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Abstract

Background: The cellular retinol binding protein | gene (CRBP) is downregulated in a subset of
human breast cancers and in MMTV-Myc induced mouse mammary tumors. Functional studies
suggest that CRBP downregulation contributes to breast tumor progression. What is the
mechanism underlying CRBP downregulation in cancer? Here we investigated the hypothesis that
CRBP is epigenetically silenced through DNA hypermethylation in human and mouse breast cancer.

Results: Bisulfite sequencing of CRBP in a panel of 6 human breast cancer cell lines demonstrated
that, as a rule, CRBP hypermethylation is closely and inversely related to CRBP expression and
identified one exception to this rule. Treatment with 5-azacytidine, a DNA methyltransferase
inhibitor, led to CRBP reexpression, supporting the hypothesis that CRBP hypermethylation is a
proximal cause of CRBP silencing. In some cells CRBP reexpression was potentiated by co-treatment
with retinoic acid, an inducer of CRBP, and trichostatin A, a histone deacetylase inhibitor. Southern
blot analysis of a small panel of human breast cancer specimens identified one case characterized
by extensive CRBP hypermethylation, in association with undetectable CRBP mRNA and protein.
Bisulfite sequencing of CRBP in MMTV-Myc and MMTV-Neu/NT mammary tumor cell lines
extended the rule of CRBP hypermethylation and silencing (both seen in MMTV-Myc but not
MMTV-Neu/NT cells) from human to mouse breast cancer and suggested that CRBP
hypermethylation is an oncogene-specific event.

Conclusion: CRBP hypermethylation appears to be an evolutionarily conserved and principal
mechanism of CRBP silencing in breast cancer. Based on the analysis of transgenic mouse mammary
tumor cells, we hypothesize that CRBP silencing in human breast cancer may be associated with a
specific oncogenic signature.

Background thelial cell differentiation in addition to being essential
Retinol has been implicated in the regulation of adultepi-  for normal embryonic development, vision and
Page 1 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15113415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1476-4598-3-13
http://www.molecular-cancer.com/content/3/1/13
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Molecular Cancer 2004, 3

reproduction [1-3]. Most of the biological effects of reti-
nol are secondary to its metabolism to retinoic acid (RA)
and RA activation of members of the RA receptor (RAR)
and retinoid X receptor (RXR) family of ligand-dependent
transcription factors. As such, the study of RARs and RXRs
has gained widespread attention. However, a number of
other genes play fundamental roles in regulating RXR-RAR
function by regulating retinol and RA metabolism.
Among these genes is cellular retinol-binding protein I
(CRBP), which has been shown to be indispensable for
life when vitamin A levels in the diet are limiting. Thus,
CRBP null mice are unable to maintain adequate retinol
liver stores and survive only when dietary vitamin A is
abundant, a condition that is artificial and does not reflect
the dietary habits of mammals in the wild [4].

In addition to being expressed in stellate cells of the liver,
CRBP is expressed in many other organs and cell types
including epithelia [5-7]. Several observations, including
the finding that CRBP expression during mouse embryo-
genesis overlapped that of RARPB and RARy, led to the sug-
gestion that the function of CRBP is to store and release
retinol where high levels of RA are developmentally
required [8]. mCRBP expression is regulated by RA
through a RA response element located ~1 kb upstream of
the transcription start site, suggesting the existence of a
positive feedback mechanism for regulating retinoid
metabolism and action [9]. Glucocorticoids, cCAMP, trans-
forming growth factor § and serum factors have also been
shown to impinge on CRBP expression [10-13]. The prox-
imal hCRBP promoter region has been cloned, the tran-
scription start site identified, and functional NF1 sites at
approximately -250 and +70 demonstrated [14,15] but
beyond these earlier studies there have been no functional
promoter analyses.

We have recently shown that CRBP expression is downreg-
ulated in a subset of human breast cancers [7]. In follow-
up studies of the potential significance of this finding, we
found that the downregulation of CRBP blocks the differ-
entiation and promotes the growth of SV40-transformed
breast epithelial cells ([16] and Farias et al., manuscript
submitted). The differentiation-promoting, growth-arrest-
ing effect of CRBP, witnessed in both human and mouse
mammary epithelial cells, was assigned to CRBP regula-
tion of retinol storage and RAR activation (Farias et al.,
manuscript submitted). These results suggested that CRBP
downregulation is a contributing cause rather than a con-
sequence of breast cancer and led us to investigate the
mechanism underlying CRBP downregulation. We report
here that CRBP is epigenetically silenced as a result of pro-
moter region hypermethylation in both human and
mouse breast cancer cells. Furthermore, we identify one
exception to this rule and provide data that suggests that
CRBP silencing is an oncogene-specific event at least in
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the context of mouse mammary cancer. These results
extend those published by Esteller et al. while this work
was in progress [17].

Results

hCRBP expression in breast cancer cells varies widely

We first analyzed a panel of human breast cancer cell lines
for CRBP expression using a semi-quantitative RT-PCR
Southern blot protocol. CRBP expression varied from
robust (MDA-MB-468), to weak (MCF-7), to very weak or
undetectable (ZR75-1 and MTSV1-7; Fig. 1A). Given that
CRBP downregulation occurs with an estimated frequency
of 24% in human breast cancer, i.e., it is not a universal
event, the identification of cell lines, such as MDA-MB-
468, in which CRBP was well expressed, should not be
surprising. We wondered whether the intermediate level
of CRBP expression in MCF-7 cells was a consequence of
clonal heterogeneity and tested this idea by random
clonal selection and analysis. In support of this notion, we
were able to isolate subclones that mirrored the extremes
of CRBP expression, with MCF-7 clone B resembling
MDA-MB-468 and MCF-7 clone A resembling ZR75-1
(Fig. 1B, compare with Fig. 1A). After densitometry and
normalization to a house keeping gene, we plotted the
results for all cell lines on a log scale (Figs. 2A and 3A).

hCRBP methylation, with one exception, is inversely
proportional to hCRBP expression

On the basis of preliminary Southern blot analyses that
revealed no major hCRBP deletions or insertions in breast
cancer cells (unpublished data), and taking into account
the presence of a CpG island in the hCRBP regulatory
region [14], we hypothesized that htCRBP downregulation
might be secondary to gene hypermethylation. This
hypothesis was tested by bisulfite sequencing of 26 CpG
dinucleotides within the hCRBP locus (promoter and 5'-
UTR region) in the cell lines whose CRBP expression we
had characterized (Fig. 1). We found that all 26 sites were
hypomethylated in MDA-MB-468 cells and 14 of the 26
sites were hypermethylated in ZR75-1 cells, providing the
first evidence of an inverse association between CRBP
methylation and expression (Fig. 2B). However, this
notion was challenged by the finding that the same CRBP
region was uniformly hypomethylated in MTSV1-7 cells
(Fig. 2B). The bisulfite sequencing analysis of CRBP in
MCE-7 parental cells and clones A and B proved very use-
ful in that it demonstrated a very tight inverse association
between CRBP methylation and expression. Thus, the
intermediate level of CRBP expression in parental MCF-7
cells was associated with a mixed pattern of CRBP methyl-
ation (of 17 amplicons sequenced, 6 showed uniform
hypermethylation and 10 showed uniform hypomethyla-
tion), and this mixed pattern resolved into uniform hyper
or hypomethylation in clones A and B, respectively (Fig.
3B). These results suggest that, as a rule, CRBP hypermeth-
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hCRBP expression differs widely among human
breast cancer cell lines. A. RT-PCR Southern blot analy-
sis of CRBP expression in ZR75-1, MTSV1-7, MCF-7 and
MDA-MB-468 cells. B. RT-PCR Southern blot analysis of
CRBP expression in MCF-7 subclones and again MDA-MB-
468, to allow comparison with the cell lines studied in A.
Cells were either untreated (MDA-MB-468) or treated with
RA and TSA as further described in Fig. 4 (MCF-7 clone A
and B cells). The data in Fig. | were used to generate Figs. 2A
and 3A after densitometric analysis and normalization to
autoradiographic exposure time (| to 24 h) and GAPDH
expression (loading control).

ylation is silencing, and that MTSV1-7 cells represent an
exception to this rule.

Treatment with a demethylating agent rescues hCRBP
expression

CRBP is a RA-inducible gene [9,18] and trichostatin A
(TSA), a histone deacetylase inhibitor, has been shown to
synergize with RAR induction of target gene transcription
[19]. Cells in culture vary widely in their sensitivity to
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retinoids in the serum present in the culture medium; in
the case of MDA-MB-468 cells (hypomethylated CRBP),
there was robust CRBP expression in the absence of exog-
enous RA, whereas in the case of MCF-7 clone B cells (also
hypomethylated CRBP) there was no CRBP expression
unless exogenous RA was added and expression increased
further in presence of TSA (Fig. 4A). This difference may
relate to the fact that MDA-MB-468 cells are competent in
RA synthesis from serum retinol whereas MCF-7 cells are
not [20]. Based on the data for MCF-7 clone B cells (Fig.
4A), we predicted that treatment of MCF-7 clone A cells
(hypermethylated CRBP) with 5-azacytidine (azaC), a
DNA methyltransferase inhibitor, would result in some
CRBP reexpression and that this effect would be potenti-
ated by the addition of RA and TSA. We further predicted
that in absence of azaC, RA and TSA would be ineffective.
The data confirmed these expectations (Fig. 4B), thus sup-
porting our hypothesis that hypermethylation is a proxi-
mal cause of CRBP silencing. In another cell line with
hypermethylated CRBP (ZR75-1), reexpression could also
be demonstrated to be critically dependent on azaC (Fig.
4A). Although we did not directly probe the effect of azaC
on CRBP methylation, we showed earlier that the same
protocol used here achieved partial demethylation of
another hypermethylated gene in MCF-7 cells [21]. The
work of Esteller et al. [17] suggest that our data for MCF-7
clone A is rather the exception than the rule in that azaC
alone is generally sufficient to achieve CRBP reexpression
when the gene is hypermethylated, suggesting that endog-
enous retinoids or other modulators of CRBP expression
(Introduction) can drive CRBP transcription upon azaC-
induced demethylation.

Extensive hCRBP hypermethylation in association with
undetectable hCRBP in a human breast cancer specimen
Esteller et al. demonstrated by methylation-sensitive PCR
(MSP) that hCRBP is hypermethylated and silenced in a
subset of human breast cancers [17]. MSP is a highly sen-
sitive technique that will detect methylation of a gene of
interest even when only a small percentage of cells within
the tissue have methylated alleles [22]. We wished to
probe CRBP methylation using a less sensitive technique
to infer whether CRBP methylation was a rare event on a
per cell basis or, alternatively, was a tissue-wide event. For
this purpose we used a classical Southern blot analysis
approach [23] that relied on the use of methylation-sensi-
tive isoschizomers and knowledge of the specific CpG
sites that are methylated in human breast cancer cells
(Figs. 2B and 3B). To test the validity of this strategy, we
first applied it to MDA-MB-468 and ZR57-1 cells. South-
ern blotting correctly identified CRBP hypo and hyper-
methylation in MDA-MB-468 and ZR57-1 cells,
respectively (Fig. 5A). This strategy was then used to inves-
tigate CRBP methylation in a small panel of human breast
cancers (n = 10) and the results obtained for 2 cases are
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hCRBP hypermethylation explains some but not all cases of h\CRBP silencing. A. Relative levels of hCRBP expression
determined by RT-PCR Southern analysis (see Fig. 1). The limit of detection is represented by a relative log value of |.5 that
corresponds to film background after 24 h exposure. Note that hCRBP expression in MDA-MB-468 cells is greater than that in
ZR75-1 or MTSV -7 cells by about 3 logs. B. hCRBP bisulfite sequencing results for the same cell lines as in A. Filled circles des-
ignate methylated and open circles designate unmethylated CpGs. Each row displays the methylation status of CpG sites across
an individual amplicon; each "column" displays the methylation status of an individual CpG site across amplicons. The approxi-
mate position of each CpG site relative to the transcription start site is indicated in the abscissa.
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regard ZR75-1 and MDA-MB-468 cells, respectively. B. hCRBP bisulfite sequencing results for the same cell lines as in A. Filled
circles designate methylated and open circles designate unmethylated CpGs (see legend to Fig. 2B for futher details).
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Treatment with a demethylating agent rescues hCRBP expression in MCF-7 clone B and ZR75-1 cells. A. RT-

PCR Southern blot analysis of hCRBP expression in MDA-MB-468 and MCF-7 clone B cells treated as indicated, demonstrating
different sensitivity to endogenous (serum) retinoids. RA, | pM all-trans RA; TSA, 100 nM trichostatin A (24 h treatment). B.
RT-PCR Southern analysis of hCRBP expression in MCF-7 clone A and ZR75-1 cells treated as indicated, demonstrating that a
demethylating agent is required for CRBP reexpression. AzaC, 5 uM 5-azacytidine (72 h pretreatment, 96 h total); RA and TSA

as above (present during last 24 h).

shown in Fig. 5B. One breast cancer specimen (tumor B)
exhibited frank CRBP hypermethylation in association
with low levels of CRBP mRNA, whereas tumor A did not
show evidence of CRBP methylation by Southern blotting
and this correlated with easily detectable CRBP mRNA lev-
els. Based on a densitometric evaluation of the yield of the
205 bp fragment, we estimate that >50% of the cells in
tumor B had at least one hypermethylated CRBP allele.
When viewed in the context of the other data presented
here and the work of Esteller et al. [17], this finding is of
interest because it suggests that in some breast cancers
there is clonal expansion of a cell population in which the
CRBP gene is hypermethylated. Fig. 5B also demonstrates
that there is good agreement between CRBP expression at

the mRNA and protein levels. Analysis of the remaining 8
human breast cancer specimens did not identify other
examples like tumor B in Fig. 5, either because of the small
sample size, the low sensitivity of Southern blotting, or
the low cellularity of the tumor specimen (data not
shown).

Myc but not Neu leads to mCRBP hypermethylation and
silencing in mouse mammary epithelial cells

Morrison and Leder have shown that CRBP expression in
transgenic mouse mammary tumors is a function of the
initiating oncogene, with Myc-induced tumors lacking
and Neu-induced tumors displaying CRBP expression
[24]. We hypothesized that this observation might be
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In some human breast cancers, hCRBP hypermethylation is widespread. A. Sketch outlining the Southern blot strat-
egy used to evaluate hCRBP methylation in human breast cancer specimens. The strategy was tested in MDA-MB-468 and
ZR75-1 cells whose hCRBP methylation status was known beforehand. B, BH and BM stand for, respectively, Bsu36l digestion
alone, Bsu36l digestion followed by Hpall digestion, and Bsu3él digestion followed by Mspl digestion (Mspl is the methylation-
insensitive isoschizomer of Hpall). In agreement with the bisulfite sequencing data, Southern blotting revealed hCRBP under-
methylation in MDA-MB-468 and hypermethylation in MCF-7 clone A cells (note loss of the large Bsu36l fragment after BH
digestion of MDA-MB-468 genomic DNA and retention of this fragment in the case of MCF-7 clone A). A hCRBP restriction
fragment length polymorphism (an extra Bsu36l site within the 205 bp fragment) accounts for the displaced band migration pat-
tern in MDA-MB-468 cells. B. Southern, RT-PCR and Western blotting results for 2 human breast cancer specimens. The yield
of the 205 bp product was decreased by >50% after BH digestion relative to BM digestion. We infer from this that >50% of the
cells in the tumor displayed hCRBP hypermethylation. The protein blot was post-stained with Ponceau S and a major band used
as loading control.
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mCRBP hypermethylation and silencing is an onco-
gene-specific event. A. Northern blot analysis. B. mCRBP
bisulfite sequencing results for the cell lines tested in A. Each
row corresponds to one sequenced amplicon. Filled circles
designate methylated and open circles designate unmethyl-
ated CpGs (ee legend to Fig. 2B for futher details). C. RT-
PCR demonstrating effect of azaC treatment (as in Fig. 4) on
mCRBP expression in 16MB9%a cells.

explained by Myc but not Neu promotion of CRBP hyper-
methylation. To test this, we obtained two mammary
tumor cell lines established from Myc and two others
established from Neu-induced tumors [25] and, as a first
step, confirmed that CRBP was expressed in the latter but
not the former cell lines (Fig. 6A). We then analyzed CRBP
methylation in the same cell lines. As predicted by our
hypothesis, bisulfite sequencing of CpG dinucleotides
within the mCRBP promoter and 5'-UTR region revealed
extensive to moderate CRBP hypermethylation in MMTV-
Myc as opposed to virtually no methylation in MMTV-
Neu mammary tumor cells (Fig. 6B). As shown in Fig. 6C,
treatment with azaC rescued CRBP expression in MMTV-
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Myc (16MB9a) cells. Thus, CRBP hypermethylation and
silencing appears to represent an evolutionarily conserved
event in mammary carcinogenesis. The data in Fig. 6 sets
the stage for additional work investigating whether CRBP
hypermethylation in human breast cancer can be associ-
ated with a specific oncogenic signature.

Discussion

Our data extend the work of Esteller et al. [17] in several
respects. First, it provides an analysis of the pattern of CpG
methylation across the CRBP promoter region. One inter-
esting feature revealed by the bisulfite sequencing of CRBP
in ZR75-1 and MCF-7 clone A cells, both of which express
virtually no CRBP, is that 2 alternative methylation pat-
terns are equally suppressive. Thus, in ZR75-1 cells, CRBP
methylation showed intra-allelic variegation, with alter-
nating methylated and non-methylated CpG sites (Fig.
2B). Contrast this with the uniform methylation of all
CpG sites in MCF-7 clone A cells (Fig. 3B). As shown in
Fig. 4, both of these patterns contributed to CRBP down-
regulation, suggesting that uniform methylation is not
required for silencing, which is consistent with the dem-
onstrated ability of MeCP2 to bind single methylated CpG
sites [26]. CRBP methylation in MMTV-Myc mammary
tumor cells defined yet another methylation pattern char-
acterized by both intra- and inter-allelic variegation and
different degrees of methylation penetrance (Fig. 6B). The
conditions that lead to the establishment of these variant
methylation patterns in the first place are not known.

Second, our data identified the MTSV1-7 cell line as an
exception to the rule that CRBP silencing is associated
with CRBP hypermethylation. The mechanism responsi-
ble for CRBP silencing in MTSV1-7 cells remains to be
identified but the ease with which CRBP can be ectopi-
cally expressed in these cells from a heterologous pro-
moter points to a defect in transcriptional initiation rather
than a subsequent event [16]. In view of the association
between MMTV-Myc expression and mCRBP silencing
(Fig. 6), we hypothesize that ¢-myc overexpression may
underly hCRBP silencing in MTSV1-7 cells. This possibil-
ity is supported by our finding that c-myc protein is easily
detected in MTSV1-7 cells by direct Western whereas it is
normally present in trace levels (Farias and Mira-y-Lopez,
unpublished data). c-myc protein levels in MTSV1-7 cells
may be elevated either as a result of their long-term
passage in vitro [27] and/or as a result of their transduc-
tion with the SV40 small t antigen [28], which was
recently shown to stabilize c-myc [29]. That possibility is
further supported by the finding that immortalized
mouse mammary epithelial cells lose endogenous mCRBP
expression over long term in vitro passage (Farias and
Mira-y-Lopez, unpublished data). On the other hand, the
fact that MMTV-Myc is associated with mCRBP hyper-
methylation (Fig. 6) but hCRBP was not hypermethylated
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in MTSV1-7 cells (Fig. 2B) argues against our idea that c-
myc overexpression underlies CRBP silencing in MTSV1-7
cells. However, hypermethylation has been suggested to
represent a mechanism for the maintenance not the initial
induction of transcriptional silencing [30]. Therefore, it is
conceivable that the hCRBP locus in MTSV1-7 cells is
repressed in a c-myc-dependent manner and is susceptible
to but has not yet undergone hypermethylation.

Third, based on a small sample of 10 human breast cancer
specimens, we succeeded in identifying one instance of
widespread CRBP hypermethylation and silencing. Thus,
hypermethylation was easily detected in total tumor DNA
using a low sensitivity technique (Southern blotting) and
this correlated with the lack of any detectable CRBP
mRNA and protein in total tumor RNA and tumor lysates,
respectively. Although only a single such tumor was iden-
tified, it seems reasonable to extrapolate, based on the
strength of the combined evidence ([17] and this report),
that a small subset of human breast cancers are character-
ized by pervasive CRBP methylation.

Fourth, we have found that mCRBP methylation is associ-
ated with Myc but not Neu-induced mammary tumors,
suggesting that mCRBP silencing may be a requirement for
MMTV-Myc tumorigenesis. We plan to test this hypothesis
by monitoring CRBP expression and methylation by in
situ hybridization and MSP, respectively, over the period
of time during which premalignant changes accumulate
in MMTV-Myc mammary tissue. We expect to find that
CRBP downregulation precedes or coincides with the
appearance of preneoplasia. We further expect that
ectopic CRBP will prevent or delay the onset of mammary
tumorigenesis. One theoretical argument against our
hypothesis is that MMTV-Myc may transform a
subpopulation of cells that do not express CRBP to begin
with. We find this unlikely because CRBP mRNA is
uniformly expressed in both layers of human breast ducts,
i.e., the epithelium itself and the underlying myoepithe-
lium [7]. Interestingly, MMTV-Myc tumors were recently
identified as having both epithelial and myoepithelial
components [31], suggesting that MMTV-Myc transforms
a pluripotent cell population. For the reason just stated
above, we hypothesize that this population expresses
CRBP.

Finally, our study of CRBP methylation in mouse mam-
mary tumor cell lines derived from Myc and Neu-induced
tumors provides a hypothetical explanation for why CRBP
hypermethylation is characteristic of only a subset of
human breast cancers. It should be noted that CRBP is not
unique in this regard, i.e., several other genes shown to be
epigenetically silenced in breast cancer are silenced in a
subset of, not all breast cancers [32]. The data in Fig. 6 sug-
gests that subset-specific CRBP silencing might be
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explained by the nature of the initiating oncogenic event.
Specifically, we propose that most human breast cancers
in which ¢-myc is amplified and/or overexpressed might
be characterized by CRBP hypermethylation and, con-
versely, most breast cancers with c-neu amplification and/
or overexpression might be characterized by CRBP
hypomethylation. Interestingly, the incidence of c-myc
amplification and CRBP hypermethylation in breast can-
cer have both been estimated at 16% [17,33]. If further
work were to validate this notion, then it would be of
interest to understand how c-myc overexpression leads to
CRBP silencing and how c-neu bypasses the anti-tumor
function of CRBP. The finding of other defects in retinol
and RA metabolism in breast cancer as well as alterations
in RAR isoform expression suggest that several bypassing
mechanisms may exist [34-37].

Conclusions

We conclude that: (i) CRBP hypermethylation is, as a rule,
a proximal cause of CRBP silencing in a subset of human
and mouse breast cancers; (ii) exceptions to this rule may
exist in some human breast cancers, as indicated by our
results for the MTSV1-7 cell line, in which CRBP is
silenced despite being hypomethylated; (iii) the intra-
allelic pattern of CRBP hypermethylation may vary and
tumors may consist of mixtures of cells with hyper and
hypomethylated CRBP, but in at least some cases most
tumor cells (>50%) display CRBP hypermethylation; (iv)
at least in the context of mouse mammary cancer, CRBP
hypermethylation appears to be an oncogene-specific
event. The significance of these findings should be viewed
against the background of our functional analyses of
CRBP, which suggest that CRBP silencing is a contributing
cause rather than a consequence of breast carcinogenesis
[16].

Methods

Cells and reagents

Human breast cancer cell lines, with the exception of
MTSV1-7 cells [16,28], were obtained from the American
Type Culture Collection (Rockville, MD) and grown as
recommended. 16MB9a and M1011 (MMTV-Myc) and
SMF and NAF (MMTV-Neu/NT) mammary tumor cells
were cultured as described [24]. Gel purified primers were
obtained from Genelink (Hawthorne, NY). RA, TSA and
azaC were obtained from Sigma (St.Louis, MO). Sodium
metabisulfite was obtained from BDH, England.

RNA analyses

For RT-PCR, 2 pg total RNA (Purescript kit, Gentra, Min-
neapolis, MN) were reverse transcribed using the Super-
script  Preamplification System (Gibco BRL Life
Technologies, Grand Island, NY). This RNA input was
chosen after preliminary experiments demonstrated a
dose-dependent increase in CRBP RT-PCR product within
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the range of 0.5 to 4 pg total RNA. The PCR mixture con-
sisted of 10X PCR Buffer, 1 mM MgCl,, 200 uM dNTPs,
0.4 uM each primer, 10% cDNA, and 5U of Taq (Promega,
Madison, WI) in a total volume of 50 ul. hCRBP cDNA
(320 bp) was amplified with sense primer TTGT-
GGCCAAACTGGCTCCA and antisense primer ACACT-
GGAGCITGTCTCCGT and the following cycling
parameters: 94 C for 5 min; 26 cycles of 94 C for 1 min,
48 C for 1 min, 72 C for 1 min; 72 C for 5 min. 18S rRNA
(489 bp) was amplified using the same protocol as above
except that 5% cDNA, a 3:7 mix of primers:competimers
(0.4 uM total), and an annealing temperature of 57°C
were used (18S rRNA primers and competimers were from
Ambion, Austin, TX). GAPDH RT-PCR was performed as
described [38]. The PCR products were separated on 1%
agarose, stained with ethidium bromide (18S rRNA) or
blotted overnight and probed with full length CRBP
cDNA or a commercial GAPDH ¢DNA fragment
(Ambion). Northern blot analyses were performed using
standard methods and a full length CRBP ¢cDNA probe as
described earlier [7].

Bisulfite sequencing

Genomic DNA was isolated using the Puregene kit (Gen-
tra Minneapolis, MN) and digested with Xbal. The
bisulfite method established by Frommer et al. [39,40]
was carried out on 5 pug genomic DNA digest with the fol-
lowing modifications. Digested DNA was denatured with
0.5 M NaOH at 75 C for 15 min, followed by deamination
with freshly prepared 4.0 M, pH 5.0 sodium metabisulfite
and incubated at 55 C for 8 hours in a total volume of 1.2
ml under mineral oil. The bisulfite-treated DNA was then
desalted using the Wizard DNA clean-up system
(Promega), desulfonated with 0.3 M NaOH at 37 C for 15
min, neutralized with 0.1 volume of 3 M NH,AC and eth-
anol precipitated with 2 volumes of cold ethanol. The
pellet was resuspended in 50 p1 of sterile H,O. A 780 bp
hCRBP fragment was amplified using 2 rounds of fully-
nested PCR, which in our experience was required to yield
reproducible results. First round PCR was carried out in a
50 pl reaction mixture of 10X PCR buffer, 1.2 mM MgCl,,
160 uM dNTPs, 0.4 uM each primer, 10 pl of bisulfite-
treated DNA, and 5 U of Taq (Promega). The nested PCR
reactions (rounds 2 and 3) were carried out in the same
way using 5% of the product obtained in the preceding
round as template. The primers used were as follows: 1st
round PCR, GITGAATTITITAGTITTITTGATTITAGT
(sense) and ACACCAAAAAATTAACAAAAAAACT
(antisense); 2nd round, AGGTTTTAGATAAAGGTITG-
TAAGTGG (sense) and TCCCAAAATAACAAAAC-
CCCAAAAA (antisense); 3rd round,
GTITITITAATITITGAGTGGITGT (sense) and ATCTA-
CAACCTAAAAACTACCCTAAAA (antisense). Cycling
parameters were: 94 C for 5 min; 40 (round 1) or 20 cycles
(rounds 2 and 3) of 94 C for 1 min, 45 C (rounds 1 and
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3) or 50 C (round 2) for 1 min, 72 C for 1 min; 72 C for
5 min. The amplified PCR product was gel purified, sub-
cloned into the TA cloning vector (Invitrogen, Faraday,
CA), transformed into TOPO kit cells (Invitrogen) using a
blue-white colony X-gal selection, and individual clones
submitted for sequencing. mCRBP bisulfite sequencing
was performed essentially as described above for h(CRBP
but using semi-nested PCR and the following primers and
conditions: 15t round, TGAAGGATTTTTAAGGGAAG-
TAAGGAG (sense) and AAATTCTCATTACTCAACATCT-
TCCAATAC (antisense), 40 cycles, annealing at 52 C; 2nd
round, ATCCACAAACATITITAAAACAAACTA (sense)
and same antisense primer as above, 42 cycles, annealing
at 46 C.

Southern blot analysis

Human breast carcinoma specimens that had been flash
frozen within 1 h of surgery were obtained through the
Cooperative  Human  Tissue  Network  http://
www.chtn.ims.nci.nih.gov under Institutional Review
Board approval. All specimens were diagnosed as invasive
breast carcinoma, with or without a carcinoma in situ
component, except for one specimen which was an ade-
noid cystic breast carcinoma (not shown in Fig. 5).
Approximately 200 mg of tissue were pulverized under
liquid nitrogen and RNA and DNA isolated using Qia-
gen's RNA/DNA kit according to manufacturer's instruc-
tions (Qiagen, Valencia, CA). Tumor DNA (45 pug) was
digested with Bsu36I, ethanol precipitated, and divided
into 3 parts that were either not digested further, digested
with Hpall, or digested with MsPI (restriction enzymes
were from New England Biolabs, Beverly, MA). After eth-
anol precipitation, Southern blots were prepared and
hybridized to a 205 bp hCRBP probe amplified from a
cloned hCRBP genomic fragment using CCGGTCTC-
CTCTTCCTITGTAGGGG (sense) and GGGACAG-
GGGGCTCTGCGGGG (antisense) primers.

Immunoblot analysis

A small amount of pulverized tissue was homogenized in
10 mM Tris.Cl pH 7.4, 1 mM EDTA, 7 uM beta-mercap-
toethanol, the homogenate was centrifuged at 10,000 x g
for 10 min, and the supernatant centrifuged further at
100,000 x g for 30 min to yield cytosol. Protein concen-
tration was analyzed using the method of Bradford [41]
with Bio-Rad reagents (Bio-Rad, Hercules, CA) and 50 ug
protein were electrophoresed per lane in a 15% sodium
dodecyl sulfate-polyacrylamide gel. After blotting, CRBP
protein was visualized by reaction with anti-CRBP anti-
body followed by secondary antibody and enhanced
chemiluminescence detection. The anti-CRBP antibody
was raised in rabbits against a keyhole limpet hemocy-
anin-conjugated CRBP-specific peptide [42] and was char-
acterized elsewhere [16].
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azaC 5-azacytidine

MSP methylation-sensitive PCR

Authors’ contributions

AA established the bisulfite sequencing protocol for
hCRBP, applied it to most of the human breast cancer cell
lines tested, generated data toward Figs. 1 and 4, estab-
lished the Southern blotting strategy used in Fig 5 and
generated the data in Fig. 5A. SB performed the analysis of
hCRBP methylation in MTSV1-7 cells, extended the
bisulfite sequencing method to mCRBP (Fig. 6), and gen-
erated data toward Figs. 1,4 and 6C. YSK established the
semi-quantitative CRBP RT-PCR method and contributed
toward Fig. 1. SN generated the CRBP peptide antibody
used in the experiment of Fig. 5. RML initiated and
supervised all aspects of the project, helped perform some
of the experiments, and wrote the manuscript.

Acknowledgements

We thank the following investigators for reagent gifts: Joyce Taylor-
Papadimitriou (MTSV -7 cells), Phil Leder (16MB9a and SMF cells), Pierre
Chambon (mCRBP cDNA) and Winnie Eskild (hCRBP cDNA). Tissue sam-
ples were provided by the Cooperative Human Tissue Network which is
funded by the National Cancer Institute. Other investigators may have
received specimens from the same subjects. This work was supported by
NCI grant CA54273 to RML, the Samuel Waxman Cancer Research Foun-
dation, the Norman and Rosita Winston Foundation and the Chemother-
apy Foundation.

References

I.  Chambon P: A decade of molecular biology of retinoic acid
receptors. Faseb | 1996, 10:940-54.

2. Wolbach SB, Howe PR: Tissue changes following deprivation of
fat soluble A vitamin. | Exp Med 1925, 42:753-777.

3. Thompson N, Howell JM, Pitt GAJ: Vitamin A and reproduction
in rats. Proc Royal Soc 1964, 159:510-535.

4. Ghyselinck NB, Bavik C, Sapin V, Mark M, Bonnier D, Hindelang C,
Dierich A, Nilsson CB, Hakansson H, Sauvant P, et al.: Cellular reti-
nol-binding protein | is essential for vitamin A homeostasis.
Embo | 1999, 18:4903-14.

20.

21.

22.

23.

24,

25.

http://www.molecular-cancer.com/content/3/1/13

Bok D: The retinal pigment epithelium: a versatile partner in
vision. | Cell Sci Suppl 1993, 17:189-95.

Ylikoski J, Pirvola U, Eriksson U: Cellular retinol-binding protein
type | is prominently and differentially expressed in the sen-
sory epithelium of the rat cochlea and vestibular organs. |
Comp Neurol 1994, 349:596-602.

Kuppumbatti YS, Bleiweiss I}, Mandeli )P, Waxman S, Mira-y-Lopez R:
Cellular retinol-binding protein expression and breast
cancer. | Natl Cancer Inst 2000, 92:475-80.

Ruberte E, Dolle P, Chambon P, Morriss-Kay G: Retinoic acid
receptors and cellular retinoid binding proteins. Il. Their dif-
ferential pattern of transcription during early morphogene-
sis in mouse embryos. Development 1991, 111:45-60.

Smith WC, Nakshatri H, Leroy P, Rees |, Chambon P: A retinoic
acid response element is present in the mouse cellular reti-
nol binding protein I (MCRBPI) promoter. Embo | 1991,
10:2223-30.

Eskild W, Oyen O, Beebe S, Jahnsen T, Hansson V: Regulation of
mRNA levels for cellular retinol binding protein in rat Sertoli
cells by cyclic AMP and retinol. Biochem Biophys Res Commun
1988, 152:1504-10.

Kroepelien CF, Knutsen HK, Haugen TB, Hansson V, Eskild W:
Serum factors induce messenger ribonucleic acid levels for
cellular retinol-binding protein in rat Sertoli cells. Endocrinol-
ogy 1993, 132:968-74.

Rush MG, Ul-Haq R, Chytil F: Opposing effects of retinoic acid
and dexamethasone on cellular retinol-binding protein ribo-
nucleic acid levels in the rat. Endocrinology 1991, 129:705-9.

Xu G, Bochaton-Piallat ML, Andreutti D, Low RB, Gabbiani G, Neu-
ville P: Regulation of alpha-smooth muscle actin and CRBP-1
expression by retinoic acid and TGF-beta in cultured
fibroblasts. | Cell Physiol 2001, 187:315-25.

Nilsson MH, Spurr NK, Lundvall J, Rask L, Peterson PA: Human cel-
lular retinol-binding protein gene organization and chromo-
somal location. Eur | Biochem 1988, 173:35-44.

Eskild W, Simard ], Hansson V, Guerin SL: Binding of a member of
the NFI family of transcription factors to two distinct cis-
acting elements in the promoter and 5'-flanking region of the
human cellular retinol binding protein | gene. Mol Endocrinol
1994, 8:732-45.

Kuppumbatti YS, Rexer B, Nakajo S, Nakaya K, Mira-y-Lopez R:
CRBP suppresses breast cancer cell survival and anchorage-
independent growth. Oncogene 2001, 20:7413-9.

Esteller M, Guo M, Moreno V, Peinado MA, Capella G, Galm O, Baylin
SB, Herman JG: Hypermethylation-associated Inactivation of
the Cellular Retinol-Binding-Protein | Gene in Human
Cancer. Cancer Res 2002, 62:5902-5.

Fisher GJ, Reddy AP, Datta SC, Kang S, Yi JY, Chambon P, Voorhees
JJ: All-trans retinoic acid induces cellular retinol-binding pro-
tein in human skin in vivo. | Invest Dermatol 1995, 105:80-6.
Minucci S, Horn V, Bhattacharyya N, Russanova V, Ogryzko VV,
Gabriele L, Howard BH, Ozato K: A histone deacetylase inhibi-
tor potentiates retinoid receptor action in embryonal carci-
noma cells. Proc Natl Acad Sci USA 1997, 94:11295-300.
Mira-y-Lopez R, Zheng WL, Kuppumbatti YS, Rexer B, Jing Y, Ong
DE: Retinol conversion to retinoic acid is impaired in breast
cancer cell lines relative to normal cells. | Cell Physiol 2000,
185:302-9.

Farias EF, Arapshian A, Bleiweiss I}, Waxman S, Zelent A, Mira-y-
Lopez R: Retinoic acid receptor alpha2 is a growth suppressor
epigenetically silenced in MCF-7 human breast cancer cells.
Cell Growth Differ 2002, 13:335-41.

Herman )G, Graff JR, Myohanen S, Nelkin BD, Baylin SB: Methyla-
tion-specific PCR: a novel PCR assay for methylation status
of CpG islands. Proc Natl Acad Sci USA 1996, 93:9821-6.

Singer ], Roberts-Ems ], Riggs AD: Methylation of mouse liver
DNA studied by means of the restriction enzymes msp | and
hpa Il. Science 1979, 203:1019-21.

Morrison BW, Leder P: neu and ras initiate murine mammary
tumors that share genetic markers generally absent in c-myc
and int-2-initiated tumors. Oncogene 1994, 9:3417-26.

Morrison A, Herrera RE, Heinsohn EC, Schiff R, Osborne CK: Dom-
inant Negative N-CoR Relieves Transcriptional Inhibition of
Retinoic Acid Receptor but Does Not Alter the Agonist/
Antagonist Activities of the Tamoxifen-bound Estrogen
Receptor. Mol Endocrinol 2003.

Page 11 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8801176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8801176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/emboj/18.18.4903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/emboj/18.18.4903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10487743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8144697
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8144697
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7860790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7860790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7860790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/jnci/92.6.475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/jnci/92.6.475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/jnci/92.6.475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10716965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1849812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1849812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1849812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1648481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1648481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1648481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2837191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2837191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2837191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1210/en.132.3.968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1210/en.132.3.968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1210/en.132.3.968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8440198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1855468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1855468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1855468
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/jcp.1078
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/jcp.1078
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/jcp.1078
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11319755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3356192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3356192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3356192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1210/me.8.6.732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1210/me.8.6.732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1210/me.8.6.732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7935489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/sj.onc.1204749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/sj.onc.1204749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/sj.onc.1204749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11704871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7615982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7615982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.94.21.11295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.94.21.11295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.94.21.11295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9326603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/1097-4652(200011)185:2<302::AID-JCP15>3.0.CO;2-#
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1002/1097-4652(200011)185:2<302::AID-JCP15>3.0.CO;2-#
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11025452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12193472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12193472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.93.18.9821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.93.18.9821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.93.18.9821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8790415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=424726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=424726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=424726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7970700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7970700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7970700

Molecular Cancer 2004, 3

26.

27.
28.

29.

30.

31

32
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Nan X, Campoy FJ, Bird A: MeCP2 is a transcriptional repressor
with abundant binding sites in genomic chromatin. Cell 1997,
88:471-81.

Wang ], Hannon GJ, Beach DH: Risky immortalization by
telomerase. Nature 2000, 405:755-6.

Bartek J, Bartkova ], Kyprianou N, Lalani EN, Staskova Z, Shearer M,
Chang S, Taylor-Papadimitriou J: Efficient immortalization of
luminal epithelial cells from human mammary gland by
introduction of simian virus 40 large tumor antigen with a
recombinant retrovirus. Proc Natl Acad Sci U S A 1991, 88:3520-4.
Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G,
Hahn WC, Stukenberg PT, Shenolikar S, Uchida T, et al.: A signalling
pathway controlling c-Myc degradation that impacts onco-
genic transformation of human cells. Nat Cell Biol 2004,
6:308-18.

Baylin S, Bestor TH: Altered methylation patterns in cancer
cell genomes: cause or consequence? Cancer Cell 2002,
1:299-305.

Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, Row-
lands T, Egeblad M, Cowin P, Werb Z, et al.: Evidence that trans-
genes encoding components of the Wnt signaling pathway
preferentially induce mammary cancers from progenitor
cells. Proc Natl Acad Sci U S A 2003, 100:15853-8.

Yang X, Yan L, Davidson NE: DNA methylation in breast cancer.
Endocr Relat Cancer 2001, 8:115-27.

Deming SL, Nass S), Dickson RB, Trock BJ: C-myc amplification in
breast cancer: a meta-analysis of its occurrence and prog-
nostic relevance. Br | Cancer 2000, 83:1688-95.

Guo X, Ruiz A, Rando RR, Bok D, Gudas LJ: Esterification of all-
trans-retinol in normal human epithelial cell strains and car-
cinoma lines from oral cavity, skin and breast: reduced
expression of lecithin :rctinol acyltransferase in carcinoma
lines. Carcinogenesis 2000, 21:1925-33.

Rexer BN, Zheng WL, Ong DE: Retinoic acid biosynthesis by
normal human breast epithelium is via aldehyde dehydroge-
nase 6, absent in MCF-7 cells. Cancer Res 2001, 61:7065-70.
Triano EA, Slusher LB, Atkins TA, Beneski JT, Gestl SA, Zolfaghari R,
Polavarapu R, Frauenhoffer E, Weisz ): Class | Alcohol Dehydro-
genase Is Highly Expressed in Normal Human Mammary
Epithelium but not in Invasive Breast Cancer: Implications
for Breast Carcinogenesis. Cancer Res 2003, 63:3092-100.

Chen LI, Sommer KM, Swisshelm K: Downstream codons in the
retinoic acid receptor beta -2 and beta -4 mRNA:s initiate
translation of a protein isoform that disrupts retinoid-acti-
vated transcription. | Biol Chem 2002, 277:35411-21.

Arapshian A, Kuppumbatti YS, Mira-y-Lopez R: Methylation of con-
served CpG sites neighboring the beta retinoic acid response
element may mediate retinoic acid receptor beta gene
silencing in MCF-7 breast cancer cells. Oncogene 2000,
19:4066-70.

Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW,
Molloy PL, Paul CL: A genomic sequencing protocol that yields
a positive display of 5-methylcytosine residues in individual
DNA strands. Proc Natl Acad Sci USA 1992, 89:1827-31.

Clark §J, Harrison ], Paul CL, Frommer M: High sensitivity map-
ping of methylated cytosines. Nucleic Acids Res 1994, 22:2990-7.
Bradford MM: A rapid and sensitive method for the quantita-
tion of microgram quantities of protein utilizing the princi-
ple of protein-dye binding. Anal Biochem 1976, 72:248-54.

Busch C, Sakena P, Funa K, Nordlinder H, Eriksson U: Tissue distri-
bution of cellular retinol-binding protein and cellular retinoic
acid-binding protein: use of monospecific antibodies for
immunohistochemistry and cRNA for in situ localization of
mRNA. Methods Enzymol 1990, 189:315-24.

http://www.molecular-cancer.com/content/3/1/13

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0092-8674(00)81887-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0092-8674(00)81887-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9038338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/35013171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/35013171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10866187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1708884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1708884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1708884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/ncb1110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/ncb1110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/ncb1110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15048125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S1535-6108(02)00061-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S1535-6108(02)00061-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12086841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.2136825100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.2136825100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1073/pnas.2136825100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11446343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1054/bjoc.2000.1522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1054/bjoc.2000.1522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1054/bjoc.2000.1522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11104567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/carcin/21.11.1925
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/carcin/21.11.1925
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/carcin/21.11.1925
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11062150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11585737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11585737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11585737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12810634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12810634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12810634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1074/jbc.M202717200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1074/jbc.M202717200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1074/jbc.M202717200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/sj.onc.1203734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/sj.onc.1203734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1038/sj.onc.1203734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10962564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1542678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1542678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1542678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8065911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8065911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/abio.1976.9999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/abio.1976.9999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1006/abio.1976.9999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=942051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0076-6879(90)89303-Y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0076-6879(90)89303-Y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0076-6879(90)89303-Y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1963464
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	hCRBP expression in breast cancer cells varies widely
	hCRBP methylation, with one exception, is inversely proportional to hCRBP expression
	Treatment with a demethylating agent rescues hCRBP expression
	Extensive hCRBP hypermethylation in association with undetectable hCRBP in a human breast cancer specimen
	Myc but not Neu leads to mCRBP hypermethylation and silencing in mouse mammary epithelial cells

	Discussion
	Conclusions
	Methods
	Cells and reagents
	RNA analyses
	Bisulfite sequencing
	Southern blot analysis
	Immunoblot analysis

	List of abbreviations
	Authors' contributions
	Acknowledgements
	References

