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Abstract

Background: The tight junction protein Claudin-1, a claudin family member, has been implicated in several
gastro-intestinal pathologies including inflammatory bowel disease (IBD) and colorectal cancer (CRC). In this regard,
we have demonstrated that claudin-1 expression in colon cancer cells potentiates their tumorigenic ability while
in vivo expression of claudin-1 in the intestinal epithelial cells (IECs) promotes Notch-activation, inhibits goblet cell
differentiation and renders susceptibility to mucosal inflammation. Notably, a key role of inflammation in colon
cancer progression is being appreciated. Therefore, we examined whether inflammation plays an important role in
claudin-1-dependent upregulation of colon carcinogenesis.

Methods: APC™" mice were crossed with Villin-claudin-1 transgenic mice to generate APC-Cldn1 mice. H&E stained
colon tissues were assessed for tumor number, size and histological grade. Additionally, microarray and gPCR
analyses of colonic tumors were performed to assess molecular changes due to claudin-1 expression. APC-Cldn1
and APC™" controls were assessed for colonic permeability via rectal administration of FITC-dextran, and bacterial
translocation via gPCR analysis of 16S rDNA.

Results: Claudin-1 overexpression in APC™™ mice significantly increased (~4-fold) colonic tumor growth and size,
and decreased survival. Furthermore, transcriptome analysis supported upregulated proliferation, and increased Wnt
and Notch-signaling in APC-Cldn1 mice. APC-Cldn1 mice also demonstrated inhibition of mucosal defense genes
while expression of pro-inflammatory genes was sharply upregulated, especially the IL-23/IL-17 signaling. We predict
that increased Notch/Wnt-signaling underlie the early onset of adenoma formation in APC-Cldn1 mice. An increase
in mucosal permeability due to the adenomas and the inherent barrier defect in these mice further facilitate
bacterial translocation into the mucosa to induce inflammation, which in turn promote the tumorigenesis.

Conclusion: Taken together, these results confirm the role of claudin-1 as a promoter of colon tumorigenesis and
further identify the role of the dysregulated antigen-tumor interaction and inflammation in claudin-1-dependent
upregulation of colon tumorigenesis.
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Background

Claudin-1 is a member of the claudin family of tight
junction proteins whose traditional roles involve main-
tenance of the epithelial barrier function. However, in
recent years many claudins have been shown to be im-
portant players in several types of cancers, in capacities
beyond barrier regulation, when their expression levels/
patterns are altered. In most of these studies however,
loss of the TJ proteins have contributed to the deregula-
tion of the mechanical aspects of tumor progression
such as migration [1], and invasion [2,3]. By contrast, we
and others have shown that the claudin-1 expression is
upregulated in human colon cancer [4] and that modula-
tion of claudin-1 expression positively regulates the
tumor growth and metastasis in xenograft models using
colon cancer cells. However, it remains unclear if mo-
dulation of claudin-1 expression even in normal colonic
epithelial cells would serve a tumor promoting role, un-
der conditions permissive of colon cancer growth, and
the underlying molecular mechanisms.

Importantly, in recent studies, we have demonstrated a
role for claudin-1 in the maintenance of normal intestinal
homeostasis whereby intestinal epithelial cell (IEC)-spe-
cific constitutive expression of claudin-1 (Villin-claudin-1
Tg mice; Cld-1Tg) altered goblet cell differentiation by
promoting Notch activation [5]. Importantly, Cl-1Tg mice
also demonstrated enhanced severity of Dextran sodium
sulfate (DSS)-induced colitis and impaired recovery from
colitis-induced epithelial injury, which was attributed to
the decreased mucosal protection due to the loss of the
primary component of the goblet cells and anti-microbial
defense, Mucin-2. These findings supported a previously
reported connection between inflammation and claudin-1
expression using specimens from patients with active IBD
and colitis-associated cancer [6,7].

To determine whether IEC-specific claudin-1 overex-
pression would also promote colon tumorigenesis, we
generated APC-Cldnl mice by crossing Cld-1Tg mice
with APC™™ mice, the commonly used mouse model of
intestinal tumorigenesis. The APCM™ mouse model rep-
licates the common mutation inherited in Familial Ade-
namatous polyposis disease (FAP), which predisposes
patients to spontaneous colorectal cancer. Notably, the
APCM™ mice regularly develop adenomas of the small
intestine however they rarely develop those of large
bowel origin [8]. Consequently, these mice are widely
used to study the role of the specific genes of interest in
the regulation of colorectal cancer in conjunction with
the APC mutation.

Here, we show that claudin-1 overexpression in APCM™"
mice significantly increases colon tumor growth as well as
frequency while decreasing the mice survival. In concur-
rence with our previous reports, tumors in APC-Cldnl
mice demonstrate elevated levels of Wnt- and Notch-
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signaling. Furthermore, an upregulated pro-inflammatory
gene signature including the IL-23/IL-17-signaling and
suppressed anti-microbial defense mechanisms marked
these tumors. Notably, these dysregulations associated
with an increase in mucosal permeability and bacterial
translocation in APC-Cldnl mice, which is reported to
upregulate IL-23/IL-17 signaling [9], and may aid in the
promotion of colon cancer. Taken together, our current
studies provide a clear insight into the role of claudin-1
protein in the regulation of colorectal cancer potentially
by upregulating the Notch- and Wnt-signaling and muco-
sal inflammation.

Results

Claudin-1 overexpression increases colon tumorigenesis
and decreases mice survival

Increased claudin-1 expression has been frequently ob-
served in colon cancer, however the consequences of the
in-vivo upregulation in colonic epithelial cells have not
been investigated. To determine the role of claudin-1 in
colon tumorigenesis, we crossed Villin-Claudin-1-Tg mice
with APCM™ mice (APC) to generate APC™™-Villin-
Claudin-1 (APC-Cldn1) mice. We observed robust ex-
pression of claudin-1, localized to the membrane, in
the colon of APC-Cldnl mice compared to APC mice
(Additional file 1: Figure S1). APC mice characteristic-
ally develop adenomas in the small intestine with little to
no tumor occurrence in the colon [8]. In our studies,
APC-Cldnl (n=18) mice developed colonic tumors at a
significantly higher frequency (p = 0.0003) than APC mice
(n=18) (Figure 1A). Endoscopy of mouse colon at 10
weeks of age showed that APC-Cldnl mice developed
colonic tumor at this early age compared to APC mice
(Figure 2A, Day 12, water treated group). Further, the tu-
mors in APC-Cldnl mice colon appeared larger than the
APC mice colon tumors (p = 0.0178; measured using im-
aging analysis software (Figure 1C,D). The histological
analysis further demonstrated that the tumors in APC-
Cldnl mice colon were less differentiated and high grade
compared to the APCM™ mice (p =0.0007) (Figure 1D,
Table 1). Notably, it is rare that adenomas of APCM™
mice, originating from the colon or small bowel progress
to invasive adenocarcinoma, yet we were able to detect an
incident of invasion in the APC-Cldn-1 mice (Figure 1E,
Table 1). Through routine care and observation of the
mice, we also noticed that APC-Cldnl mice began show-
ing signs of morbidity much sooner than APC™™ mice.
The average life span of an APC™™ mouse is approxi-
mately six months. To determine if there was a signi-
ficant difference in survival, we plotted a Kaplan Meir
curve and found that APC-cldnl mice (n=40) have a
statistically significant reduced survival time to four
months (p = 0.0027) compared to APCM™ mice (n =43)
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Figure 1 IEC-specific constitutive expression of claudin-1 in APCM™ mice increases colon tumorigenesis and decreases survival. (A)
APCM™ mice were crossed with Cld-1Tg mice and colon tumors were quantitated from Iitterr_nate of APCM™ and APC-Cldn1 mice (n=18 APC
mice, n=17 APC-Cldn1 mice; p=0.0003). (B) Representative images of the colon from APCM™ and APC-Cldn1 mice showing increased sporadic
colon tumors. (C) Tumor area was measured in APC*'™ and APC-Cldn1 mice (p = 0.0178). (D) Representative H&E staining. (E) Invading carcinoma
in APC-Cldn1 mouse. (F) Kaplan Meir survival curve demonstrating survival of APCMIN (0 = 43) and APC-Cldn1 (n = 40) mice (p=0.0027). Values
are mean + S.EM.
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(Figure 1F). As mentioned previously, multiple adenoma
formation is restricted to the small intestine in the APC
model and is thought to attribute to their limited life
span. Therefore we thought it important to assess whe-
ther tumors of the small intestine also progress with
claudin-1 overexpression. We found no significant dif-
ference in the number of intestinal tumors between the
APCM™ and APC-Cldnl mice. However, an increased

trend was observed and the intestinal tumors in APC-
Cldnl mice were in general, advanced and displayed
high-grade dysplasia (Additional file 2: Figure S2 and
Additional file 3: Table S1). Taken together, these results
suggested that increased claudin-1 expression enhan-
ces susceptibility to tumor development in the colon
of APCM™ mice as well as contributes to the tumor
progression.
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Figure 2 Claudin-1 overexpression promotes inflammation driven colon tumorigenesis. (A) Endoscopic images were obtained from
APCM™ and APC-Cldn1 mice under conditions of regular drinking water (control) (n =3) and 2% DSS w/v in drinking water (treated) (n = 5) mice
at the indicated time points, following 7 days of DSS administration. (B) Tumor number/mice in DSS-treated APCM™ versus APC-Cldn1 mice

(p=0.022) (C) Representative H&E images. Values are mean + SEM. *p < 0.05.

APC-Claudin-1 tumors have increased Wnt/Notch
signaling

An increase in tumor size or number usually results from
an increase in proliferation and/or an associated decrease
in apoptosis. Therefore to assess proliferation in these tu-
mors, we performed immunostaining for Ki67, a well-
known marker of cellular proliferation. We quantified a
significant increase (p=0.0125) in the proliferation in

APC-Cldnl mice tumors compared to the APC™™ mice
(Figure 3A). Immunostaining using anti-cleaved caspase-3
antibody however suggested no significant differences in
the apoptosis (Additional file 4: Figure S3). As claudin-1 is
a downstream target of Wnt signaling [10], and tumors
that arise from the loss of APC have constitutive Wnt ac-
tivation, we decided to examine the colonic tumors in
each of these mice for potential upregulation of the Wnt/
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Table 1 Comparative histological analysis of colon tumors

Genotype No. mice Average no. Total no. mice Total no. invasive Total no. of
with tumors tumors per mouse* w/ HGD** adenocarcinomas adenomas

APC (n=18) 15 1.28 2 0 22

APC-Cldn1 (n=16) 16 2.76 " 1 45

Abbreviation: HGD high grade dysplasia.
*p =0.003.
**Logistic regression for likelihood of developing HGD p = 0.0007.

Colon tumors were quantitated from APC™" and APC-Cldn1 mice and were classified as high grade dysplasia (HGD), adenomas and invasive adenocarcinomas.

B-catenin pathway. We immunostained tumors for [-
catenin, the primary effector of Wnt-activation, to assess
for nuclear/cytoplasmic staining, which is an indicator of
activated [-catenin. APC-Cldnl tumors showed a notice-
able increase in nuclear and cytoplasmic staining com-
pared to that of APCM™ tumors (Figure 3B). To further
assess Wnt upregulation, we performed qRT-PCR analysis
using total RNA isolated from the colonic tumors of
APCM™ and APC-Cldnl and detected increased mRNA
expression of the established Wnt-target genes CD44
(p=0.0159), Lgr5 (5-fold increase), and Axin2 (3-fold
increase) (Figure 3C). Previously, we have shown that
IEC-specific claudin-1 expression in mice induces Notch-
signaling [5]. Additionally, several studies have shown a
role for the Notch pathway in colon tumorigenesis and
targeted therapy [11,12]. Indeed, we did find increased
Hesl and decreased Mathl expression in the tumors in
APC-Cldnl mice colon (p < 0.0001), suggesting upregula-
tion of the Notch-signaling (Figure 3D). Taken together,
we concluded that claudin-1 expression aids in colon
tumor progression via upregulation of the Notch- and
Wnt-signaling pathways.

APC-Claudin-1 tumors demonstrate increased
inflammation
To further assess global changes that occur as a result of
claudin-1 upregulation, we performed transcriptome ana-
lysis of colonic tumors from APC™™ and APC-Cldnl
mice to identify differentially expressed genes (DEGs).
Table 2 shows the list of the selected genes that were
upregulated or downregulated by a factor of at least
1.5 fold or greater in APC-Cld1 mice (versus APCM™
mice). In accordance with the data shown above, tumors
of APC-Cldnl mice showed altered expression of genes
correlative with increased Wnt and Notch activities.
Additionally, Notch target genes known to regulate
mucosal defense were downregulated in APC-Cldn1 tu-
mors. To validate mRNA expression of these genes, we
performed qRT-PCR analysis (Figure 4A). Mucin-2, a
primary component of the goblet cells and previously
shown by us to be downregulated with claudin-1 over-
expression [5], was also significantly down-regulated
(p=0.0022) in APC-Cldnl tumors. Kruppel-like factor
4 (KIf4) and Trefoil factor 3 (Tff3), regulators of the
goblet cell development and mucosal defense, were also

decreased in APC-Cldnl tumors (p=0.0031, 0.0653).
Studies assessing the effect of the loss of Muc2 or/and
KIf4 in the regulation of APC mediated tumorigenesis
have shown an increase in colon tumorigenesis as a
result of increased mucosal inflammation [13,14]. Add-
itionally, we observed several genes (Ccl6, Clc28, Pla2g5,
11-23, and II-1b) corresponding to activated immune re-
sponse and increased inflammation in our microarray
analysis. These observations suggested inflammation as a
possible mechanism for observed tumor progression in
the colon of APC-Cldl mice. We performed qRT-PCR
analysis for common cytokines upregulated during in-
flammation and observed a significant increase in IL-10
mRNA expression (p =0.0139), with an accompanied in-
crease in IP-10 and TNFa (2- and 3-fold increase, respec-
tively) (Figure 4B). These immune regulators have been
shown to be upregulated in response to systemic inflam-
mation, most notably observed in diseases such as colitis.

The inflammation-driven colon tumor growth is
upregulated in APC-Cldn-1 mice

Colon tumorigenesis can be induced in AP mice by
the administration of the colitis-inducing DSS [15]. This
chemical activates inflammation, which drives the devel-
opment of colonic tumors in these mice. We have shown
previously that Cld-1Tg mice are susceptible to DSS-
colitis [5]. Therefore, we reasoned that inflammation-
driven colon tumor growth would also be upregulated
in APC-Cldn-1 mice. To test, we treated APCM™ and
APC-Cldnl mice with 2% DSS drinking water for 5 days.
Subsequently, mice were given normal drinking water and
allowed to recover for 2 weeks until sacrifice. Endoscopic
imaging was performed on each mouse on days 5, 8, and
12 following DSS administration, which showed increased
inflammation and tumor development as early as day-5
post DSS-administration in APC-Cldn1 mice (Figure 2A)
compared to APCM™ mice where colon tumor appeared
around day-8. The total number of colonic tumors at
the time of sacrifice showed that APC-Cldnl mice de-
veloped more (p=0.022) tumors than APCM™ mice
(Figure 2B and C). Also, the tumors appeared larger
in APC-Cld1 mice as compared to APCM™ mice. Com-
bined together, we concluded that claudin-1 expression
decreased tumor latency to increase tumor growth in
the DSS-APC model of colon tumorigenesis.

CMin
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Figure 3 Increased proliferation and upregulated Wnt- and Notch-Signaling contributes to the increased tumorigenesis in APC-Cldn1
mice. (A) Tumors from APC*"™ and APC-Cldn1 mice were immunostained using anti-Ki67 antibody to quantitate the proliferation, (n=9 APC,
n=10 APC-Cld-Tmice) p=0.0125. (B) Activation of Wnt signaling was determined by immunostaining for 3-catenin using anti-B-catenin antibody.
The nuclear/cytoplasmic B-catenin staining is increased in APC-Cldn1 mice tumors compared to APC"™ mice. (C) qRT-PCR analysis of Wnt target
genes and (D) Notch target genes in tumors of APC*"™ and APC-Cldn1 mice (n = 3 mice each group). Values are mean + SEM. *p < 0.05.

Constitutive Claudin-1 expression with APC mutation of 12 to 14 weeks have increased permeability compared
leads to adenoma associated-increased permeability and to age-matched wild type mice which is attributed to ad-
comprised barrier function enoma development [16]. Importantly, we have previously

Recently, it was demonstrated that the barrier defect plays ~ demonstrated that mucus barrier is compromised in Cld-
an important role in colon tumor progression by promot-  1TG mice due to suppressed goblet cell differentiation [5].
ing inflammation [9]. Of note, APC mice between the ages  Considering the advanced and increased colonic tumor
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Table 2 Microarray analysis of APC-Cldn1 versus APC™"

mice tumors

Signaling gene symbol p-value Fold change
A. Wnt signaling related genes
Tcf4 0.068 1.581
Lef1 0017 2238
Fzd10 0.016 2219
Axin2 0.040 1.693
Wnt6 0.022 1.886
Wnt10a 0.125 1.911
Sox17 0.064 2.694
Ephb6 0.029 2.527
B. Notch signaling related genes
Tcf4 0.068 1.581
Lef1 0.017 2.238
Fzd10 0.016 2.220
Axin2 0.040 1.694
Mmp9 0.042 1.628
Atohl1 0.047 3.487
Kif4 0.010 2.495
Muc2 0.112 2.141
Muc3 0.002 6.700
Muc4 0.345 1.590
Tff3 0.184 1.789
C. Inflammation/Immune response genes
IL23a, p19 0.011 2.250
Cxcl5 0.060 2.392
Cxcl9 0.134 2.394
Cxcl2 0.462 1.548
Mmp9 0.042 1.628
Nfat5 0.031 1.515
Pla2g5 0.002 2.796
Retn1b 0.045 10.865
Len2 0.001 1.894
Ccle 0.075 1.658
Ccl28 0.002 5.352
Ccl3 0.001 1.894
IL1b 0.048 1.825
Csf3r 0.056 1.567
Akt2 0.001 1.541
H2-AA 0.017 1.764
H2-Eb1 0.051 1.666
CD244 0.010 -2.207
Tif3 0.184 1.790
Muc2 0112 -2.141

Differentially expressed genes (DEGs) altered with claudin-1 overexpression,
with at least 1.5 fold change, involved in (A) Wnt Signaling (B) Notch-signaling
or (C) Inflammation/Immune response (n =3 mice in each group).
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burden in APC-Cld-1 mice (versus APCM™ mice), we also
decided to assess mucosal permeability in these mice by
measuring the permeability to FITC-labeled dextran. We
observed an increased FITC-dextran permeability as early
as approximately 8 weeks of age in APC-Cldn1 mice, with
a significant increase (3-fold) observed at 14-16 weeks
(Figure 5A,B), the age at which tumors were found to be
present in the colon, compared to the APC™™ littermates.
Increased gut permeability has been frequently linked to
the increased microbial translocation [17,18]. Therefore,
using genomic DNA isolated from 16 week old mice, we
also measured potential microbial translocation into the
mucosa of APC-Cldnl mice via PCR analysis using pri-
mers for bacterial specific 16S rDNA, which demonstrated
a significant increase (p=0.0129) in APC-Cldnl mice
(Figure 5C).

Recent studies have shown that increased inflamma-
tion, specifically IL-23/IL-17 signaling, contributes to
the colon tumor development due to increased perme-
ability and bacterial translocation [9]. Additionally, pre-
sence of IL-23 facilitates bacterial induced colitis [19].
Therefore, we assessed our model for potential upregula-
tion of IL-23 signaling, and indeed, microarray analysis
showed a significant increase in IL23a cytokine (Table 2).
Validation using qRT-PCR also showed a significant in-
crease (p =0.0022) in IL.23 specific p19 subunit (Figure 6).
The downstream targets IL17A (p =0.0442) and IL6
(4-fold induction) were also upregulated in APC-Cldnl
mice. Taken together, these results suggested that in-
creased claudin-1 expression causes an increase in in-
testinal permeability in APCM™ mice. The increased gut
permeability allows increased bacterial translocation,
which in turn upregulates the IL23/IL-17 signaling to
promote colon tumorigenesis.

Discussion
Claudin-1 overexpression has been frequently observed
in colon cancer, and mucosal inflammation, however the
significance of its upregulation is not clearly understood.
We utilized the APC*" model of colon cancer to iden-
tify the role of claudin-1 in tumorigenesis and were able
to determine that claudin-1 overexpression contributes
to colon tumor growth and progression. The APC mice
have a limited life span, which is often attributed to the
tumor burden of the small intestine and cachexia that
develops as a result. Considering the advanced nature of
the intestinal tumors and increased colonic tumor bur-
den in APC-Cldnl mice, we believe that the advanced
and increased tumors contributed to the decreased sur-
vival of APC-Cldnl mice. However considering the key
role of inflammation in tumor progression in our mice,
its contribution to decreased survival can’t be ruled out.
The Wnt- and Notch-pathways have important roles
in normal colonic development and are known to be
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Figure 5 APC-Cldn1 mice demonstrate increased colonic permeability and bacterial translocation into the mucosa. Permeability was
determined to FITC-dextran via rectal administration (A) at 6 - 8 weeks (n=6) and (B) 14-16 weeks of age in APC and APC-Cldn1 mice (n=7).
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mean + S.EM. *p <0.05.
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dysregulated in intestinal diseases, most notably colorec-
tal cancer. Claudin-1 is a known target of Tcf/Lef signal-
ing however also seems to participate in the potentiation
of this pathway as we have seen further upregulation of
Wnt signaling in the APC-Cldnl tumors. This also sup-
ports our previously published data of claudin-1 regulat-
ing E-cadherin expression through modulation of Wnt/
[-catenin activity [20]. It is of interest to note that Wnt-
target genes that are upregulated with claudin-1 overex-
pression are involved in stem cell maintenance (Figure 3C),
as opposed to those that are well known oncogenes, cyclin
D1 and c-myc, of which we observed no change in mRNA
expression (data not shown). CD44 has been shown to be
a marker of cancer stem cells and responsible for con-
ferring tumorigenic properties to cells [21,22]. Lgr5 is an
established intestinal stem cell marker and has also been
shown to regulate tumorigenic capacity of colon cancer
cells [23,24]. Although not identified as a stem cell marker,
Axin2 is an established target of Wnt signaling and con-
tributes to colon cancer cell invasion [25]. Further studies
would establish whether claudin-1 could directly regulate
expression of these genes.

In previous studies we showed that claudin-1 increases
Notch-activity. We were able to detect increased Notch
activity as measured by Hesl and Mathl mRNA expres-
sion (Figure 3D). As crosstalk between the Notch- and
Wnt-pathways is not a new concept, it is possible that

claudin-1 could rest at the hub of this interaction. The
microarray presented several shared genes (Table 2) be-
tween these pathways that were upregulated in tumors
from APC-Cldnl mice. Additionally, Lgr5 expression,
which was increased by claudin-1 overexpression, can
regulate Notch-activity [24].

We have shown in Cld-1-Tg mice and colon cancer
cell lines that increased claudin-1 expression can increase
Notch signaling with downregulation of expression of mu-
cosal defense genes Muc2, KLF4 and Tff3 [5] and in this
study microarray data and qRT-PCR analysis confirmed
downregulation of these genes in the tumors of APC-
Cldnl mice. These genes, known to be important in the
protection against inflammation and luminal antigens,
have also been shown to be important in the protection
against tumorigenesis. KIf4 expression can regulate tumor
growth in mouse xenograft studies and tumor number in
APC mediated tumorigenesis [14,26]. Similarly, Tff3 ex-
pression can also regulate tumor growth [27]. Muc2 defi-
cient mice, known to develop spontaneous colitis, have
been shown to robustly increase colon tumorigenesis
when combined with APC mutation [13]. Interestingly,
partial loss of Muc2 contributed to the tumor develop-
ment in APC™™ mice in a fashion similar to APC-Cld-1
mice. These studies support a postulation that claudin-1
expression upregulate Notch signaling to regulate defense
gene expression and their loss contributes to claudin-1
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mediated tumorigenesis. Additionally these findings pro-
vide further support of a potential role for inflammation
in claudin-1-mediated colon cancer progression. Of in-
terest, we have recently demonstrated that constitutive
claudin-1 expression induces Notch signaling which in
turn suppresses goblet cell differentiation and muc-2 ex-
pression to compromise the mucus barrier and thus in-
crease susceptibility to colitis in Cld-1Tg mice [5]. We
predict that the compromised mucus barrier along with
increased permeability due to the early onset of the ade-
nomas help facilitate increased translocation of the lu-
minal bacteria and microbial products into the mucosa of
APC-Cld-1 mice, which in turn promotes inflammation, a
driver of colon tumor progression. We indeed confirmed
increased expression of cytokines commonly upregu-
lated during inflammation in APC-Claudin-1 tumors
(Figure 4B).

Sporadic cancer and colitis-associated cancers are fre-
quently studied as two distinct processes separated by
their initiating stimulus, loss of the APC or inflamma-
tory bowel disease, respectively. Studies, including this
work, have highlighted a cooperation of the two, beyond
genetic manipulation of specific inflammatory mediators
[9,13,28,29]. This suggests that whereas inflammation is
generally thought to be a result of host response to tu-
mor development in “hereditary” development of colon
cancer, it may actually function to fuel tumor progres-
sion. We employed a model that accelerates the forma-
tion of colonic tumors in APC™™ mice to further examine
the role of claudin-1 in tumorigenesis. With this model
we were able to track tumor development in both APC™™
and APC-Cldnl mice in a shorter amount of time. Colon
tumors were significantly increased and we also observed
that in this model APC-Cldnl mice developed tumors
earlier than APC™™ mice, further confirming our results
from the sporadic model.

Loss of the mucosal defense genes and the resulting
increased inflammation are factors that can be regulated
by a breech in barrier dynamics. The role of claudin-1 in
the regulation of barrier function was established shortly
after its discovery. Here we show that claudin-1 overex-
pression in APC™™ mice induces mucosal permeability
by inducing early adenoma formation. This change in
permeability along with mucus barrier defect in these
mice allows commensal bacteria to freely flow in to the
intestinal mucosa. Indeed, it has been shown that bac-
teria can contribute to colon tumorigenesis [30]. Speci-
fically, APC mice housed in a germ-free environment
produced less tumors than those placed in normal hou-
sing conditions [31]. In accordance, APC-Cldnl mice
exhibited increased bacterial translocation and colon
tumors, further supporting a role for the aid of com-
mensal bacteria in the regulation of sporadic colon
tumorigenesis.
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Recently, studies involving a separate model of APC-
Cre-mediated colon tumorigenesis showed that tumor
formation was mediated by IL-23 signaling in response
to barrier defect and increased bacterial products [9]. In-
deed we observed increased IL-23 and its downstream
targets, [L-17 and IL-6. Since IL-23 signaling is activated
in response to bacteria, it is possible in this model that
inflammation arises downstream of claudin-1 activation
in response to increased bacterial translocation. It is also
of interest to note that supernatants of colonic ex vivo
explants from Muc2/APC mice had increased IL-23 secre-
tion [13]. Additionally, many of the genes (Lcn2, Ccl28,
and CCI6) found to be upregulated in the microarray of
APC-Cldnl mice were also found to be upregulated in the
microarray of Muc2/APC mice [13].

Studies into the role of tight junction proteins in can-
cer have focused on their role in mechanical aspects of
tumorigenesis, i.e., migration and invasion, which is not
surprising considering the classical function of these
proteins. It is ideal to think of alterations in tight junc-
tions affecting latter stages of tumorigenesis as it relates
to loss of polarity and contribution to EMT-like changes,
thus facilitating metastasis. Our work shows a causative
role of claudin-1 in earlier stages tumorigenesis. We
have shown that increased expression of a tight junction
protein can cause early adenoma formation which in
turn causes enhanced permeability, increased bacterial
translocation and thus inflammation with induction of
IL-23 signaling to increase colonic tumorigenesis. This
observation suggests claudin-1 has an active role in pro-
gressing tumorigenesis as opposed to being altered as a
result. It is still unclear as to the sequence of events during
tumorigenesis in relation to the order of inflammation
and claudin-1 upregulation. It is possible to hypothesize a
feedback loop may exist that maintains elevated inflam-
mation. Claudin-1 expression has been shown to be regu-
lated by cytokines [6,32], and here we have shown that
claudin-1 can mediate inflammation through a mechan-
ism involving reduced Muc2 and increased bacterial trans-
location. Further studies will investigate the specific
mechanism by which claudin-1 upregulates IL-23 signal-
ing beyond bacterial upregulation.

Conclusion

This study identifies an essential role of claudin-1 protein
in the regulation of colorectal cancer by upregulating
Notch- and Wnt-signaling and mucosal inflammation.

Methods

Mice

To obtain APCM™*_Villin-Cldn1Tg mice (APC-Cldn1),
APCMI™ males purchased from Jackson Laboratories (Bar
Harbor, Maine) were bred with Villin-Claudin-1-Tg fe-
males. Claudin-1 overexpression was assessed by PCR as
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described previously [5] on genomic DNA isolated from
tail snips using DNA isolation buffer (Viagen Biotech; Los
Angeles, CA). Identification of the mutated APC allele
was performed using a modified protocol from Jackson
Laboratories. APC and APC-Cldnl1 littermates were moni-
tored for signs of morbidity including hunched posture,
anemia, and body weight loss and sacrificed according to
the guidelines of Vanderbilt University Institutional Ani-
mal Care and Use Committee (IACUC). Accelerated tu-
morigenesis was induced by administering 10-week-old
mice dextran sulphate sodium (DSS 2%) in their drinking
water. Mice were monitored throughout duration of the
experiment as described previously [5], and examined in-
termittently via colon endoscopy.

Tissue processing

As described previously, the colon and the small intes-
tine were dissected and flushed with PBS, opened flat
and formalin fixed using the Swiss roll method. Further
processing was performed by the Vanderbilt Transla-
tional Pathology Shared Resource Core. Distal and prox-
imal sections of the colon were snap-frozen and stored
at -80°C for further analysis. Where applicable, colonic
tumors were quantified. Tumors were either isolated and
frozen for further analysis, or left in the colon to be pro-
cessed for embedding and H&E staining.

Tumor size measurements

Tumor area was calculated using Axiovision 4 digital
imaging processing software (Release 4.8.1, Carl Zeiss
Imaging) by outlining tumors of three to four mice each
of APC and APC-Cldnl mice.

Immunohistochemistry

Immunostaining of the paraffin-embedded tissues was
performed as described previously [5] using VectaStain
ABC kit (Vector Laboratories) and the indicated antibodies.
Images were obtained using a Zeiss light microscope.

RNA isolation and microarray analysis

Total RNA was isolated from tumors excised from the
colon of APC and APC-Claudin-1 mice using Qiagen
RNAeasy Mini kit with DNAse digestion step performed.
The integrity of the RNA was determined by perfor-
ming formaldehyde gel electrophoresis. Samples dis-
playing two bands, corresponding to the 18S and 28S
subunits, and having an A260/A280 of ~1.8 were used for
experiments. Total RNA was isolated from snap-frozen
tumors, as described above, and RNA integrity was mea-
sured. Samples were submitted to the Vanderbilt Micro-
array Shared Resource.
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Quantitative reverse transcription-PCR

Total RNA (1ug) of each sample was reverse transcribed
using the iScript cDNA Synthesis Kit (Bio-Rad). Each
qRT-PCR reaction contained SYBR Green Master Mix,
the indicated primer sets and 25 ng of cDNA. Samples
were loaded in triplicates on 96 well plates and run
on a Bio-Rad iCycler. Ct values were utilized to calcu-
late fold change and normalization was performed using
beta-actin.

Permeability assay
Assessment of intestinal permeability to 4 kDa FITC-
dextran was performed as described previously by rectal
administration [5].

Bacterial translocation

Translocation of bacteria was assessed by detecting the
amount of bacterial 16S rDNA using qRT-PCR and spe-
cific primers for conserved regions of the bacterial 16S
rDNA [33]. Genomic DNA was isolated from the distal
colon of three mice per group and 25 ng was used per
reaction. The mouse Selp gene was utilized as norma-
lization gene.

Statistics

Statistical analyses were performed using Graphpad Prism
software (San Diego, CA) for t-test analysis where
comparisons between two groups were involved. SPSS
software (College Station, TX) was utilized for analyses
of Logistic regression (for binary outcomes) and Chi?
(for categorical). P values less than 0.05 were considered
significant.

Additional files

Additional file 1: Figure S1. Expression of Claudin-1 in APC-Cld1 mice
compared to APC mice. (A) Immunoblot of normal colon tissue from APC
and APC-Cldn1 mice (n = 3) shows robust expression of claudin-1 in
APC-Cldn1 mice. (B). Representative immunostaining images of claudin-1
expression in APC and APC-Cldn1 colon shows increased expression
localized to the membrane of APC-Cldn1 mice.

Additional file 2: Figure S2. Quantification of Small Intestine
Adenomas. Adenomas of small intestine from APC and APC-Cldn1 mice
were quantified (N = 10).

Additional file 3: Table S1. Comparative Histological Analysis of the
Small Intestine Adenomas.

Additional file 4: Figure S3. Apoptosis is not altered between the
colon tumors from APCM™ and APC-Cldn1 mice. Immunostaining using
anti-cleaved caspase-3 antibody was done using the colon adenomas
from APCM™ and APC-Cldn1 mice.
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