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Abstract
Background: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder with a complex
range of clinical symptoms. The hallmark of NF1 is the onset of heterogeneous (dermal or
plexiform) benign neurofibromas. Plexiform neurofibromas can give rise to malignant peripheral
nerve sheath tumors (MPNSTs), and the underlying molecular mechanisms are largely unknown.

Results: To obtain further insight into the molecular pathogenesis of MPNSTs, we used real-time
quantitative RT-PCR to quantify the mRNA expression of 489 selected genes in MPNSTs, in
comparison with plexiform neurofibromas.

The expression of 28 (5.7%) of the 489 genes was significantly different between MPNSTs and
plexiform neurofibromas; 16 genes were upregulated and 12 were downregulated in MPNSTs.

The altered genes were mainly involved in cell proliferation (MKI67, TOP2A, CCNE2), senescence
(TERT, TERC), apoptosis (BIRC5/Survivin, TP73) and extracellular matrix remodeling (MMP13,
MMP9, TIMP4, ITGB4). More interestingly, other genes were involved in the Ras signaling pathway
(RASSF2, HMMR/RHAMM) and the Hedgehog-Gli signaling pathway (DHH, PTCH2). Several of the
down-regulated genes were Schwann cell-specific (L1CAM, MPZ, S100B, SOX10, ERBB3) or mast
cell-specific (CMA1, TPSB), pointing to a depletion and/or dedifferentiation of Schwann cells and
mast cells during malignant transformation of plexiform neurofibromas.

Conclusion: These data suggest that a limited number of signaling pathways, and particularly the
Hedgehog-Gli signaling pathway, may be involved in malignant transformation of plexiform
neurofibromas. Some of the relevant genes or their products warrant further investigation as
potential therapeutic targets in NF1.
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Background
Neurofibromatosis type 1 (NF1) is an autosomal domi-
nant neurocutaneous disorder affecting 1 in 3000 individ-
uals worldwide [1]. The NF1 gene, located on
chromosome 17q11.2, was identified by positional clon-
ing, and its protein product, neurofibromin, functions as
a tumor suppressor [2,3]. Neurofibromin contains a cen-
tral domain homologous to the Ras-GTPase-activating
protein family (Ras-GAPs), which function as negative
regulators of Ras proteins [4].

The main clinical features of NF1 are café au lait macules,
skinfold freckling and iris Lisch nodules. Patients are at an
increased risk of both benign and malignant tumors, and
NF1 is thus classified as a tumor predisposition syn-
drome. The most common tumors are benign peripheral
nerve sheath tumors (neurofibromas), which vary greatly
in both number and size, and may be dermal or plexiform
[5]. In contrast to dermal neurofibromas, which are typi-
cally small and grow as discrete lesions in the dermis,
plexiform neurofibromas can develop internally along the
plexus of major peripheral nerves and become quite large
[6]. Both dermal and plexiform neurofibromas are heter-
ogeneous tumors mainly composed of Schwann cells
(60–80%), together with neurons, fibroblasts, mast cells
and other cells.

About 5% of patients with NF1, neurofibromas (mainly
plexiform neurofibromas) progress to malignant periph-
eral nerve sheath tumors (MPNSTs). More than 80% of
MPNSTs are high-grade malignant tumors, corresponding
to WHO grade III-IV [7]. MPNSTs are resistant to conven-
tional therapies, and their deep-seated position and
locally invasive growth hinder complete surgical resec-
tion. The 5-year survival rate among patients with MPN-
STs ranges from 30–50%. Schwann cells are considered to
be the progenitors of both neurofibromas and MPNSTs,
but recent data suggest that other cell types may contrib-
ute to the development of these tumors [8].

The molecular mechanisms responsible for malignant
progression of neurofibromas are largely unknown. Only
a few relevant genetic alterations have so far been identi-
fied [9,10]. In keeping with its role as a classical tumor
suppressor gene, NF1 loss of heterozygosity (LOH) has
been found in NF1-associated MPNSTs (but also in
benign neurofibromas) [11]. TP53 mutations have been
identified in MPNSTs but not in benign neurofibromas,
indicating that the p53-mediated pathway is involved in
tumor progression [12-14]. Consistent with the role of
p53 in the progression of MPNSTs, mice that harbor both
NF1 and TP53 mutations develop MPNSTs [15]. Altera-
tions of other genes (p16/CDKN2A, p14/ARF, p27/KIP1,
EGFR) are frequent in MPNSTs but not in neurofibromas
[16-20]. Taken together, these studies suggest that loss of

NF1 initiates tumor formation, and that malignant pro-
gression requires additional genetic lesions.

The recent development of efficient tools for large-scale
analysis of gene expression has provided new insights into
the involvement of gene networks and regulatory path-
ways in various tumoral processes [21]. These methods
include cDNA microarrays, which can be used to analyze
the expression of thousands of genes at a time, and real-
time RT-PCR assays for more accurate and quantitative
expression analysis of smaller numbers of candidate genes
[22].

To obtain further insight into the molecular pathogenesis
of MPNSTs, we used real-time quantitative RT-PCR to
quantify the mRNA expression of a large number of
selected genes in pooled MPNST samples, in comparison
with pooled plexiform neurofibroma samples. We
assessed the expression level of 489 genes involved in var-
ious cellular and molecular phenomena associated with
tumorigenesis. We focused particularly on the expression
of genes related to MPNSTs, and genes expressed during
Schwann cell differentiation. Forty genes of interest were
further investigated in nine individual MPNSTs (all aris-
ing from plexiform neurofibromas), in comparison with
14 plexiform neurofibromas.

Results
We first quantified the mRNA expression level of the 489
genes (see list in annex; Additional file 1) in an MPNST
pool, a plexiform neurofibroma pool and a dermal neu-
rofibroma pool. We then selected for further study those
genes whose expression in the MPNST pool differed mark-
edly (> 10-fold) from that in both the plexiform neurofi-
broma pool and the dermal neurofibroma pool. These
robust selection criteria (a cutoff of 10-fold expression dif-
ference in the MPNST pool) ensure identification of gene
with marked interest. The mRNA expression of the genes
thus identified was then determined in 9 individual MPN-
STs (Table 1) in comparison with 14 plexiform
neurofibromas.

mRNA expression of 489 genes in the MPNST pool relative 
to the plexiform and dermal neurofibroma pools
The MPNST, plexiform neurofibroma and dermal neurofi-
broma pools were each prepared by mixing identical
amounts of tumor RNA from four patients. The mean TBP
gene Ct (threshold cycle) values for the four tumor sam-
ples were 26.18 ± 0.39 (MPNST pool), 26.23 ± 1.45
(plexiform neurofibroma pool) and 26.30 ± 0.47 (dermal
neurofibroma pool).

Very low levels of target gene mRNA, that were only
detectable but not reliably quantifiable by means of real-
time quantitative RT-PCR assays, mainly based on
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fluorescence SYBR Green methodology (Ct >32), were
observed for 50 (10.2%) of the 489 genes in the MPNST,
plexiform and dermal neurofibroma pools.

Forty (9.1%) of the 439 remaining genes were expressed
at a different level (> 10-fold) in the MPNST pool com-
pared to both the dermal neurofibroma and plexiform
neurofibroma pools; 27 (6.1%) genes were upregulated
and 13 (3.0%) were down-regulated. The NF1 gene
expression level did not differ between the dermal neu-
rofibroma, plexiform neurofibroma and MPNST pools:
the NNF1 values (see Patients and Methods) were 1.00,
1.39 and 1.45, respectively. This lack of difference was
probably due to the fact that the NF1 gene is ubiquitously
expressed and therefore expressed in the different cell
components of the neurofibromas and MPNSTs, and that
NF1-/- Schwann cells represent only a fraction of the total
Schwann cell population in tumor samples.

mRNA expression of the 27 upregulated genes in 9 
MPNSTs and 14 plexiform neurofibromas
The expression level of the 27 upregulated genes identi-
fied by pooled sample analysis was then determined indi-
vidually in 9 MPNSTs and 14 plexiform neurofibromas.
Sixteen (59.3%) of the 27 genes were significantly upreg-
ulated in the 9 MPNSTs (P < 0.05; Table 2).

The 16 upregulated genes were mainly involved in cell
proliferation (MKI67, TOP2A, CCNE2), senescence
(TERT, TERC/hTR), apoptosis (BIRC5/Survivin, TP73) and
extracellular matrix remodeling (MMP13, MMP9).

The capacity of each of these 16 genes to discriminate
between MPNSTs and plexiform neurofibromas was then
tested by ROC curve analysis. The overall diagnostic value
of the 16 molecular markers was assessed in terms of the
AUCs (Table 2). Figure 1 shows the mRNA levels of the
three most discriminatory genes, namely MKI67 (AUC-

ROC, 1.000), BIRC5/Survivin (AUC-ROC, 0.984), and
SPP1/Osteopontin (AUC-ROC, 0.984), in each MPNST and
plexiform neurofibroma sample. For information, Figure
1 also shows the mRNA levels of these three genes in 10
dermal neurofibromas.

mRNA expression of the 13 down-regulated genes in 9 
MPNSTs and 14 plexiform neurofibromas
Twelve (92.3%) of the 13 genes were significantly down-
regulated in the 9 MPNSTs (P < 0.05; Table 3).

The 12 down-regulated genes mainly were cell type-spe-
cific, and included Schwann cell-specific genes (L1CAM,
MPZ, S100B, SOX10) and mast cell-specific genes (CMA1,
TPSB). The others down-regulated genes were involved in
extracellular matrix remodeling (ITGB4, TIMP4) and in
the Hedgehog-Gli signaling pathway (DHH, PTCH2).

The capacity of each of these 12 genes to discriminate
between MPNSTs and plexiform neurofibromas was then
tested by ROC curve analysis. The overall diagnostic value
of the 12 molecular markers was assessed in terms of the
AUCs (Table 3). Figure 2 shows the mRNA levels of the
three most discriminatory genes, namely ITGB4 (AUC-
ROC, 1.000), CMA1/Chymase 1 (AUC-ROC, 1.000), and
L1CAM (AUC-ROC, 1.000), in each MPNST and plexi-
form neurofibroma sample, and also in each dermal neu-
rofibroma sample.

The mRNA levels indicated in Tables 2 and 3 (calculated
as described in Materials and Methods) are expressed rela-
tive to the endogenous control TBP mRNA level, to con-
trol for the starting amount and quality of total RNA.
Similar results were obtained with a second endogenous
control, RPLP0 (also known as 36B4). Indeed, the 16
upregulated genes and the 12 down-regulated genes were
also significantly up-regulated or down-regulated in the
MPNSTs relative to the plexiform neurofibromas.

Table 1: Clinical and histological characteristics of the 9 patients with MPNST

Patient N°/Sex/
Age

Pain Enlargement of 
mass

Neurological 
signs

Tumor 
localization

Tumor size 
(cm)

Histoprognostic 
grade

1/F/19 + + - Lower limb 27 III
2/F/18 + - - Upper limb 20 III
3/M/18 - + - Head 15 III
4/M/35 + + + Abdomen 20 III
5/M/34 + + + Lumbar 6.5 III
6/M/53 + + + Upper limb 13 III
7/F/24 + + + Lumbar 7 I
8/M/24 + + + Abdomen 20 III
9/M/31 - + - Face 15 III

F indicates female; M, male Plus sign indicates present; minus sign, absent
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Discussion
We used real-time quantitative RT-PCR to quantify the
mRNA expression of 489 selected genes in pooled MPNST
samples, in comparison with pooled plexiform neurofi-
broma and pooled dermal neurofibroma samples. Forty
genes of interest were then investigated in 9 individual
MPNSTs and 14 plexiform neurofibromas. Comparison
of pool values with the mean of the corresponding indi-
vidual values showed that RNA pooling was an appropri-
ate initial screening approach, significantly limiting the
required number of PCR experiments. Using the same
approach, we have also shown the involvement of several
molecular pathways in the genesis of plexiform neurofi-
broma [23], and other human diseases [24].

Real-time quantitative RT-PCR is a promising alternative
to cDNA microarrays for molecular tumor profiling, being
far more precise, reproducible and quantitative. Real-time
RT-PCR is more useful for analyzing weakly expressed
genes (such as TERT, CXCL5, FOXM1 and FOXA2/HNF3B
in the present study). Finally, real-time RT-PCR requires
smaller amounts of total RNA (about 2 ng per target
gene), and is therefore suitable for analyzing small tumors
(as in the present study) or microdissected samples.

We included a number of genes known to be involved in
various cellular and molecular mechanisms associated
with tumorigenesis, and known to be altered (mainly at
the transcriptional level) in various cancers. These genes
encode proteins involved in cell cycle control, cell-cell
interactions, signal transduction pathways, apoptosis,
angiogenesis, etc. (about 10–20 genes were selected per
pathway). After scrutinizing the literature, we also
included most genes reported to be involved in neurofi-
bromas and MPNSTs, and also genes expressed during
Schwann cell differentiation.

Among the 489 genes analyzed, 28 (5.7%) showed a sig-
nificantly different level of expression in MPNSTs relative
to plexiform neurofibromas, suggesting that several sign-
aling pathways are specifically involved in MPNST (Tables
2 and 3).

Some of our results support those reported in the litera-
ture on NF1-associated MPNSTs. First, several genes asso-
ciated with cell cycle control (MKI67, TOP2A, CCNE2)
were over-expressed in MPNSTs, suggesting higher cell
proliferation rates than in plexiform neurofibromas, as
previously reported by Kindblom et al. [25]. MKI67

Table 2: List of the significantly up-regulated genes in the MPNSTs relative to the plexiform neurofibromas.

GENES Gene definition Gene 
caracterisation

Plexiform 
neurofibromas

(n = 14)

MPNSTs
(n = 9)

P1 ROC-
AUC2

MKI67 Proliferation-related Ki-67 
Antigen

Cell proliferation 1.85 [0.14–5.85]3 33.2 [19.1–93.6] <0.01 1.000

BIRC5/Survivin Survivin Apoptosis 2.01 [0.13–10.6] 26.2 [9.39–715] <0.01 0.984
SPP1 Secreted phosphoprotein 1 

(osteopontin)
Growth factor 0.07 [0.00–6.78] 16.2 [6.11–58.5] <0.01 0.984

MMP13 Matrix metalloproteinase 13 Extracellular matrix 
remodeling

0.18 [0.00–15.6] 119 [2.93–844] <0.01 0.968

TERT Telomere reverse transcriptase Senescence 0.00 [0.00–45.4] 53.7 [11.0–395] <0.01 0.960
MMP9 Matrix Metalloproteinase 9 

(gelatinase B)
Extracellular matrix 
remodeling

0.56 [0.00–11.4] 38.0 [7.02–640] <0.01 0.960

TERC/hTR Telomerase RNA component Senescence 0.76 [0.22–4.32] 6.02 [2.60–29.4] <0.01 0.960
TOP2A Topoisomerase II alpha Cell proliferation 2.21 [0.27–24.5] 28.8 [10.1–294] <0.01 0.960
FOXM1 Forkhead box M1 Transcription factor 1.26 [0.30–11.1] 21.4 [4.59–119] <0.01 0.960
FOXA2/
HNF3B

Forkhead box A2 (hepatocyte
nuclear factor 3, beta)

Transcription factor 0.00 [0.00–2.13] 1.77 [0.09–49.2] <0.01 0.952

HMMR/
RHAMM

Hyaluronan receptor Signaling transduction 1.22 [0.06–6.40] 16.9 [6.31–54.8] <0.01 0.922

CXCL5 Chemokine (C-X-C motif) 
ligand 5

Growth factor 1.79 [0.00–52.1] 17.0 [5.18–2096] <0.01 0.913

OSF-2 Osteoblast specific factor 2 
(fasciclin I-like, periostin)

Growth factor 3.25 [0.06–42.9] 30.5 [1.68–112] <0.01 0.873

CCNE2 Cyclin E2 Cell proliferation 2.29 [0.50–9.41] 11.3 [1.68–21.9] <0.01 0.873
EPHA7 Ephrin Receptor EPHA7 Growth factor 

receptor
2.35 [0.19–13.4] 11.3 [1.39–93.9] <0.01 0.865

TP73 Tumor protein p73 Apoptosis 0.89 [0.00–12.8] 15.9 [0.73–73.5] <0.01 0.833

1Mann and Whitney's U Test 2ROC (Receiver Operating Characteristics) – AUC (Area Under Curve) analysis 3Median [range] of gene mRNA levels
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mRNA levels of MKI67, BIRC5/Survivin and SPP1 in 10 individual dermal neurofibromas (white bars), 14 plexiform neurofibro-mas (gray bars) and 9 MPNSTs (black bars)Figure 1
mRNA levels of MKI67, BIRC5/Survivin and SPP1 in 10 individual dermal neurofibromas (white bars), 14 plexiform neurofibro-
mas (gray bars) and 9 MPNSTs (black bars). Median values (and ranges) are indicated for each tumor subgroup.
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encodes Ki-67, a large protein of unknown function used
as a classical histopathological marker of cell prolifera-
tion. Other proliferation-associated genes (CCND1,
CCNE1, etc) were also upregulated in MPNSTs, but less
markedly than MKI67, TOP2A and CCNE2. Second, most
of mast cell-specific genes (CMA1/Chymase 1 and TPSB/
Tryptase beta) and Schwann cell-specific genes (L1CAM,
MPZ, S100B, SOX10) tested here were markedly under-
expressed in MPNSTs, probably owing either to a lower
abundance of a particular cell type (likely mast cells) in
MPNSTs relative to plexiform neurofibromas, or to dedif-
ferentiation of a particular cell type (likely Schwann cells).
Schwann cell dedifferentiation could also explain the
observed under-expression of ITGB4 and ERBB3, key
genes in the Schwann cell lineage [26,27]. DeClue et al.
[19] suggested that, following acquisition of ERBB1/EGFR
overexpression, Schwann cells may begin to dedifferenti-
ate and lose markers such as ERBB3. In agreement with
these data, we observed slight over-expression of ERBB1/
EGFR in MPNSTs, whereas the two other ERBB family
members (ERBB2 and ERBB4) were normally expressed
(Figure 3A). It is noteworthy that, in Schwann cells,
ERBB3 could be regulated by SOX10 (found here to be

under-expressed in MPNSTs), as in peripheral glial cells
[28].

Some of our results for MPNSTs are new, but are in keep-
ing with general concepts of tumorigenesis, in which
altered genes are involved in senescence, apoptosis and
extracellular matrix remodeling. First, TERT and TERC/
hTR, the two main components of human telomerase,
were upregulated in MPNSTs. The expression patterns of
TERT and TERC/hTR were very similar (r = +0.793, P =
0.00001; Spearman rank correlation test). TERT (human
telomerase revere transcriptase) is the rate-limiting factor
for telomerase activity, whereas TERC/hTR (human telom-
erase RNA) also seems to correlate to a certain extent with
telomerase reactivation [24]. TERT and TERC/hTR are
upregulated in almost all malignancies but not in benign
tumors [29].

We also found that two genes involved in apoptosis –
BIRC5/Survivin and TP73 – were upregulated in MPNSTs.
BIRC5/Survivin encodes an antiapoptotic protein overex-
pressed in common human cancers [30]. It is noteworthy
that coexpression of BIRC5/Survivin and TERT transcripts
is associated with a high risk of tumor-related death

Table 3: List of the significantly down-regulated genes in the MPNSTs relative to the plexiform neurofibromas

GENES Gene definition Gene 
caracterisation

Plexiform 
neurofibromas 

(n = 14)

MPNSTs (n = 9) P1 ROC-AUC2

ITGB4 Integrin beta 4 Adhesion 
molecule

0.74 [0.19–3.46]3 0.01 [0.00–0.03] <0.01 1.000

CMA1 Chymase 1 Mast cell-specific 
marker

0.42 [0.04–4.62] 0.01 [0.00–0.03] <0.01 1.000

L1CAM L1 cell adhesion 
molecule

Schwann cell-
specific marker

0.32 [0.04–1.26] 0.00 [0.00–0.03] <0.01 1.000

MPZ Myelin protein 
zero

Schwann cell-
specific marker

0.43 [0.08–3.43] 0.01 [0.00–0.02] <0.01 1.000

DHH Desert hedgehog 
homolog

Hedgehog 
signalling pathway

0.84 [0.12–10.8] 0.05 [0.01–0.15] <0.01 0.992

S100B S100 calcium 
binding protein, 
beta

Schwann cell-
specific marker

0.77 [0.14–3.03] 0.01 [0.00–0.17] <0.01 0.992

ERBB3 ErbB3 Growth factor 
receptor

0.49 [0.06–2.31] 0.01 [0.00–0.21] <0.01 0.984

PTCH2 Patched homolog 
2

Hedgehog 
signalling pathway

0.95 [0.07–4.66] 0.05 [0.01–0.24] <0.01 0.980

RASSF2 Ras association 
domain family 2

Signal transduction 1.11 [0.23–11.1] 0.04 [0.01–0.35] <0.01 0.976

TPSB Tryptase beta 1 
and 2

Mast cell-specific 
marker

0.96 [0.03–2.57] 0.04 [0.01–0.07] <0.01 0.952

SOX10 SRY (sex 
determinig region 
Y)-box10

Schwann cell-
specific marker

0.26 [0.00–1.18] 0.01 [0.00–0.05] <0.01 0.929

TIMP4 Tissue inhibitor 4 
of MMP

Extracellular 
matrix remodeling

0.69 [0.02–11.5] 0.03 [0.01–0.27] <0.01 0.917

1Mann and Whitney's U Test 2ROC (Receiver Operating Characteristics) – AUC (Area Under Curve) analysis 3Median [range] of gene mRNA levels
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mRNA levels of ITGB4, CMA1/Chymase 1 and L1CAM in 10 individual dermal neurofibromas (white bars), 14 plexiform neurofi-bromas (gray bars) and 9 MPNSTs (black bars)Figure 2
mRNA levels of ITGB4, CMA1/Chymase 1 and L1CAM in 10 individual dermal neurofibromas (white bars), 14 plexiform neurofi-
bromas (gray bars) and 9 MPNSTs (black bars). Median values (and ranges) are indicated for each tumor subgroup.
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Expression level of various genes in the dermal neurofibroma pool (white bars), the plexiform neurofibroma pool (gray bars) and the MPNST pool (black bars)Figure 3
Expression level of various genes in the dermal neurofibroma pool (white bars), the plexiform neurofibroma pool (gray bars) 
and the MPNST pool (black bars). A, ERBB family member genes; B, matrix metalloproteinase genes; C, inhibitor of metallopro-
teinase genes; D, chemokine genes; E, Ras signaling pathway genes; F, Hedgehog-Gli signaling pathway genes; G, Gli-regulated 
genes.
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among patients with soft-tissue sarcomas [31]. TP73, the
second apoptosis-related candidate gene identified here,
encodes two different proteins that are expressed under
the control of two independent promoters and have
opposite activities, namely the transcriptionally active
full-length protein TAp73, and the amino-terminally
truncated dominant-negative protein ∆ Np73 [32]. Unlike
TP53, TP73 is mainly regulated at the transcriptional level.
TAp73 induces cell-cycle arrest and apoptosis, whereas
∆Np73 inhibits both TAp73-induced and p53-induced
apoptosis. Furthermore, ∆Np73 is induced by TAp73 and
p53, in a dominant-negative feedback loop that regulates
p53 and p73 function [32]. Interesting, we found that
TAp73 transcription was significantly upregulated in
MPNSTs (P < 0.01; AUC-ROC, 0.952), while ∆Np73 tran-
scription was significantly down-regulated (P < 0.01;
AUC-ROC, 0.917) (data not shown).

MPNSTs showed upregulation of two matrix metallopro-
teinase genes (MMP9 and MMP13) and down-regulation
of a tissue inhibitor of metalloproteinases (TIMP4).
MMPs are associated with extracellular matrix turnover, a
process that plays a very active role in tumor invasion and
metastasis [33]. For their part, TIMPs play a key role in
extracellular matrix homeostasis by regulating MMP activ-
ity [34]. Many reports suggest that an MMP-TIMP imbal-
ance may contribute to the malignant phenotype [33,34].
The other extracellular matrix-related genes tested in the
present studies showed no statistically differentially
expression levels between MPNSTs and plexiform neurofi-
bromas (Figures 3B and 3C). We have previously
identified MMP9 as a major upregulated gene in plexi-
form neurofibromas compared to dermal neurofibromas
[23] (Figure 3B), suggesting that MMP9 upregulation may
be an early event in MPNST tumorigenesis.

Finally, our results suggest that inappropriate activation of
molecular signaling pathways occurs specifically in NF1-
associated MPNST or in limited human tumors,
particularly brain and skin tumors. MPNSTs showed
upregulation of CXCL5, the gene encoding the chemokine
ENA-78 (epithelial cell-derived neutrophil-activating pep-
tide) [35]. Chemokines play fundamental roles in the
development, homeostasis and functioning of the
immune system, but also have effects on endothelial cells
and cells of the nervous system [36]. CXCL5 is physically
linked, in chromosomal region 4q12-q13, to other chem-
okine genes with markedly similar nucleotide sequences,
including CXCL6, IL8 and GRO1/CXCL1 [37]. We found
that CXCL6 was slightly upregulated (trend toward statis-
tical significance) in MPNSTs. We have previously
detected IL8 and GRO1/CXCL1 upregulation in the early
stages of plexiform neurofibroma tumorigenesis [23] (Fig-
ure 3D). Our results thus point to a role of paracrine and
autocrine signaling defects involving these chemokines,

located in 4q12-q13, in the tumorigenesis of plexiform
neurofibromas and/or MPNSTs. Comparative genomic
hybridization analysis has shown gains of chromosome
arm 4q12-ter in both sporadic and NF1-associated
MPNSTs [38], suggesting co-overexpression of these
chemokines by a DNA amplification mechanism.

We identified two genes (RASSF2, HMMR/RHAMM) puta-
tively involved in the Ras signaling pathway; RASSF2 was
down-regulated, whereas HMMR/RHAMM was upregu-
lated. RASSF2 is a member of the RASSF family genes that
encode for proteins which bind directly to Ras protein in
a GTP-dependent manner via a Ras effector domain. This
family currently has six members, RASSF1, RASSF2,
RASSF3, RIN2, AD037 and NORE1. RASSF proteins pro-
mote both cell cycle arrest and apoptosis; they behave as
tumor suppressor genes, and their down-regulation might
play a key role in tumorigenesis. RASSF genes are a new
class of tumor suppressor genes for which epigenetic
silencing is an overwhelming mechanism of inactivation,
and somatic mutations are rare [39,40]. Vos et al.
[41]recently obtained evidence that RASSF2 is specific to
K-Ras, as only a weak interaction with H-ras was detected.
The other five RASSF genes were also tested here, and
showed no difference in their expression levels between
MPNSTs and plexiform neurofibromas (Figure 3E). The
second Ras signaling-associated gene identified here,
HMMR/RHAMM, is an oncogene that regulates signaling
through Ras and controls mitogen-activated protein
kinase (ERK protein) expression [42]. However, HMMR/
RHAMM has also recently been characterized as a centro-
somal protein that interacts with dynein and maintains
spindle pole stability [43]. Finally, HMMR/RHAMM has
been identified as a major cell-cycle-regulated gene by
cDNA microarray analysis [44].

Interesting, seven of the 28 genes showing significant dif-
ferential expression between MPNSTs and plexiform neu-
rofibromas are involved in the Hedgehog-Gli signaling
pathway, namely DHH, PATCH2 and five downstream
target genes of Gli transcription factors (SPP1/Osteopontin,
FOXA2/HNF3B, FOXM1, OSF-2/Periostin and EPHA7)
[45-48]. The Hedgehog-Gli signaling pathway is impor-
tant in regulating patterning, proliferation, survival and
growth in both embryos and adults [49]. Inappropriate
activation of the Hedgehog-Gli signaling pathway occurs
in several tumor types, including brain and skin tumors
[50]. PTCH2 functions as a tumor suppressor gene, as its
product normally inhibits SMOH (which functions as an
oncogene), resulting in Gli inhibition. Mutations of
human PTCH1 and PTCH2 have been detected in basal
cell carcinomas and medulloblastomas, and result in Gli
signaling activation [50]. Other genes associated with the
Hedgehog-Gli signaling pathway were slightly (but not
significantly) upregulated in MPNSTs, including SMOH,
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HHIP (a Hedgehog-interacting protein), three human GLI
genes (GLI2, GLI3 and GLI4; Figures 3F) and the major
Gli-regulated genes IGF2, PTHR1 and H19 (Figures 3G)
[47,48,51]. The eight Gli-regulated genes that we found
altered in MPNSTs encode growth factors (IGF2, SPP1/
Osteopontin, OSF-2/Periostin), growth factor receptors
(PTHR1, EPHA7) and transcription factors (FOXA2/
HNF3B, FOXM1), whereas H19 yields an untranslated
mRNA. Several of these genes are altered in various
tumors [45,52-54]. The positive correlation between H19
and IGF2 expression in our tumor series argues against
abnormal IGF2 imprinting as a source of IGF2 over-
expression in MPNSTs. Indeed, a reduction or loss of H19
expression would be expected to result in increased IGF2
transcription, as expression of these two genes is function-
ally linked by their competition for a common enhancer
[55].

We have previously found that SHH, GLI1, IGF2 and H19
are up-regulated in plexiform neurofibromas [23] (Figures
3F and 3G). Taken together, our results suggest that acti-
vation of the Hedgehog-Gli signaling pathway is not only
an early event in the genesis of benign plexiform neurofi-
bromas, but that it is also required for malignant
transformation.

Conclusions
In conclusion, this study points to the involvement of sev-
eral altered molecular pathways, and especially the
Hedgehog-Gli signaling pathway, in the tumorigenesis of
NF1-associated MPNST. Further studies are necessary to
elucidate the genetic (or epigenetic) mechanisms respon-
sible for the altered gene expression. It will be of interest
to study the genes identified here in sporadic MPNSTs and
in other neurological tumors (medulloblastomas, oli-
godendrogliomas, astrocytomas, neuroblastomas and
schwannomas).

Methods
Patients and Samples
Samples of 14 plexiform neurofibromas and 9 MPNSTs
were obtained by surgical excision from patients with NF1
at Henri Mondor hospital (Creteil, France).

The plexiform neurofibromas (deep lesions involving a
plexus of nerves) were large, had a nodular aspect, and
severely deformed the affected tissues. They were all S100-
positive by immunostaining.

The main clinical and histological characteristics of the 9
patients with MPNSTs are shown in Table 1. The MPNSTs
all arose from plexiform neurofibromas and showed very
weak S100 immunostaining.

Ten dermal neurofibromas were used as "normal" con-
trols, as they are not at risk of developing into malignant
MPNSTs. Neurofibromas are heterogeneous benign
tumors composed of Schwann cells, neurons, fibroblasts,
mast cells and other cells, and have no "normal" tissue
equivalent. The 489 gene expression levels in plexiform
neurofibromas and MPNSTs were thus expressed relative
to the expression levels in dermal neurofibromas. The der-
mal neurofibromas were obtained by laser excision from
patients free of plexiform neurofibromas. They affected
the dermis and subcutis, and were soft, slightly elevated,
painless and smaller than 20 mm.

Immediately after surgery the tumor samples were flash-
frozen in liquid nitrogen and stored at -80°C until RNA
extraction.

Real-time RT-PCR
Theoretical basis
Reactions are characterized by the point during cycling
when amplification of the PCR product is first detected,
rather than the amount of PCR product accumulated after
a fixed number of cycles. The larger the starting quantity
of the target molecule, the earlier a significant increase in
fluorescence is observed. The parameter Ct (threshold
cycle) is defined as the fractional cycle number at which
the fluorescence generated by cleavage of a TaqMan probe
(or by SYBR green dye-amplicon complex formation)
passes a fixed threshold above baseline. The increase in
fluorescent signal associated with exponential growth of
PCR products is detected by the laser detector of the ABI
Prism 7700 Sequence Detection System (Perkin-Elmer
Applied Biosystems, Foster City, CA), using PE Biosystems
analysis software according to the manufacturer's
manuals.

The precise amount of total RNA added to each reaction
mix (based on optical density) and its quality (i.e. lack of
extensive degradation) are both difficult to assess. We
therefore also quantified transcripts of two endogenous
RNA control genes involved in two cellular metabolic
pathways, namely TBP (Genbank accession
NM_003194), which encodes the TATA box-binding pro-
tein (a component of the DNA-binding protein complex
TFIID), and RPLP0 (also known as 36B4; NM_001002),
which encodes human acidic ribosomal phosphoprotein
P0. Each sample was normalized on the basis of its TBP
(or RPLPO) content.

Results, expressed as N-fold differences in target gene
expression relative to the TBP (or RPLPO) gene, and

termed "Ntarget", were determined as ,
where the ∆Ct value of the sample was determined by sub-

N
Ct

target sample= ∆
2
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tracting the average Ct value of the target gene from the
average Ct value of the TBP (or RPLP0) gene [56,57].

The Ntarget values of the samples were subsequently nor-
malized such that the mean of the dermal neurofibroma
Ntarget values was 1.

Primers and controls
Primers for TBP, RPLP0 and the 489 target genes (List in
annex; supplementary information) were chosen with the
assistance of the Oligo 5.0 computer program (National
Biosciences, Plymouth, MN).

We conducted searches in dbEST, htgs and nr databases to
confirm the total gene specificity of the nucleotide
sequences chosen as primers, and the absence of single
nucleotide polymorphisms. In particular, the primer pairs
were selected to be unique relative to the sequences of
closely related family member genes or of the correspond-
ing retropseudogenes. To avoid amplification of contam-
inating genomic DNA, one of the two primers was placed
at the junction between two exons, if possible. In general,
amplicons were between 70 and 120 nucleotides long.
Gel electrophoresis was used to verify the specificity of
PCR amplicons.

For each primer pair, we performed no-template control
(NTC) and no-reverse-transcriptase control (RT negative)
assays, which produced negligible signals (usually > 40 in
Ct value), suggesting that primer-dimer formation and
genomic DNA contamination effects were negligible.

RNA extraction
Total RNA was extracted from frozen tumor samples by
using the acid-phenol guanidinium method. The quality
of the RNA samples was determined by electrophoresis
through agarose gels and staining with ethidium bromide,
the 18S and 28S RNA bands being visualized under ultra-
violet light.

cDNA Synthesis
Total RNA was reverse transcribed in a final volume of 20
µl containing 1X RT buffer (500 µM each dNTP, 3 mM
MgCl2, 75 mM KCl, 50 mM Tris-HCl pH 8.3), 20 units of
RNasin RNase inhibitor (Promega, Madison, WI), 10 mM
DDT, 100 units of Superscript II RNase H-reverse tran-
scriptase (Invitrogen, Cergy Pontoise, France), 3 µM ran-
dom hexamers (Pharmacia, Uppsala, Sweden) and 100 ng
of total RNA. The samples were incubated at 20°C for 10
min and 42°C for 30 min, and reverse transcriptase was
inactivated by heating at 99°C for 5 min and cooling at
5°C for 5 min.

PCR amplification
All PCR reactions were performed using an ABI Prism
7700 Sequence Detection System (Perkin-Elmer Applied
Biosystems) and either the TaqMan® PCR Core REAGENTS
Kit or the SYBR® Green PCR Core Reagents kit (Perkin-
Elmer Applied Biosystems). Ten microliters of diluted
sample cDNA (produced from 2 ng of total RNA) was
added to 15 microliters of the PCR master-mix.

The thermal cycling conditions comprised an initial dena-
turation step at 95°C for 10 min, and 50 cycles at 95°C for
15 s and 65°C for 1 min.

Statistical Analysis
As the mRNA levels did not fit a Gaussian distribution, (a)
the mRNA levels in each subgroup of samples were char-
acterized by their median values and ranges, rather than
their mean values and coefficients of variation, and (b)
relationships between the molecular markers and clinical
and histological parameters were tested using the non par-
ametric Mann-Whitney U test [58]. Differences between
two populations were judged significant at confidence lev-
els greater than 95% (p < 0.05).

To visualize the capacity of a given molecular marker to
discriminate between two populations (in the absence of
an arbitrary cutoff value), we summarized the data in a
ROC (receiver operating characteristic) curve [59]. This
curve plots the sensitivity (true positives) on the Y axis
against 1-specificity (false positives) on the X axis, consid-
ering each value as a possible cutoff. The AUC (area under
curve) was calculated as a single measure for the discrim-
inatory capacity of each molecular marker. When a molec-
ular marker had no discriminatory value, the ROC curve
lies close to the diagonal and the AUC is close to 0.5. In
contrast, when a molecular marker has strong discrimina-
tory value, the ROC curve moves to the upper left-hand
corner and the AUC is close to 1.0.
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