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Abstract

Background: Ovarian cancer has the lowest survival rate of all gynaecologic cancers and is characterised by a lack
of early symptoms and frequent late stage diagnosis. There is a paucity of robust molecular markers that are
independent of and complementary to clinical parameters such as disease stage and tumour grade.

Methods: We have developed a user-friendly, web-based system to evaluate the association of genes/miRNAs with
outcome in ovarian cancer. The OvMark algorithm combines data from multiple microarray platforms (including
probesets targeting miRNAs) and correlates them with clinical parameters (e.g. tumour grade, stage) and outcomes
(disease free survival (DFS), overall survival). In total, OvMark combines 14 datasets from 7 different array platforms
measuring the expression of ~17,000 genes and 341 miRNAs across 2,129 ovarian cancer samples.

Results: To demonstrate the utility of the system we confirmed the prognostic ability of 14 genes and 2 miRNAs
known to play a role in ovarian cancer. Of these genes, CXCL12 was the most significant predictor of DFS (HR = 1.42,
p-value = 2.42x10−6). Surprisingly, those genes found to have the greatest correlation with outcome have not been
heavily studied in ovarian cancer, or in some cases in any cancer. For instance, the three genes with the greatest
association with survival are SNAI3, VWA3A and DNAH12.

Conclusions/Impact: OvMark is a powerful tool for examining putative gene/miRNA prognostic biomarkers in ovarian
cancer (available at http://glados.ucd.ie/OvMark/index.html). The impact of this tool will be in the preliminary assessment
of putative biomarkers in ovarian cancer, particularly for research groups with limited bioinformatics facilities.
Background
Ovarian cancer is the most lethal gynecological malignancy.
Due to its lack of early symptoms, this disease is usually
diagnosed at an advanced stage when the cancer has
already spread to secondary sites [1]. While initial rates of
response to first treatment are >80%, the long-term survival
rate of patients is very low, mainly due to development of
drug resistance [1]. Clinical parameters such as disease
stage and tumor grade are important considerations
in the management of patients after their initial surgery to
establish the necessity for chemotherapy [2]. The amount
of residual tumour after surgery is another very important
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determinant of prognosis. However, reliable markers
that are independent of and complementary to clinical
parameters are needed for better prognostic stratification
of patients and for individualisation of therapy.
For several years now, efforts to identify novel prognostic

and predictive factors have focused on molecular markers,
with a large number having been identified and investigated
[3]. However, while there is evidence that BRCA mutations
correlating with the selection of patients for treatment with
PARP inhibitors, known ovarian cancer biomarkers are not
sufficiently prognostic or predictive, at least for clinical use
[3,4]. It is clear that the selection of molecular markers
could benefit greatly from the integration of datasets across
multiple studies to increase confidence in the selected
markers, by substantially improving the statistical power
and robustness of the analysis. To this end, we have devel-
oped an easy-to-use algorithm (called OvMark) which
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allows the association of gene(s) of interest with patient
outcomes in ovarian cancer. This algorithm integrates gene
expression data from 2,129 patients in 14 DNA microarray
studies and corresponding clinical (stage, grade, amount of
residual disease after surgery, outcomes etc.) and treatment
(chemotherapy) data. Among all ovarian cancers in
included in OvMark, the vast majority are grade 2/3
(high-grade) serous cancers, which compose more
than 80% of ovarian cancers that occur in women.
The other ovarian cancers in OvMark represent less
common epithelial ovarian cancer subtypes that are
biologically distinct from high-grade serous ovarian
cancers, mainly grade 1 (low-grade) serous cancers
and low and high-grade endometrioid ovarian cancers.
The user can stratify samples based on subtype and these
clinical data for investigation of prognostic markers in the
context of disease-free survival (DFS) and overall survival
(OS). A similar approach has been “previously used”
in integrating gene expression and detailed clinical data
including survival information in breast cancer [5,6].
The association of small non-coding RNAs known as

microRNAs (miRNAs) with ovarian cancer has been well
established [7]. Over the last decade, our understanding
of the function that miRNAs play in ovarian and other
cancers as well as an array of fundamental biological
processes in both plants and animals has increased
dramatically [8]. These short endogenous non-coding
RNAs act primarily by negatively regulating the expression
of target mRNAs through translational inhibition and/or
mRNA degradation [8]. Approximately 50% of known hu-
man miRNAs are intronic (miRBase release 20, June
2013). Of these, 341 or roughly one third of human
miRNA host genes are hybridized by probes on the
U133plus2 affymetrix gene chip. A number of studies have
reported that many intronic miRNAs show significantly
correlated expression profiles with their host genes [9,10].
Estimates of the number of miRNAs whose expression
profiles are significantly correlated with their host gene
are as high as 70% [11]. The expression of miRNAs can, in
some instances, be inferred from the expression of their
host genes, and we have therefore included these miRNAs
in our algorithm OvMark to allow their evaluation as
putative prognostic markers in ovarian cancer from
gene expression data.
We confirm the utility of this approach following

comparisons of outputs with a panel of 14 previously
identified markers of prognosis in ovarian cancer. In
addition, we also conducted an unbiased analysis of
all genes present in the dataset to assess their prognostic
potential and found that the list of the most significant
genes is dominated by novel markers of prognosis in
ovarian cancer. The feasibility of using miRNA host
gene expression as a surrogate for miRNA levels was
confirmed using the known miRNA prognostic markers,
let-7f-2 [12] and miR-16-1 [13]. Although these markers
were previously examined in smaller patient cohorts,
OvMark was able to confirm the robustness of these prog-
nostic marker across a large and diverse patient dataset.
Our novel user-friendly algorithm OvMark is a powerful

tool for examining putative gene/miRNA prognostic
biomarkers in ovarian cancer. The value of this tool
will be in the preliminary assessment of biomarkers
in ovarian cancer, particularly for research groups with
limited bioinformatics facilities.

Methods
Gene expression data
Gene expression data sets were downloaded from the
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/
geo/) in the form of raw data files, where possible. Only
ovarian cancer datasets with survival information and at
least 50 patients were included. In total, 2,129 samples
across 14 datasets incorporating 7 different array plat-
forms were utilised to develop the OvMark system.
Table 1 contains a breakdown of the platforms used and
the clinical information available with each dataset.
Clinical data was manually checked to ensure that
clinical factors are defined equally across studies.
Clinical information where ambiguity occurred were
excluded. In the case of the raw data for the Affymetrix
datasets (.cel files), gene expression values were called using
the GC robust multichip average method [14] and data
were quantile normalised using the Bioconductor package,
affy (www.bioconductor.org). For the dual-channel plat-
forms, data were loess normalised [15] using the Biocon-
ductor package limma. Where raw data was not available,
the normalised data as published by the original authors
was used. Hybridisation probes were mapped to Entrez
gene IDs to gene centre the data to allow the comparison
of the expression across disparate platforms [16]. The
Entrez gene IDs corresponding to the array probes
were obtained using Biomart [17] (www.biomart.org/)
and the Bioconductor annotation libraries. Probes that
mapped to multiple genes were filtered out. If there
were multiple probes for the same gene, the probe values
were averaged for that gene. This resulted in expression
data for a total of 20,017 Entrez gene IDs across 2,129
samples. These 20,017 Entrez gene IDs corresponding to
approximately 17,000 genes.
MiRNAs are frequently located within the introns

of protein coding genes and in exons of non-coding
transcripts. miRNA expression can be detected using
conventional microarrays through host gene expression
for intragenic miRNAs or by direct probe matching for
intergenic miRNAs. 827 samples were processed on
U133A Affymetrix arrays, while 531 were processed
on U133plus2 Affymetrix arrays (1358 in total). U133A
and U133plus2 microarrays have 22,277 probe sets in
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Table 1 Summary description of clinical datasets used by OvMark

GEO
accession Ref. Sample

number
Platform type
(probe number)

Mean age ± SD
(Years)

Residual
tumour

information

Treatment
Information

(Pl/Ta/Neo/ Chemo)

FIGO stage Histology Tumour grade
Mean

survival ± SD
(months)

1 2 3 4 NA Ser End NA 1 2 3 NA DFS OS

GSE26712 Bonome et al. [18] 185
Affymetrix

U133A (~22 K)
× Yes × × × × × 47 ± 36

GSE13876 Crijns et al. [19] 157
Operon

human v3
(~35 K)

58 ± 12 × × × 157 0 0 × × 37 ± 40

GSE14764 Denkert et al. [20] 80
Affymetrix

U133A (~22 K)
× Yes × 8 1 69 2 0 62 6 12 3 23 54 0 × 34 ± 15

GSE30161 Ferris et al. [21] 58
Affymetrix

U133Plus2 (~54 K)
63 ± 11 × Pl/Neo/Chemo × 47 1 10 × 24 ± 32 46 ± 36

GSE19161 Konstantinopoulos
et al. [22]

61
Affymetrix

0.6 K Custom
Chip (~600)

× × Pl/Ta × × × × 31 ± 19

GSE19829 Konstantinopoulos
et al. [23]

70

Affymetrix
U133Plus2

(~54 K) / Affymetrix
U95v2 (~12 K)

× × × × × × × 39 ± 23

GSE26193 Mateescu et al. [24] 107
Affymetrix
U133Plus2
(~54 K)

58 ± 11 Yes × × 83 8 16 7 32 68 0 50 ± 52 59 ± 51

TCGA McLendon et al.
[25,26]

562
Affymetrix

U133A (~22 K)
× × Chemo × × × × 33 ± 27

GSE18520 Mok et al. [27] 53
Affymetrix

U133Plus2 (~54 K)
× × × × × × × 40 ± 41

GSE31245 Spentzos et al. [28] 57
Affymetrix

U95v2 (~12 K)
× × × × × × × 42 ± 16

GSE9899 Tothill et al. [29] 285
Affymetrix

U133Plus2 (~54 K)
60 ± 11 Yes Pl/Ta/Neo 24 18 217 22 4 264 20 1 19 97 164 5 21 ± 18 31 ± 23

GSE17260 Yoshihara et al. [30] 110
Agilent-

4x44K (~41 K)
× × × × 110 0 0 26 41 43 0 22 ± 18 36 ± 20

GSE32062 Yoshihara et al. [31] 260
Agilent-

4x44K (~41 K)
× × Pl/Ta × 260 0 0 0 131 129 0 27 ± 23 45 ± 52

In-house In-house Dataset 84
Affymetrix

HuEx-1.0st v2
62 ± 12 Yes Neo 4 11 56 11 0 80 1 3 7 16 61 0 19 ± 22 35 ± 26

Pl = Platinum, Ta = Taxane, Neo = Neoadjuvant Chemotherapy, Chemo = Chemotherapy, NA = Not Available, Ser = Serous, End = Endometrioid, DFS = Disease Free Survival, OS = Overall Survival, TCGA = The Cancer
Genome Atlas, × = Missing Data, SD = Standard Deviation.
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common. Using this information, it is possible to infer the
expression of 341 miRNAs across 1,358 samples based on
a previously published mapping of Affymetrix probesets
to miRBase [32]. As with the gene centred data, this
information was also combined with the available
clinical data for survival analysis. This approach does
not measure the expression of the miRNA directly
but rather uses its host gene as a surrogate. The cancer
genome atlas (TCGA) [33] provides matched Affymetrix
data and miRNA data. These datasets were overlapped
using probe information from [32] and correlation between
the two datasets was used to identify potential promising
surrogates. This approach was obviously restricted to the
miRNAs/genes available on the platforms used by TCGA
and the limitations of these technologies. ~60% of
the miRNAs significantly correlated with their host
gene expression data. This information is available in
Additional file 1. As this is not a definitive assessment of
the correlation between miRNAs and their host genes the
OvMark user is not restricted from searching all 341
miRNAs but is advised to use caution.

Survival analysis
The first stage in OvMark survival analysis dichotomises
the expression of the gene of interest based on a median,
high (within the 75% quartile) or low expression (within
25% quartile) cutoff. For example, if median expression is
chosen, the expression of the gene of interest in a
particular dataset is calculated. Those samples where
the expression of the gene is greater than the median
expression of that gene for that dataset are placed in
the high expression group and those with less than
median expression are placed in the low group. To
account for study-to-study variation this phase is
conducted separately for each of the 14 datasets.
Once stratification is complete the individual datasets
are combined and a global pooled survival analysis is
performed to determine if the gene is associated with
either OS and DFS. It is important to treat each dataset
separately when determining if a sample belongs to the high
or low expression groups, as the expression of the gene of
interest will vary greatly across the different experiments/
platforms. This approach is robust enough to detect the
expression changes at low levels. A gene that goes from not
detected to low expression, will “change quartiles”. In this
presence or absence scenario, those samples where the gene
is absent would be in the lower quartile, the “low expression
cohort” and those samples where the gene is present would
be in the higher quartile, the “high expression cohort” even
though the absolute expression of the gene is very low. This
is because though the interquartile range is low, it is still
sufficient to distinguish between the two groups.
Survival curves are based on Kaplan-Meier estimates and

the log-rank p-value is shown for difference in survival.
Cox regression analysis is used to calculate hazard
ratios. The R package survival is used to calculate
and plot the Kaplan-Meier survival curve. All calcu-
lations are carried out in the R statistical environ-
ment (http://cran.r-project.org/). For further details see
Madden et al. [5].

Web server
The interface (that we have named OvMark) is available
on a publically accessible a web server at http://glados.
ucd.ie/OvMark/index.html and will be updated on a regu-
lar basis. The software uses Common Gateway interface
(CGI) to link the web server with the R/PERL based
algorithm. All calculations are carried out in real-
time. All data/scripts are available upon request from
the authors.

User input options
The software incorporates the clinical data made
available by the original authors. This allows the gene
expression data to be analysed based on one or more
common clinical parameters including patient age,
residual tumour, histological type, chemotherapy, neo-
adjuvant chemotherapy, taxane treatment, platinum
treatment, tumour grade, Federation of Gynaecologists
and Obstetricians (FIGO) stage and histology subtype.
The software also allows for the median expression
and the upper or lower quartiles of the expression of
the gene of interest to be used to determine high and
low groups within each of the 14 individual datasets.

Testing OvMark using known markers of prognosis in
Ovarian cancer
OvMark was run using 14 previously identified prognostic
markers, LPR [33], PRL [34], SPP1 [34], IGF2 [35], MIF
[36], CA125 [37], BRCA1 [3], BRCA2 [3], CDKN1B [38],
MLH1 [39], ApoA1 [40], SNAI2 [41], CXCL12 [42] and
IFNG [43]. Each of these 14 genes was queried in our
novel OvMark database using the median expression
option to dichotomise the data and DFS and OS as
the survival endpoints.

Screen of all genes for their prognostic potential
All ~20,000 Entrez gene IDs corresponding to approxi-
mately 17,000 genes were queried in the OvMark data-
base. The database was dichotomised using median gene
expression and overall survival was chosen as the
survival endpoint. No other software parameters were
used. The resultant p-values are adjusted for multiple
testing using the Benjamini-Hochberg method [44].
The significant results after adjustment for multiple
testing are ranked by their hazard ratio.
To illustrate the utility of the OvMark system we

identified the 10 genes most closely associated with
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survival (i.e. highest and lowest hazard ratios from Cox re-
gression). To further demonstrate their potential as
biomarkers for ovarian cancer prognosis the concordance
index (C-index) was calculated for each of these genes,
using the bioconductor pack survcomp [45]. The C-index
is a commonly used metric for the assessment of prognostic
biomarker performance and has been utilised in two recent
studies focussed on ovarian cancer [46,47]. Briefly, the
C-Index, measures the ability of a particular gene’s
expression levels to classify patient survival times; a
C-Index = 0.5 represents random classification while a
C-Index = 1 represents perfect discrimination. We also
calculated the probability of observing the C-Index
value for each gene at random by shuffling the survival
information 10,000 times and determining the C-Index
for each iteration. We determined the number of times a
random C-Index was greater than or equal to the “true”
C-Index to generate an empirical p-value.

Results
In order to test the robustness of our gene-centred
survival meta-analysis we used a panel of 14 known
markers of prognosis in ovarian cancer. In addition we
chose to screen all human genes for their prognostic
potential in ovarian cancer. As there is currently no
large-scale robust signature for miRNAs in ovarian
cancer, we tested our approach on known individual
miRNAs which have previously been shown to be
prognostic markers, namely let-7f-2 [12] and mir-16-1
[13]. These miRNAs were chosen as proof of concept
examples, to demonstrate the robustness of OvMark.
Many other miRNAs are significantly associated with
survival depending on the combination of clinical
parameters chosen.
Table 2 OvMark results for known markers of ovarian cancer

Gene symbol Survival endpoint Hazard rati

LEPR [33] OS/DFS 1.14/1.08

PRL [34] OS/DFS 1.05/1.25

SPP1 [34] OS/DFS 1.13/1.17

IGF2 [35] OS/DFS 1.22/0.99

SNAI2 [41] OS/DFS 1.28/1.30

CXCL12 [42] OS/DFS 1.27/1.42

ApoA1 [40] OS/DFS 1.02/1.17

MIF [36] OS/DFS 0.89/0.89

CA125 [37] OS/DFS 0.89/0.97

BRCA1 [3] OS/DFS 1.13/1.01

BRCA2 [3] OS/DFS 1.18/1.38

CDKN1B [38] OS/DFS 1.18/1.14

MLH1 [39] OS/DFS 0.98/0.81

IFNG [43] OS/DFS 0.80/1.06

DFS = Disease Free survival, OS = Overall Survival.
Ovmark results correlate with previously identified mRNA
and miRNA based biomarkers for ovarian cancer
Each of the 14 ovarian cancer gene expression markers
identified above were analysed separately within OvMark
using median expression to dichotomise the data and
DFS and OS as the survival end points. All patients in
the OvMark database were chosen for this analysis
without sub-selection based on any clinical parameters.
This information is summarised in Table 2. A hazard ratio
(HR) of greater than 1 indicates a negative effect on
survival and a HR of less than one has a positive
effect. For HRs greater that 1, the higher the HR the
greater the effect the gene has on survival. For HRs
less than 1, the lower the HR the greater the effect
the gene has on survival. As can be seen from Table 2,
several of the markers were significantly or borderline
significantly associated with ovarian cancer patient
outcomes, with the direction of those associations all
consistent with what would be expected based on
prior ovarian cancer studies. BRCA2 is one of the
most significant individual marker of prognosis as can be
seen in Figure 1(a) (HR for DFS = 1.38, p = 1.21 × 10−5,
n = 996). Combining the markers can improve HRs in
comparison with single markers alone. For example,
the Kaplan-Meier DFS plot for BRCA2 and PRL in
combination (i.e. comparing the OS of patients with
greater than median expression of both BRCA2 and
PRL, against the rest) is shown in Figure 1(b) (HR = 1.43,
p = 4.71 × 10−4 n = 996). Patients with high-level expression
of both BRCA2 and PRL in their ovarian cancers have a
worse prognosis than those with high expression of BRCA2
or PRL alone in their ovarian cancers (with a HR of 1.43
versus a HR of 1.38 or 1.25 respectively). When greater
than median expression of CDKN1B is combined
using the median cut-off

o P-value Sample number

0.04/0.28 1833/996

0.49/6.78 × 10−3 1990/996

0.05/0.03 1990/996

0.06/0.99 709/422

5.89 × 10−5/3.37 × 10−4 1990/996

2.42 × 10−4/1.52 × 10−6 1833/996

0.77/0.03 1990/996

0.09/0.13 1833/996

0.09/0.69 1651/924

0.04/0.26 1990/996

0.01/1.21 × 10−5 1833/996

9.13 × 10−3/0.07 1990/996

0.78/5.18 × 10−3 1833/996

4.29 × 10−3/0.43 1833/996



p-value=1.21 x 10-5

HR = 1.38

(a) (b)

p-value=4.71 x 10-4

HR = 1.43

(c)

p-value=3.09 x 10-4

HR = 1.70

Figure 1 Prognostic role of the BRCA2, PRL and CDKN1B in ovarian cancer. In each plot black denotes high expression of the marker(s) and
grey denotes low expression. (a) Kaplan-Meier estimates of survival, demonstrating high expression of BRCA2 is associated with poor DFS in ovarian
cancer (n = 996, HR = 1.38, p = 1.21 x 10−5). (b) Kaplan-Meier estimate of survival, demonstrating that high expression of BRCA2 and PRL in combination
has a greater affect on DFS than expression of either gene alone (n = 996, HR = 1.43, p = 4.71 x 10−4). (c) Combining BRCA2, PRL and CDKN1B increases
the HR for DFS further i.e. grouping samples with high expression of all three genes versus the rest (HR = 1.70, p-value = 3.09 x 10−4, n = 996).
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with greater than median expression of BRCA2 and
PRL (Figure 1(c)) the HR for OS is further increased
(HR = 1.70, p = 3.09 × 10−4, n = 996).
The miRNA MiR-16-1 has previously been associated

with poor prognosis in ovarian cancer [13] and let-7f-2
is a member of the let-7 family of miRNAs which are
frequently down regulated in cancer and are associated
with a good prognosis in ovarian and other cancers [48].
The expression of both these markers is significantly
correlated with their host gene expression in the TCGA
data. To test our approach and to demonstrate the
robustness of these markers in ovarian cancer, we examined
the association of the host genes of these miRNAs with
prognosis in ovarian cancer using our OvMark database.
Our results for miR-16-1 and let-7f-2 are shown in Figure 2
(a) and (b), respectively. We confirmed high expression of
the host gene of miR-16-1 to be associated with a
poor prognosis (HR = 1.22, p-value = 0.05, n = 514) and
high expression of the host gene of let-7f-2 to be associated
with a good prognosis (HR = 0.82, p-value = 9.43 × 10−3,
n = 1241).
In summary, outcome predictions by the OvMark

database for known ovarian cancer biomarkers are
consistent with previously published data, thus validating
the potential utility of this database for the study of the
clinical and outcome implications of the expression of
other genes and miRNAs in ovarian cancer.

A transcriptome-wide screen using OVMARK identifies of
potential novel biomarkers
Although all of the prognostic markers above chosen
for testing have been well studied in ovarian cancer



(a) (b) p-value = 9.43 x 10-3

HR = 0.82

p-value=0.05

HR=1.22

Figure 2 miR-16-1 and let-7f-2 are associated with prognosis in ovarian cancer. In each plot black denotes high expression of the miRNA and
grey denotes low expression. (a) High miR-16-1 expression is a marker of poor prognosis in ovarian cancer using low expression to dichotomise the
data and DFS as the survival endpoint (HR = 1.22, p-value = 0.05, n = 514). (b) High expression of let-7f-2 is associated with good prognosis in ovarian
cancer using median expression to dichotomise the data and OS as the survival endpoint (HR = 0.82, p-value = 9.43 x 10−3, n = 1241).
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(in some cases with mixed results), only BRCA2, SNAI2
and CXCL12 were a particularly convincing marker of
outcome in OvMark. We then queried all human genes in
OvMark so as to identify which genes had the greatest
association with OS of ovarian cancer patients. The results
for the top ten genes are summarised in Table 3, along with
their C-index. Additional file 2, shows a forrest plot for
each of the 10 genes to illustrate the C-index and the upper
and lower bounds. The sample numbers vary depending
on the number of platforms with probes for the gene of
interest. The genes are ranked in Table 3 based on the
strength of the OS hazard ratio. Figure 3 shows the
Kaplan-Meier plot for three of genes, snail homolog 3
(SNAI3), primary ciliary dyskinesia protein 1 (PCDP1) and
Table 3 The top 10 highest/lowest hazard ratios from OvMark
the survival end point and the median cut-off

Gene
symbol

Entrez
gene ID

Previous association with
ovarian cancer

Previous associatio
with cancer

SNAI3 333929 Yes [50] Yes [51]

VWA3A 146177 No No

DNAH12 201625 No No

SERPINA2 390502 No No

TMEM181 57583 No No

PCDP1 200373 No No

ANKIB1 54467 No No

C11ORF88 399949 No No

FSHR 2492 Yes [52] Yes [52]

TBC1D23 55773 No Yes [53]

*P-value adjusted for multiple testing using the Benjamini-Hochberg method [44].
serpin peptidase inhibitor, clade A (alpha-1 antiproteinase,
antitrypsin), member 2 (SERPINA2). Figure 3(a) shows
the Kaplan-Meier plot for SNAI3 on its own (HR = 0.61,
p = 5.73 × 10−5) and Figure 3(b) and (c) show the plots for
SNAI3 in combination with PCDP1 and in combination
with PCDP1 and SERPINA2, respectively. What is most
striking about these results is how few of the genes have
been previously linked to ovarian cancer, with only
follicle stimulating hormone receptor (FSHR) having
been previously well studied in ovarian cancer [49].

Discussion
OvMark provides a user-friendly tool for examining puta-
tive prognostic biomarkers in ovarian cancer. It builds on
screen of all Entrez Gene IDs (n = 20,016) using OS as

n Hazard
ratio

P-value* Sample number C-Index P-value

0.61 0.03 827 0.62 2.0 × 10−4

0.63 0.02 610 0.59 2.1 × 10−3

0.64 0.01 610 0.61 2.0 × 10−4

0.64 0.01 1293 0.64 < 0.0001

1.56 0.03 527 0.60 8.0 × 10−4

0.65 8.96 × 10−3 827 0.62 < 0.0001

1.53 0.04 527 0.60 3.2 × 10−3

0.66 0.01 910 0.62 < 0.0001

0.68 9.14 × 10−3 1833 0.60 1.0 × 10−3

1.46 0.05 610 0.60 1.2 × 10−3



p-value=5.73 x 10-5

HR = 0.61

p-value=2.13 x 10-5

HR = 0.46

p-value=2.63 x 10-4

HR = 0.41

(a) (b)

(c)

Figure 3 Prognostic role of SNAI3, PCDP1 and SERPINA2 in ovarian cancer. In each plot black denotes high expression of the marker(s) and
grey denotes low expression. (a) Kaplan-Meier estimates of OS, demonstrating high expression of SNAI3 to be a marker of good prognosis in
ovarian cancer (n = 827, HR = 0.61, p = 5.73 x 10−5). (b) Kaplan-Meier estimate of OS demonstrating that ovarian cancer samples with high expression
of both PCDP1 and SNAI3 are associated with a better prognosis than ovarian cancers with high expression of either marker on its own (n = 827,
HR = 0.46, p = 2.13 x 10−5). (c) Combing PCDP1, SNAI3 and SERPINA2 gives an even lower HR (HR = 0.42, p-value = 1.29 x 10−3, n = 827).
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our previous work in breast cancer where we successfully
combined multiple datasets to perform cross-dataset
survival analysis [5,6]. The value of the approach used
here is based on its simplicity of operation, and the
statistical power gained through the combination of a
large cohort of patients as compared to single microarray
experiments. Unlike previous approaches [54], the OvMark
system allows users to assess prognostic markers across
multiple microarray platforms by utilising study by study
dicotimisiation to reduce batch effects. We are therefore
not reliant on complex dataset transformations. Also, as the
database is gene-centred, rather than probe-centred, we are
not limited to the gene coverage of a particular platform. In
summary, OvMark allows the analysis of ~20,000 unique
Entrez gene IDs in 2,129 ovarian cancer samples. It is our
intension to increase this number as more ovarian cancer
datasets become available.
Surprisingly, those genes found to have the greatest

correlation with outcome across the dataset have not
been studied in ovarian cancer, or in some cases in any
cancer. For example, of the three genes with the greatest
association with overall survival SNAI3, VWA3A and
DNAH12, only SANI3 has been previously associated
with carcinogenesis where it is involved in epithelial
to mesenchymal transition [55].
After confirming the robustness of our algorithm using

genes already identified as biomarkers in ovarian cancer
we proceeded to examine its potential for inferring the
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prognostic ability of miRNAs from the gene expression
data. The attraction of miRNA biology to cancer re-
searchers arises from the potential of miRNAs to alter
an entire pathway or indeed, pathways. miRNAs have
been heavily studied in ovarian cancer; however, their
role as prognostic markers are not well characterised.
There are only a few large-scale studies which incorporate
miRNA profiling integrated with detailed clinical data
[56,57]. Despite the huge efforts required to compile these
datasets, their sample numbers are only in the hundreds
and therefore they have limited statistical power. However,
as shown here in our study, there is a wealth of gene
expression data available with detailed clinical information
which can be exploited by inferring miRNA activity from
host gene expression.
Again, our algorithm gene centres the data, and allows

us to examine miRNAs as prognostic markers in ovarian
cancer. We were able to confirm the results of other
studies [12,13,48], which demonstrated that reduced
expression of let-7f-2 and increased expression of
miR-16-1 are associated with poor prognosis in ovarian
cancer. It should be noted, however, that not all miRNAs
and host genes are co-expressed [9] and care needs to be
taken when interpreting miRNA results from OvMark.
This issue cannot be fully resolved until such time as
there is a better understanding of which miRNAs are
co-expressed with their host genes (using the TCGA
data we estimate this number to be ~60%) and, further, if
those that are not significantly co-expressed do so in a
disease/tissue-specific manner. It also needs to be deter-
mined whether the miRNAs themselves are subject to
some level of post-transcriptional regulation.
Our new algorithm OvMark has some limitations. It can

not overcome the inherent problems associated with tran-
scriptomic analysis of ovarian cancer, in that often samples
are taken at a late stage. The identification of biomarkers
through the OvMark system should only be considered as
part of the discovery phase. In order to confirm the utility
of genes identified by OvMark further validation is required
to assess biomarker candidates in an independent replica-
tion cohort. The OvMark system will allow researchers
to easily asses the prognostic performance of their
targets of interest within a large scale dataset and re-
duce false discovery rates when prioritising putative
biomarkers for subsequent validation in their laboratories.

Conclusions
In this study, we have developed a simple user-friendly
tool for examining putative gene/miRNA prognostic
markers in ovarian cancer. The value of this tool is both
in the simplicity of its design and the robustness of its
approach. It is designed with non-bioinformatic research
groups in mind and will be of great value in the prelimin-
ary assessment of putative biomarkers in ovarian cancer.
Additional files

Additional file 1: miRNAs significantly correlated with their host
gene expression data.

Additional file 2: Forest plot illustrating the concordance index (CI)
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shuffling the survival information 10,000 times and calculating an
empirical p-value.
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