ovarian tumours is evi-
dent in our microarray data. Expression of N-cadherin (N-
cad) and cadherin-11 (CDH11), the dominant subtypes
in normal ovarian surface epithelium, were significantly
higher in the benign and LMP tumours of our study than
in the adenocarcinomas (Figure 4a). The intensity of
change in expression between the benign adenomas and
malignant adenocarcinomas for N-cad and CDH11 were
3.9 and 7.8 fold respectively, and both genes appeared in
the list of top 163 differentially expressed genes. The LMP
tumours in our study expressed N-cad and CDH11 at lev-
els intermediate to adenomas and adenocarcinomas, sug-
gesting an integral role for these cadherins in
transformation to a malignant phenotype. Expression of
E-cadherin, a major subtype seen in adenocarcinomas,
increased approximately 2 fold from a benign tumour to
either LMP or the adenocarcinomas (Figure 6a). This data
documents the switch from a normal-like distribution of
N-cad and CDH11 in the benign and LMP tumours to a
cancerous profile dominated by E-cad expression.

Since cadherins are calcium-dependent cell adhesion mol-
ecules [44]and increased dietary intake of calcium
correlates with a reduced risk of ovarian cancer [47], it is
also interesting that calcium transport and calcium chan-
nel activity are gene functions that we found correlated
with genes under-expresses in the adenocarcinomas. Thus
it is also possible that altered functionality of the cadher-
ins through changes in calcium availability, a parameter
not measurable with microarray, may be involved in
increasing a tumours' malignant potential.

Table 4: Co-ordinately expressed genes sharing chromosomal location

Gene Symbol Location Expression in cancer Function

KIF2C 1p34.1 Up Nuclear division/mitosis
CDC20 1p34.1 Up Regulation of cell growth
PMSB2 1p34.2 Up Protein Catabolism
UBE2C 20q13.12 Up Nuclear division/mitosis
STK6 20q13.2-q13 Up Signal Transduction

RGS19 20q13.3 Up Nuclear division/mitosis
PDGFRA 4q11-q13 Down Regulation of cell growth
IGFBP7 4q12 Down Regulation of cell growth

HNRPDL 4q13-21 Down RNA binding
FYN 6q21 Down Calcium ion transport

LAMA2 6q22-q23 Down Cell adhesion
CTGF 6q23.1 Down Cell adhesion

FOXM1 12p13 Up Transcriptional regulation
CCND2 12p13 Down Nuclear division/mitosis
ERBB3 12p13 Up Signal Transduction
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Microarray expression of cadherins and insulin-like growth factor system genesFigure 6
Microarray expression of cadherins and insulin-like growth factor system genes. E-cadherin expression contributes 
about equally to the cadherin distribution in benign adenomas but is the dominant component of the cadherin distribution in 
malignant adenocarcinomas (a). Insulin-like growth factor system components show lower expression in the adenocarcinomas 
relative to benign adenomas and borderline tumours (b). P-values associated with differential expression as analysed by 
ANOVA analysis are shown above each genes column graph.
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Conclusions
Our findings indicate that gene expression profiling can
reliably distinguish between benign and malignant ovar-
ian tumours. Expression profiles of samples from patients
pre-treated with chemotherapy may be useful in predict-
ing disease free survival and the likelihood of recurrence.
Genes displaying co-ordinated changes in gene expression
were often genetically linked suggesting that changes in
expression for these genes are the consequence of regional
duplications, deletions or epigenetic changes. Loss of
expression of IGF binding proteins as well as specific cell
adhesion molecules may be a significant mechanism of
disease progression in ovarian cancer. A significant por-
tion of the differentially expressed genes exhibited expres-
sion levels in borderline samples intermediate between
benign adenomas and malignant adenocarcinomas, sug-
gesting the borderline tumours are a transitional state
between benign and malignant tumours.

Methods
Tumour Samples and RNA Isolation
A set of 18 primary ovarian tumours was obtained from
the Ovarian Cancer Institute. This set of tumours was
comprised of 4 benign cystadenofibromas, 4 carcinomas
of low malignant potential (borderline carcinomas), 5
adenocarcinomas, and 5 adenocarcinomas from patients
who received chemotherapy prior to surgery. This study
was approved by the Institutional Review Board of the
University of Georgia and of Northside Hospital
(Atlanta), from which the samples were obtained Tissue
was collected at the time of initial surgery and preserved
in RNA Later (Ambion) within one minute of collection.
For RNA isolation, each tissue (50 ± 25 mg) was homoge-
nized on ice in 1.5 ml Trizol (Molecular Research Corpo-
ration) with a polytron homogenizer for about 30
seconds. RNA was isolated from the crude homogenate
according to the manufacturer's protocols (Trizol,
Molecular Research Corporation) with the following spe-
cifics. Linear polyacrylamide (5 µl) was added prior to
homogenization to aid in RNA precipitation. Total RNA
was further purified over an RNEasy (Qiagen) column
using the manufacturer's cleanup protocol.

Microarray Hybridization
Biotinylated target cRNA was generated according to the
Affymetrix Technical Manual. In brief, 5–10 µg total RNA
was converted to double stranded cDNA using Supercript
II (Invitrogen). The cDNA was cleaned by phenol/chloro-
form extraction and ethanol precipitation. In vitro tran-
scription of the cDNA with the High Yield RNA Transcript
Labeling Kit (Enzo) yielded 50–100 µg of biotin labeled
cRNA target. The cRNA was fragmented in a metal cata-
lyzed acid hydrolysis to a length of 20–200 bp (by electro-
phoresis) and the fragmented cRNA was hybridized to the
Affymetrix array (U95Av2) for 16 hours at 45C. Hybrid-

ized arrays were washed, stained and scanned according
to the Affymetrix technical manual.

Microarray Data Handling and Manipulation
Signal values were generated in two ways. Affymetrix sig-
nal values were generated from the .CEL file using the
Affymetrix software MAS 5.0. The overall intensity of each
array was scaled to an average intensity of 500. These nor-
malized signal values were exported to Excel (Microsoft)
for further analysis labeled the Affy-data set. Robust multi-
array analysis (RMA) signal values were generated from
the .CEL file using the espresso wrapper in the Affy library
of the Bioconductor package in the R-statistical environ-
ment. The parameters of PM correction, background cor-
rection, normalization, and summary method were set to
PM only, RMA, quantile, and median polish, respectively.
The normalized signal values were exported to Excel for
further analysis and will be referred to in this paper as the
RMA-data set. For each data set, Affy-data set and RMA-
data set, Pearson correlation coefficients were calculated
(Microsoft, Excel) for a_97 vs. all other arrays. Higher cor-
relation and lower standard deviation from the mean
within groups was seen with the RMA data set, suggesting
higher quality data.

Clustering
Raw data output from the Affymetrics MicroArray reader
is transformed into expression level values using the RMA
method [48,49]of the "affy" package in the Bioconductor
suite of the R statistical environment, and a text output file
generated. This text file is then transformed into a *.gct file
for input into the GeneCluster program. GeneCluster
(Whitehead Insitute, http://www.broad.mit.edu/cancer/
software/genecluster2/gc2.html) was used to cluster the
dataset on both samples and genes. Except where
described below, default parameters were used. The SOM
feature of GeneCluster was employed, and various values
were explored for the "Cluster Range" and "Iterations"
parameters. The 'Cluster Range' parameter sets the geom-
etry of the clusterings that will be performed on the data.
For instance, if 2–3 is entered, two cluster sets are pro-
duced. One has two clusters and the other three clusters.
When entering a number, any set of factors of that
number will create a clustering. If 9 is entered, a linear set
of 9 clusters and a 3 × 3 matrix of clusters are produced.
Marker analysis was also performed in GeneCluster, again
using the default parameters.

Quantitative RT-PCR
Total RNA (2 µg) from ovarian tissue was converted to
cDNA using Superscript III (Invitrogen) primed with ran-
dom hexamers under conditions described by the sup-
plier. cDNA from this reaction was used directly in the
Quantitative RT-PCR analysis. TaqMan probes and gene
specific primers for three genes (RPL-29, UBE2C, OVGP1,
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and CDH2) were obtained from Applied Biosystems'
Assay on Demand. The mRNA levels of the three genes
were measured in 6 ovarian tumours and one normal
ovary on the ABI Prism 7700 Sequence Detection System.
PCR was performed using the TaqMan Universal PCR
MasterMix (Applied Biosystems), according to the manu-
facturer's protocols with standard PCR cycling steps.
Using RPL29 as a housekeeping gene and the normal
human ovary RNA as a reference sample, the expression
levels of UBE2C, OVGP1 and CDH2 were calculated
according to the 2-∆∆Ct method[15]. The Ct values of trip-
licate RT-PCR reactions were averaged for each gene in
each cDNA sample. For each tissue sample assayed, the
average Ct value for the gene of interest (UBE2C, CDH2
and OVGP1) was subtracted from the average Ct value of
the housekeeping gene (RPL29) to obtain the ∆Ct value.
The ∆Ct value of the reference sample was subtracted from
that of the tumours to obtain the ∆∆Ct value.

Data Filtering and Statistical Analysis
The RMA normalised data set was analysed for probe sets
likely to be absent in all samples. Probe sets whose maxi-
mum RMA normalised value across all samples was less
than 5.2 were removed from further analysis. Analysing
the remaining 10,520 probe sets, we applied an analysis
of variance (ANOVA) to test the hypothesis that the mean
expression values for all groups (adenoma, borderline
and cancer) are equal. For each gene, the within group and
between group variation was calculated and used to gen-
erate the F statistic and subsequent p-values [14]. Adjusted
p-values were also calculated using Holm's method. The
ranking of genes in order of significance was exactly the
same for the un-adjusted and adjusted methods. How-
ever, the adjusted p-values were 1000 fold higher than the
unadjusted p-values and only the top 50 genes were con-
sidered significant (p < 0.05). Since RT-PCR confirmed
differential expression down to the 739th statistically
significant gene (see results section), we continued the
analysis on the top 300 statistically significant genes.
Genes whose groups means were identified as signifi-
cantly different (p ≤ 0.001, 299 genes) in the unadjusted
ANOVA were further analysed using Fisher's Least Signifi-
cant Difference multiple comparison method. The differ-
ences between group means for all pairwise combinations
of groups were calculated and compared to the least sig-
nificant difference. Genes were declared differentially
expressed if the pairwise difference between group means
was greater than the least significant difference. Probe sets
duplicated between pairwise comparisons and probes sets
with a fold change value below 2.0 were removed, leaving
163 unique genes differentially expressed.

Functional Profiling
Genes found to be differentially expressed in the statistical
analysis were divided into two lists: genes overexpressed

in cancer, and genes underexpressed in cancer. Each list
was analyzed for over-represented functional categories
based on molecular function, biological process, cellular
component and chromosomal location using two differ-
ent freeware programs: EASE http://david.niaid.nih.gov/
david/ease.htm[16]and OntoExpress http://vor
tex.cs.wayne.edu/ontoexpress/onto.htm[17]. Given a list
of genes, EASE forms subgroups of genes based on the
functional categories assigned to each gene. EASE assigns
a significance level to the functional category based on the
probability of seeing the number of subgroup genes
within a category given the frequency of genes from that
category appearing on the microarray. The 'EASE score' is
the upper bound of the distribution of Jacknife Fisher
exact probabilities. Onto Express identifies overrepre-
sented gene functional categories in a manner similar to
EASE and was used to verify results obtained from EASE.
All information on chromosomal location was obtained
from Onto Express since EASE does provide information
on chromosomal location.
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