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Abstract

Background: KRAS mutations in codons 12 and 13 are established predictive biomarkers for anti-EGFR therapy in
colorectal cancer. Previous studies suggest that KRAS codon 61 and 146 mutations may also predict resistance to
anti-EGFR therapy in colorectal cancer. However, clinicopathological, molecular, and prognostic features of colorec-
tal carcinoma with KRAS codon 61 or 146 mutation remain unclear.

Methods: We utilized a molecular pathological epidemiology database of 1267 colon and rectal cancers in the Nurse's
Health Study and the Health Professionals Follow-up Study. We examined KRAS mutations in codons 12, 13,61 and 146
(assessed by pyrosequencing), in relation to clinicopathological features, and tumor molecular markers, including BRAF
and PIK3CA mutations, CpG island methylator phenotype (CIMP), LINE-T methylation, and microsatellite instability (MSI).
Survival analyses were performed in 1067 BRAF-wild-type cancers to avoid confounding by BRAF mutation. Cox
proportional hazards models were used to compute mortality hazard ratio, adjusting for potential confounders, including
disease stage, PIK3CA mutation, CIMP, LINE-1 hypomethylation, and MSI.

Results: KRAS codon 61 mutations were detected in 19 cases (1.5%), and codon 146 mutations in 40 cases (3.2%). Overall
KRAS mutation prevalence in colorectal cancers was 40% (=505/1267). Of interest, compared to KRAS-wild-type, overall,
KRAS-mutated cancers more frequently exhibited cecal location (24% vs. 12% in KRAS-wild-type; P < 0.0001), CIMP-low
(49% vs. 32% in KRAS-wild-type; P < 0.0001), and PIK3CA mutations (24% vs. 11% in KRAS-wild-type; P < 0.0001). These
trends were evident irrespective of mutated codon, though statistical power was limited for codon 61 mutants. Neither
KRAS codon 61 nor codon 146 mutation was significantly associated with clinical outcome or prognosis in univariate or
multivariate analysis [colorectal cancer-specific mortality hazard ratio (HR) = 0.81, 95% confidence interval (Cl) = 0.29-2.26
for codon 61 mutation; colorectal cancer-specific mortality HR = 0.86, 95% Cl = 0.42-1.78 for codon 146 mutation].
(Continued on next page)
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Conclusions: Tumors with KRAS mutations in codons 61 and 146 account for an appreciable proportion (approximately
5%) of colorectal cancers, and their clinicopathological and molecular features appear generally similar to KRAS codon 12
or 13 mutated cancers. To further assess clinical utility of KRAS codon 61 and 146 testing, large-scale trials are warranted.
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Introduction

Use of Standardized Official Symbols: We use HUGO (Hu-
man Genome Organisation)-approved official symbols for
genes and gene products, including BRAF; EGER; KRAS;
PIK3CA,; all of which are described at www.genenames.org.

Colorectal cancer represents a heterogeneous group of
diseases, and its molecular classification is increasingly im-
portant. Colorectal cancers can be classified using muta-
tions in oncogenes such as KRAS, BRAF and PIK3CA [1].
In addition, microsatellite instability (MSI) and epigenomic
instability, such as the CpG island methylator phenotype
(CIMP) and LINE-1 hypomethylation, have been associated
with the oncogene mutations and clinical outcomes [1-4].

Approximately 30-40% of colorectal cancers harbor
KRAS mutations, typically in codon 12 or 13 [5-9]. Features
of colorectal cancers with KRAS codon 12 and 13 muta-
tions include associations with cecal location [5,8], low-
level CIMP (CIMP-low) [10-14], and PIK3CA mutation
[15-18]. KRAS codon 12 and 13 mutations are widely ac-
cepted as a predictive biomarker of lack of response to
anti-EGFR therapy in metastatic colorectal cancer [19-23],
though a few exploratory studies suggest that codon 13
mutants may benefit from EGFR-targeted therapy [24,25].

KRAS codons 61 and 146 are additional hotspots for mu-
tation in colorectal cancer, and data from a small number
of studies suggest that KRAS mutation at these sites may
predict resistance to anti-EGFR therapy [26-28]. Recently,
Douillard et al., utilizing existing clinical trial data, reported
that KRAS mutations in codons 61, 146, and 117, and mu-
tations in NRAS, might identify patients with metastatic
colorectal cancer who fail to derive benefit from panitumu-
mab plus FOLFOX4 [29]. Despite growing clinical rele-
vance, the clinicopathological and molecular features of
colorectal cancers with KRAS codon 61 or 146 mutation re-
main largely unknown. It is of interest to examine the char-
acteristics of colorectal cancers with KRAS mutations in
codons 61 and 146, compared to those in codons 12 and
13, and KRAS-wild-type cases. In the near future, routine
clinical testing of these additional KRAS codons may be
warranted.

We therefore investigated the clinicopathological, mo-
lecular, and prognostic characteristics of tumors harboring
KRAS codon 61 and 146 mutations, utilizing a molecular
pathological epidemiology [30,31] database of 1267 colorec-
tal cancers from two U.S. nationwide prospective cohort
studies. We also performed a comprehensive review on

KRAS codon 61 and 146 mutations in colorectal cancer,
and our curated literature data can be readily useful for
public databases such as the COSMIC (Catalogue of Som-
atic Mutations in Cancer) database.

Results

KRAS codon 12, 13, 61 and 146 mutations, in relation to
clinicopathological and molecular features

We detected KRAS mutations in 505 (40%) cases in 1267
colorectal cancers (Table 1). Codon 12 mutations were
present in 344 cases (27%), codon 13 mutations in 115
cases (9.1%), codon 61 mutations in 19 cases (1.5%), and
codon 146 mutations in 40 cases (3.2%). There were 493
cases with KRAS mutations identified in only one of co-
dons 12, 13, 61 and 146, and 12 cases with KRAS muta-
tions identified in two or more of the four codons
(Table 1).

The baseline characteristics of study subjects are summa-
rized in Table 2, according to tumor KRAS mutation status.
Compared to KRAS-wild-type tumors, overall KRAS-
mutated cancers were less likely to exhibit poor differenti-
ation (5.8%, P <0.0001), MSI-high (6.2%, P < 0.0001), and
BRAF mutation (1.4%, P < 0.0001), and more likely to dem-
onstrate cecal location (24%, P < 0.0001), CIMP-low (49%,
P <0.0001), and PIK3CA mutation (24%, P < 0.0001). Of
note, these trends were generally evident across case groups
with specific mutated codons (Table 2). KRAS mutation sta-
tus was not significantly associated with sex, age, body mass
index (BMI), year of diagnosis, family history of colorectal
cancer, disease stage, peritumoral lymphocytic reaction, or
tumor LINE-1 methylation level. There was no significant
difference in any of the features between the cases with
KRAS mutations identified in only one codon (N =493)
and those with KRAS mutations identified in two or more
codons (N = 12), though statistical power was limited, given
only 12 cases with KRAS mutations identified in multiple
codons (Additional file 1: Table S1).

KRAS mutation status and patient survival in BRAF-wild-
type cases

To examine the prognostic role of KRAS mutation inde-
pendent of BRAF mutation, within 1067 BRAF-wild-type
cases (excluding BRAF mutants), we compared KRAS-
mutated cancers to cases with wild-type KRAS in all four
codons 12, 13, 61 and 146 (Additional file 2: Table S2).
We evaluated clinicopathological, molecular and survival
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Codon Nucleotide change Amino acid change Codon change No. of cases  Proportion among
1267 cases
Any Any Any Any 505 40%
12 Any Any Any 344 27%
13 Any Any Any 115 9.1%
61 Any Any Any 19 1.5%
146 Any Any Any 40 3.2%
Mutations identified in only one of codons 12, 13, 61 and 146
12 C.34G>A p.G12S GGT>AGT 12 1.0%
12 €34G>C p.G12R GGT>CGT 7 0.6%
12 c34G>T p.G12C GGT>TGT 43 34%
12 Cc.35G>A p.G12D GGT>GAT 157 12%
12 c35G>C p.G12A GGT>GCT 20 1.6%
12 c.35G>T p.G12vV GGT>GTT 93 7.3%
12 c35_36delinsCA p.G12A GGT>GCA 1 0.1%
13 c37G>C p.G13R GGC>CGC 1 0.1%
13 c37G>T p.G13C GGC>TGC 2 0.2%
13 c38G>A p.G13D GGC>GAC 103 8.1%
13 c38G>T p.G13V GGC>GTC 2 0.2%
61 Cc.182A>G p.Q61R CAA>CGA 2 0.2%
61 C182A>T p.Q61L CAA>CTA 4 0.3%
61 c.183A>C p.Q61H CAA>CAC 7 0.6%
60, 61 c.180_181delinsAA p.Q61K GGT 4+ CAA>GGA + AAA 4 0.3%
146 Cc436G>A p.A146T GCA>ACA 21 1.7%
146 c436G>C p.A146P GCA>CCA 3 0.2%
146 c437C>T p.Al46V GCA>GTA " 0.9%
Mutations identified in two or more of codons 12, 13, 61 and 146
12,13 €35G>A, c38G>A p.G12D, p.G13D GGT>GAT, GGC>GAC 4 0.3%
12,13 c35G>T, c37G>T p.G12V, p.G13C GGT>GTT, GGC>TGC 1 0.1%
12, c.35G>T, p.G12V, GGT>GTT, GGT + CAA>GGA + AAA 1 0.1%
60, 61 c.180_181delinsAA p.Q61K
12, 146 €34G>C, c436G>A p.G12R, pA146T GGT>CGT, GCA>ACA 1 0.1%
12, 146 C.34G>T, c436G>A p.G12C, p.A146T GGT>TGT, GCA>ACA 1 0.1%
12, 146 C34G>T, c437C>T p.G12C, p.A146V GGT>TGT, GCA>GTA 1 0.1%
12, 146 c35G>T, c436G>A p.G12V, pA146T GGT>GTT, GCA>ACA 1 0.1%
13, 146 C38G>A, c436G>A p.G13D, p.A146T GGC>GAC, GCA>ACA 1 0.1%
12,13,61  c35G>A, c38G>A, c.183A>T  p.GI12D, p.G13D, p.Q6TH  GGT>GAT, GGC>GAC, CAA>CAT 1 0.1%

data of 51 cases with KRAS codon 61 and 146 mutations
(Additional file 3: Table S3). There were 514 deaths, in-
cluding 307 colorectal cancer-specific deaths, during a
median follow-up of 11.7 years (interquartile range, 8.3-
16.1 years) for censored cases.

The 5-year colorectal cancer-specific survival probabil-
ities were 80.6% for cases with KRAS-wild-type/BRAF-
wild-type tumors, 67.9% for cases with codon 12 muta-
tions, 75.8% for cases with codon 13 mutations, 79.4%

for cases with codon 61 mutations, and 76.7% for cases
with codon 146 mutations. Specific KRAS mutations
were significantly associated with patient survival in
Kaplan-Meier analysis (log-rank P =0.0014, Figure 1). In
multivariate analysis, compared to KRAS-wild-type/
BRAF-wild-type tumors, we observed a significant prog-
nostic association for KRAS codon 12 mutation [multi-
variate hazard ratio (HR) = 1.45; 95% confidence interval
(CI), 1.12-1.87; P=0.0048; Table 3). However, neither



Table 2 Clinicopathological, and molecular characteristics according to KRAS mutation status in 1267 colorectal cancer cases

Clinicopathological Total No. KRAS P KRAS mutations identified in only one codon P
;);a::‘orleecular Wild-type Mutant \f:wrl:\’utt);z:) Codon 12 Codon 13 Codon 61 Codon 146 fou(rAnc‘\ruotsasnts)
Total No. of patients 1267 762 505 333 108 17 35
Sex 0.0091 0.1
Male 573 (45%) 322 (42%) 251 (50%) 162 (49%) 59 (55%) 4 (24%) 19 (54%)
Female 694 (55%) 440 (58%) 254 (50%) 171 (51%) 49 (45%) 13 (76%) 16 (46%)
Mean age (years) = SD 686+87 684 +86 68.8+88 047 69.5+85 67.5+9.2 700+£93 66.0+938 0.065
BMI (kg/m?) 0.13 043
<30 1025 (81%) 607 (80%) 418 (83%) 278 (84%) 88 (81%) 11 (69%) 30 (86%)
230 240 (19%) 155 (20%) 85 (17%) 54 (16%) 20 (19%) 5(31%) 5 (14%)
Year of diagnosis 0.26 0.032
Prior to 1998 640 (51%) 375 (49%) 265 (52%) 164 (49%) 63 (58%) 5 (29%) 23 (66%)
1998 - 2006 627 (49%) 387 (51%) 240 (48%) 169 (51%) 45 (42%) 12 (71%) 12 (34%)
Family history of colorectal 0.76 0.87
cancer in first degree relative(s)
Absent 1026 (81%) 612 (80%) 414 (82%) 273 (82%) 89 (82%) 14 (82%) 27 (77%)
Present in one first degree 179 (14%) 111 (15%) 68 (13%) 44 (13%) 15 (14%) 3 (18%) 5 (14%)
relative
Present in two or more first 62 (5%) 39 (5%) 23 (5%) 16 (5%) 4 (4%) 0 3 (9%)
degree relatives
Tumor location <0.0001 0.50
Cecum 209 (17%) 90 (12%) 119 (24%) 79 (24%) 27 (25%) 4 (24%) 6 (18%)
Ascending colon 262 (21%) 171 (23%) 91 (18%) 52 (16%) 25 (24%) 3 (18%) 7 (21%)
Hepatic flexure to transverse 117 (9%) 78 (10%) 39 (8%) 26 (8%) 7 (6%) 4 (24%) 2 (5%)
colon
Splenic flexure to 90 (7%) 57 (8%) 33 (6%) 22 (7%) 7 (6%) 0 3 (8%)
descending colon
Sigmoid colon 297 (24%) 182 (24%) 115 (23%) 83 (25%) 22 (20%) 1 (5%) 8 (24%)
Rectum 279 (22%) 176 (23%) 103 (21%) 67 (20%) 20 (19%) 5 (29%) 8 (24%)
Disease stage 0.028 0.89
I 298 (23%) 190 (25%) 108 (21%) 77 (23%) 20 (19%) 4 (23%) 4 (11%)
I 354 (28%) 230 (30%) 124 (25%) 77 (23%) 30 (28%) 5 (29%) 11 (32%)
Il 328 (26%) 183 (24%) 145 (29%) 97 (29%) 29 (27%) 3 (18%) 11 (32%)
vV 173 (14%) 93 (12%) 80 (16%) 51 (15%) 18 (16%) 2 (12%) 6 (17%)
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Table 2 Clinicopathological, and molecular characteristics according to KRAS mutation status in 1267 colorectal cancer cases (Continued)

Unknown

Tumor differentiation
Well-moderate
Poor

Peritumoral lymphocytic
reaction

Absent-minimal
Mild
Moderate-marked

MSI status
MSI-low/MSS
MSI-high

CIMP status
CIMP-negative
CIMP-low
CIMP-high

PIK3CA mutation status
Wild-type
Mutant

BRAF mutation status
Wild-type
Mutant

Mean LINE-1
methylation level
(%) +SD

114 (9%)

1137 (90%)
123 (10%)

164 (14%)
878 (72%)
170 (14%)

1057 (85%)
191 (15%)

521 (44%)
460 (39%)
206 (17%)

983 (84%)
190 (16%)

1078 (85%)
184 (15%)
62.7+93

66 (9%)

663 (88%)
94 (12%)

96 (13%)
515 (71%)
117 (16%)

587 (79%)
160 (21%)

311 (44%)
224 (32%)
172 (24%)

632 (89%)
78 (11%)

582 (77%)
177 (23%)
628+96

48 (9%)

474 (94%)
29 (6%)

68 (14%)
363 (75%)
53 (11%)

470 (94%)
31 (6.2%)

210 (44%)
236 (49%)
34 (7%)

351 (76%)
112 (24%)

496 (99%)
7 (1%)
625+90

<0.0001

0.042

<0.0001

<0.0001

<0.0001

<0.0001

033

31 (10%)

314 (95%)
17 (5%)

47 (15%)
237 (75%)
32 (10%)

315 (95%)
16 (4.8%)

139 (44%)
154 (49%)
21 (7%)

242 (78%)
70 (22%)

328 (99%)
3 (1%)
62.7£9.2

11 (10%)

99 (92%)
9 (8%)

14 (13%)
76 (71%)
17 (16%)

100 (94%)
6 (5.7%)

37 (36%)
59 (57%)
7 (7%)

72 (74%)
25 (26%)

106 (98%)
2 (2%)
615+82

3 (18%)

16 (94%)
1 (6%)

2 (12%)
12 (76%)
2 (12%)

14 (82%)
3 (18%)

8 (50%)
4 (25%)
4 (25%)

12 (80%)
3 (20%)

16 (94%)
1 (6%)
64.2+10.1

3 (8%)

34 (97%)
1 (3%)

4 (12%)
28 (85%)
1 (3%)

31 (89%)
4 (11%)

19 (54%)
16 (46%)
0

19 (68%)
9 (32%)

35 (100%)
0
63.1£90

0.55

048

0.078

0014

0.63

0.25

042

(%) indicates the proportion of cases with a specific clinicopathological, or molecular feature among each KRAS mutation status group. The P-value for significance was adjusted for multiple hypothesis testing to
P=0.05/14=0.0036. Thus, a P-value between 0.05 and 0.0036 should be regarded as of borderline significance. BMI, body mass index; CIMP, CpG island methylator phenotype; MSI, microsatellite instability; MSS,
microsatellite stable; SD, standard deviation.
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KRAS codon 61 and 146 mutants | 51 | 39 | 32 | 31 29 21
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point after diagnosis of colorectal cancer.
A

Figure 1 Kaplan-Meier curves for colorectal cancer patients with BRAF-wild-type tumors, according to tumor KRAS mutation status.
(A) Colorectal cancer-specific survival. (B) Overall survival. Table indicates the number of patients who were alive and at risk of death at each time

mutation of KRAS codon 61 nor codon 146 was associ-
ated with patient outcome (Table 3). For cases with the
10 most common KRAS mutations across all four co-
dons examined, those with the ¢.34G>T (p.G12C) muta-
tion, and those with the ¢.35G>T (p.G12V) mutation
experienced significantly higher colorectal cancer-
specific mortality in Cox regression analysis [multivari-
ate HR = 2.33; 95% CI, 1.36-3.99; P = 0.0021 for ¢.34G>T
(p.G12C); multivariate HR =2.13; 95% CI, 1.47-3.09;
P <0.0001 for ¢.35G>T (p.G12V); Table 3], even after
adjusting a statistical significance level for multiple test-
ing (P <0.005). None of the three most common KRAS
mutations in codons 61 and 146 [c.183A>C (p.Q61H),
c436G>A (p.A146T) and c.437C>T (p.A146V)] was as-
sociated with patient prognosis (Table 3), although stat-
istical power was limited. Subgroup analyses of stage I-II
cases (N =544, Additional file 4: Table S4), and stage III-
IV cases (N =414, Additional file 5: Table S5) yielded
similar results, although statistical power was limited.

Discussion

Although a number of studies have examined codon 61
or 146 hotspot mutations in colorectal cancer (Additional
file 6: Table S6) [26-29,32-74], clinicopathological, mo-
lecular, and prognostic characteristics of those mutations
have not been well investigated. Our data, from 1267 tu-
mors, suggest that approximately 5% of all colorectal can-
cers harbor KRAS mutations in codon 61 or 146, and
those colorectal cancers generally show similar character-
istics to tumors with KRAS mutations in codon 12 or 13
(including associations with cecal location, CIMP-low and
PIK3CA mutations).

A variety of methods have been used for KRAS codon
61 and 146 analyses (Additional file 6: Table S6)
[26-29,32-74], which might have contributed to a wide
variation in the prevalence of those mutations. Gener-
ally, nonsequencing methods make it cumbersome to
confirm multiple independent mutations, and make it
difficult to detect multiple variations at one allele with-
out employing an expanded panel of probes or primers.
Of the sequencing-based methodologies, pyrosequencing
has been shown to be more sensitive than Sanger se-
quencing in paraffin-embedded archival tissue, with
the capacity to reliably detect mutant alleles at low
abundance (5-10% mutant), which is common in solid
tumors [75].

The association between cecal cancers and KRAS mu-
tations is intriguing. Emerging data suggest that gut lu-
minal contents and microbiota, which change along
bowel subsites, play important roles in colorectal car-
cinogenesis [8,76]. Our recent study on colorectal can-
cers in detailed subsites (from cecum to rectum) has
shown that tumor molecular features (including BRAF
mutation, MSI and CIMP-high) change along the bowel
subsites, and that cecal cancers are associated with
KRAS codon 12 and 13 mutations [5,8]. In our current
study, cecal cancers appeared to be significantly associ-
ated with overall KRAS mutation status, and this trend
was evident across all four mutated codons. Further
studies are needed to elucidate why KRAS mutations, ir-
respective of mutated codon, are particularly common in
cecal cancers.

Examining associations of tumor molecular features
can provide insights into carcinogenesis processes, and



Table 3 Colorectal cancer patient mortality according to KRAS mutation status in 1067 BRAF-wild-type cases

KRAS Total Colorectal cancer-specific mortality Overall mortality
No. No. of events Univariate Multivariate No. of Univariate Multivariate
HR stage-stratified events HR stage-stratified
(95% CI) HR (95% CI) HR
(95% CI) (95% CI)
Wild-type (codons 12, 13, 61 and 146) 582 144 1 (referent) 1 (referent) 258 1 (referent) 1 (referent)
All mutants together 485 163 146 (1.17-1.83) 1.19 (0.94-1.51) 256 1.32 (1.11-157) 1.14 (0.95-1.38)
P =0.0009 P=0.0018
Codons 12 and 13, and codons 61 and 146
Codons 12 and 13 434 151 1.51 (1.20-1.90) 1.27 (0.99-1.62) 235 1.36 (1.14-1.62) 1.15 (0.95-1.40)
P =0.0004 P=0.0007
Codons 61 and 146 51 12 1.02 (0.57-1.85) 0.85 (0.47-1.56) 21 1.00 (0.64-1.56) 1.07 (0.68-1.68)
Codons 12, 13,61 and 146
Codon 12 mutants 328 121 1.64 (1.29-2.09) 145 (1.12-1.87) 183 145 (1.20-1.76) 1.24 (1.01-1.52)
P < 0.0001 P =0.0048 P =0.0001 P=0.037
Codon 13 mutants 106 30 1.16 (0.78-1.72) 0.83 (0.55-1.25) 52 1.11 (0.82-1.49) 0.90 (0.66-1.24)
Codon 61 mutants 16 4 1.11 (041-3.01) 0.81 (0.29-2.26) 8 143 (0.71-2.90) 1.55 (0.75-3.18)
Codon 146 mutants 35 8 0.98 (048-2.01) 0.86 (0.42-1.78) 13 0.84 (048-1.48) 0.88 (0.50-1.56)
The 10 most common mutations in codons 12, 13, 61 and 146
Cc34G>A (p.G12S) 12 6 244 (1.07-5.54) 0.94 (0.39-2.23) 7 1.57 (0.74-3.33) 0.77 (0.35-1.70)
P=0.033
€.34G>C (p.G12R) 7 5 525 (2.13-129) 344 (1.25-943) 6 4.69 (2.06-10.6) 3.51 (1.42-8.70)
P=0.0003 P=0017 P=0.0002 P=0.0067
€34G>T (p.G120) 42 16 1.70 (1.01-2.86) 233 (1.36-3.99) 25 1.56 (1.03-2.35) 1.57 (1.02-242)
P=0.044 P=0.0021 P=0.035 P=0.039
c35G>A (p.G12D) 155 51 146 (1.06-2.01) 1.18 (0.84-1.66) 80 1.37 (1.06-1.76) 1.16 (0.89-1.51)
P=0.021 P=0015
€35G>C (p.G12A) 19 6 1.28 (0.56-2.90) 061 (0.26-1.42) 9 1.00 (0.51-1.95) 059 (0.30-1.17)
c35G>T (p.G12V) 92 37 1.76 (1.22-2.52) 2.13 (1.47-3.09) 56 1.54 (1.16-2.06) 1.54 (1.14-2.08)
P=0.0024 P <0.0001 P=0.0033 P =0.0048
€38G>A (p.G13D) 101 30 1.23 (0.83-1.82) 0.83 (0.55-1.26) 50 1.14 (0.84-1.54) 091 (0.66-1.25)
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Table 3 Colorectal cancer patient mortality according to KRAS mutation status in 1067 BRAF-wild-type cases (Continued)

c.183A>C (p.Q61H) 7 2 1.06 (0.26-4.28) 046 (0.11-1.93) 4 1.28 (0.48-3.45) 1.16 (0.42-3.18)
c436G>A (p.A146T) 21 3 0.55 (0.17-1.71) 0.50 (0.16-1.59) 5 045 (0.19-1.10) 0.51 (0.21-1.26)
c437C>T (pA146V) 11 4 1.94 (0.72-5.26) 1.77 (0.64-4.90) 7 2.02 (0.95-4.29) 2.10 (0.97-4.56)

The multivariate, stage-stratified Cox regression model initially included sex, age, body mass index, year of diagnosis, family history of colorectal cancer, tumor location, tumor differentiation, peritumoral lymphocytic
reaction, microsatellite instability, CpG island methylator phenotype, PIK3CA mutation, and LINE-1 methylation. A backward elimination with a threshold of P=0.20 was used to select variables in the final model.

For the survival analysis of mutations in the two groups of KRAS codons (codons 12 and 13, and codons 61 and 146), the P-value for significance was adjusted for multiple hypothesis testing to P=0.05/2 = 0.025. Thus,
a P-value between 0.05 and 0.025 should be regarded as of borderline significance. For the survival analysis of mutations in the four KRAS codons (12, 13, 61 and 146), the P-value for significance was adjusted for
multiple hypothesis testing to P=0.05/4 =0.013. Thus, a P-value between 0.05 and 0.013 should be regarded as of borderline significance. For the survival analysis of the 10 most common KRAS mutations, the P-value
for significance was adjusted for multiple hypothesis testing to P=0.05/10 = 0.005. Thus, a P-value between 0.05 and 0.005 should be regarded as of borderline significance. Cl, confidence interval; HR, hazard ratio.
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is important in cancer research [77-83]. Previous studies
have demonstrated that KRAS codon 12 and 13 muta-
tions are associated with aberrant DNA methylation pat-
terns, namely CIMP-low [10,11]. Our current study
suggests that KRAS mutation, irrespective of mutated
codon (statistical power was limited for codon 61 mu-
tants), is associated with CIMP-low. It remains to be in-
vestigated why KRAS mutations are associated with
CIMP-low in colorectal cancer. KRAS have been posi-
tively associated with PIK3CA mutations in colorectal
cancer [15-18]. Our data suggest that KRAS mutations,
irrespective of mutated codon, are associated with
PIK3CA mutations. It has been reported that activated
RAS signaling potentiates PI3K (phosphatidylinositol-
4,5-bisphosphonate 3-kinase)/AKT signaling, which is
augmented by the presence of PIK3CA mutations [84].
Considering a possible role for PIK3CA mutation as a
predictive biomarker of response to adjuvant aspirin
therapy in colorectal cancer [16], our finding may be of
interest. KRAS codon 12 and 13 mutations have been in-
versely associated with BRAF mutation in colorectal can-
cer [17,26,33,41]. Our current data suggest that KRAS
mutations, irrespective of mutated codon, are inversely
associated with MSI-high and BRAF mutations in colo-
rectal cancer. LINE-1 methylation level is a surrogate
marker for global DNA methylation, and has been re-
ported to be associated with MSI-high and CIMP-high
in colorectal cancer [85]. This study showed that LINE-1
methylation level in average did not significantly differ
according to KRAS mutation status.

Experimental studies are consistent with our observa-
tions that both KRAS codon 61 and 146 mutations can
contribute to carcinogenesis in a similar manner to
oncogenic mutations in codons 12 and 13. As KRAS
codon 12 and 13 mutations, codon 61 mutation results
in oncogenic RAS with impaired GTPase activity, result-
ing in constitutive activation [86,87]. KRAS codon 146
mutation-transfected HEK-293FT cells showed a larger
amount of RAS-GTP compared to KRAS-wild-type-
transfected cells [28]. These experimental data provide
an insights into plausible functional roles of codon 61
and 146 mutations in carcinogenesis.

In our current survival analysis, there was no significant
association between KRAS codon 61 and 146 mutations,
and patient outcome. The prognostic value of KRAS muta-
tion in colorectal cancer remains controversial [7,88-92]. Of
note, in our current study, when we separately examined
specific KRAS mutations, codon 12 mutations [especially
c34G>T (p.G12C) and ¢35G>T (p.G12V)] were signifi-
cantly associated with inferior survival, which is consistent
with the ‘RASCAL II' meta-analysis [88]. Accordingly, the
prognostic associations of KRAS mutations in colorectal
cancer may vary by specific mutation. Considered in con-
junction with evidence that KRAS codon 61 and 146
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mutations possess weaker transforming potential than
codon 12 mutations [40], it may be the case that KRAS
codon 61 or 146 mutation is not associated with patient
prognosis. However, considering the limited case and event
numbers for KRAS codon 61 and 146 mutations, our sur-
vival analyses should be considered exploratory. Additional
larger studies, perhaps necessitating pooling of data, are re-
quired to definitively assess the prognostic roles codon 61
and 146 mutations in colorectal cancer.

Several studies have examined the predictive value of
KRAS mutation in codon 61 and/or 146 in metastatic
colorectal cancer treated with anti-EGFR therapy (cetux-
imab or panitumumab) [26-28,41,43]. Pentheroudakis
et al. did not observe any association between KRAS
codon 61 or 146 mutation (N =11) and survival [41]. De
Roock et al. showed that KRAS mutation in codon 61
(N =13), but not that in codon 146 (N =11), was signifi-
cantly associated with lack of response to cetuximab
[27]. Seymour et al. reported that KRAS codon 146 mu-
tations (N =17) were not associated with overall or
progression-free survival [43]. In contrast, Loupakis
et al. reported that, among BRAF-wild-type cancers,
KRAS codon 61 or 146 mutant cases (N = 8) experienced
a significantly lower response rate and progression-free
survival [26]. Indeed, a few experimental studies also re-
ported that tumors harboring KRAS mutations in co-
dons 61 and 146 were resistant to anti-EGFR therapy
[28,93]. In addition, a recent published study reported
by Douillard et al., showed that RAS mutants (N =108)
with any mutation in KRAS codons 61, 117 and 146, or
NRAS codons 12, 13, 61, 117 and 146, did not benefit
from combined panitumumab plus FOLFOX4 chemo-
therapy [29]. In our dataset, due to scarcity of data on
cancer treatment, we were unable to examine the im-
portant question of the predictive value of KRAS muta-
tions in relation to anti-EGFR therapy. Further clinical
studies in this area are clearly required.

The question arises as to whether it is worth investi-
gating these relatively rare mutations in the clinical set-
ting. Given that over 250,000 individuals each year die of
colorectal cancer in Europe and the U.S., and most of
these unfavorable outcomes are due to distant metasta-
ses, we estimate that every year approximately 10,000
cases have KRAS mutations in codon 61 or 146, and
would be regarded as KRAS-wild-type through current
KRAS codon 12 and 13 testing protocols. Considering
that KRAS codon 61 and 146 mutations may also confer
resistance to EGFR inhibitors [26-29,93], patients who
have metastatic colorectal cancer with KRAS mutation
in codon 61 or 146 could receive more tailored manage-
ment through clinical testing of these additional KRAS
codons.

A limitation of this study is the absence of data on
KRAS codon 117 mutation and NRAS mutations. As a



Imamura et al. Molecular Cancer 2014, 13:135
http://www.molecular-cancer.com/content/13/1/135

result, we could not refine purer RAS-wild-type (both
KRAS- and NRAS-wild-type in codons 12, 13, 61, 117
and 146), or examine clinicopathological, molecular and
prognostic features of those whole RAS mutations in
this study. Considering that RAS mutations in those co-
dons have been reported to predict lack of response to
anti-EGFR therapy in colorectal cancer [29], further
studies are necessary to answer important questions
about features across various RAS mutants. Nonethe-
less, KRAS codons 61 and 146 are the most frequent
mutational hotspots after KRAS codons 12 and 13. In
addition, our current analysis (N>1200) represents a
large single study to date (Additional file 6: Table S6)
[26-29,32-74], examining KRAS codon 61 and 146 mu-
tations, in relation to other important molecular fea-
tures in colorectal cancers, such as status of CIMP, MSI,
BRAF and PIK3CA mutations. Sample size is a critical
issue when assessing these relatively infrequent muta-
tions. Indeed, smaller studies (N < 300, Additional file 6:
Table S6) demonstrate considerable variability in the
frequencies and distribution of reported KRAS muta-
tions, ranging from 0.4% to 9.3% for KRAS codon 61
mutations, and from 1.3% to 6.6% for KRAS codon 146
mutations (Additional file 6: Table S6) [26-29,32-74].
Given the relatively low frequencies of these mutations,
a large sample size is a prerequisite for assessing the
prevalence of these mutations and their associations
with other tumor molecular characteristics.

There are advantages in utilizing the molecular patho-
logical epidemiology [30,31] database of the two U.S. na-
tionwide prospective cohort studies to assess prevalence
and associations of KRAS codon 61 and 146 mutations. Se-
lection bias is an inevitable issue when analyzing cases iden-
tified from a few academic hospitals, since patients have
selected hospitals based on referral, health insurance applic-
ability, and/or their own preference. In contrast, a large
population-based or multicenter study is desirable to de-
crease the degree of such selection bias. In this study, co-
hort participants who were diagnosed with colorectal
cancer were treated at hospitals throughout the U.S., and
thus constitute a more representative sample of colorectal
cancers in the U.S. population than patients in a few aca-
demic hospitals.

Conclusions

Our data from over 1200 colorectal cancers demonstrate
that KRAS codon 61 or 146 hotspot mutations are present
in approximately up to 5% of colorectal cancers, and those
cancers exhibit similar clinicopathological and molecular
features to cancers with KRAS codon 12 or 13 mutation.
Our current findings suggest that additional large-scale
studies are warranted to assess clinical utility of KRAS
codon 61 and 146 testing in colorectal cancer.
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Materials and methods

Study population

We utilized two prospective cohort studies, the Nurses’
Health Study (N=121,701 women followed since 1976)
and the Health Professionals Follow-up Study (N =
51,529 men followed since 1986) [16]. Every two years,
cohort participants have been sent follow-up question-
naires to identify newly diagnosed cancers in themselves
and their first degree relatives. The National Death
Index was used to ascertain deaths of participants as
well as unreported lethal cancers. The cause of death
was assigned by study physicians. Formalin-fixed
paraffin-embedded tissue blocks were collected from
hospitals where participants with colorectal cancer had
undergone colorectal resection or diagnostic biopsy (for
preoperatively-treated rectal cancers). We used 1267
colorectal cancer cases, diagnosed up to 2006, based on
the availability of KRAS sequencing data. In order to
examine the prognostic role of specific KRAS mutations,
independent of BRAF mutation, BRAF-mutated cancers
(N = 184), cases with missing BRAF mutation status (N = 5),
and tumors with KRAS mutations identified in two or
more of codons 12, 13, 61 and 146 (N =11) were ex-
cluded. As a result, a final total of 1067 BRAF-wild-type
cases were used for survival analyses (Figure 2, Additional
file 2: Table S2). Informed consent was obtained from all
study subjects. This study was approved by the Human
Subjects Committees at Harvard School of Public Health
and Brigham and Women’s Hospital. All clinicopathologi-
cal and molecular analyses were performed blinded to
other data, including patient outcome.

Histopathological evaluation

Hematoxylin and eosin-stained sections of all cases were
examined by a pathologist (SO) unaware of other data.
Tumor differentiation was categorized as well-moderate

Colorectal cancer cases with
KRAS data available

N=1267
BRAF mutant | | BRAF missing BRAF-wild-type
N=184 N=5 N=1078

_——

KRAS mutations identified in two or KRAS mutation identified in only

more of codons 12, 13, 61 and 146 one of codons 12, 13, 61 and 146;
N=11 or wild-type

N=1067

Figure 2 Flow chart of the current study. Cases with BRAF
mutation (N = 184) and those without available BRAF mutation data
(N =15), were excluded from survival analyses. In addition, cases with
KRAS mutations identified in two or more of codons 12, 13, 61 and
146 (N =11) were excluded, in order to assess a prognostic effect of
specific KRAS mutations individually.
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or poor (>50% vs. <50% gland formation). Peritumoral
lymphocytic reaction was examined as previously de-
scribed [94].

Sequencing of KRAS codons 61 and 146

DNA was extracted from paraffin embedded tissue as previ-
ously described, [16] and polymerase chain reaction (PCR)
and pyrosequencing, targeted for KRAS codons 61 and 146,
were performed. The PCR primers for amplifying KRAS
codon 61 were, 5'-biotin-TGGAGAAACCTGTCTCTTG
GATAT-3’ (for forward primer), and 5'-TACTGGTCCCT
CATTGCACTGTA-3" (for reverse primer), and those for
KRAS codon 146 were 5-ATGGAATTCCTTTTATT
GAAACATC-3" (for forward primer), and 5'-biotin-TTG
CAGAAAACAGATCTGTATTTAT-3'(for reverse primer).
The sequencing primers were 5 -TCATTGCACTGTA
CTCCTC-3" (for codon 61), and 5-AATTCCTTTTATT
GAAACATCA-3" (for codon 146). Dispensation orders
were designed such that all possible mutations would be de-
tected (Additional file 7: Figure S1). All mutations were
confirmed by replicate analysis.

Sequencing of KRAS codons 12 and 13, BRAF, and PIK3CA,
and MSI analysis

We performed PCR and pyrosequencing targeted for KRAS
(codons 12 and 13) [75], BRAF (codon 600) and PIK3CA
(exons 9 and 20) as previously described [16]. MSI analysis
was performed using 10 microsatellite markers (D2S123,
D5S346, D175250, BAT25, BAT26, BAT40, D18S55,
D18S56, D18567 and D18S487) [8]. MSI-high was defined
as instability in >30% of the markers. MSI-low (<30% un-
stable markers) tumors were grouped with microsatellite
stable (MSS) tumors (no unstable markers) because we
have previously demonstrated that these two groups show
similar features [8].

Methylation analyses for CpG islands and LINE-1

Using validated bisulfite DNA treatment and real-time PCR
(MethyLight), we quantified DNA methylation in eight
CIMP-specific promoters [CACNAIG, CDKN2A (pl6),
CRABPI, IGF2, MLHI, NEUROGI1, RUNX3 and SOCSI]
[8]. CIMP-high was defined as the presence of >6/8 methyl-
ated promoters, CIMP-low as 1-5/8 methylated promoters,
and CIMP-negative as the absence of methylated pro-
moters, according to established criteria [8]. In order to ac-
curately quantify LINE-1 methylation levels, we used
bisulfite pyrosequencing as previously described [8].

Statistical analysis

All statistical analyses were performed using SAS (Ver-
sion 9.2, SAS Institute, Cary, NC). All P-values were
two-sided. Univariate analyses were performed to inves-
tigate clinicopathological and molecular characteristics
according to KRAS mutation status; a chi-square test or
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Fisher’s exact test was used for categorical data, while a
Wilcoxon or Kruskal-Wallis test was applied to continuous
data (age and LINE-1 methylation). To account for multiple
hypothesis testing in associations between KRAS mutation
and other 14 covariates, the P-value for significance was ad-
justed by Bonferroni correction to P = 0.0036 (=0.05/14).

The Kaplan-Meier method and log-rank test were used
to estimate survival distribution according to KRAS muta-
tion status. Cases were observed until death, or January 1st
2011, whichever came first. For analyses of colorectal
cancer-specific mortality, deaths as a result of other causes
were censored. Cox proportional hazards regression models
were used to compute mortality HRs for specific KRAS mu-
tations. A multivariate model initially included the follow-
ing clinicopathological and molecular variables with less
than 10% of patients showing missing information among
those we have previously published; sex, age (continuous),
BMI (<30 vs. >30 kg/m?), year of diagnosis (continuous),
family history of colorectal cancer in any first-degree
relative (present vs. absent), tumor location (cecum vs.
ascending colon to sigmoid colon vs. rectum), tumor differ-
entiation (well-moderate vs. poor), peritumoral lymphocytic
reaction (absent-minimal vs. mild-marked), MSI (high vs.
low/MSS), CIMP (high vs. low vs. negative), PIK3CA muta-
tion (present vs. absent) and LINE-1 methylation (continu-
ous), with stratification by disease stage (I, II, III, IV or
unknown) was performed using the “strata” option in the
SAS “proc phreg” command. A backward elimination was
performed with a threshold of P = 0.20, to avoid overfitting.
Cases with missing information for any of the categorical
covariates [BMI (0.2%), tumor location (1.0%), tumor differ-
entiation (0.7%), peritumoral lymphocytic reaction (4.6%),
MSI (1.6%), CIMP (6.7%), and PIK3CA (7.6%)], were in-
cluded in the majority category of the given covariate to
avoid overfitting. We confirmed that excluding cases with
missing information in any of the covariates did not sub-
stantially alter results (data not shown). To account for
multiple hypothesis testing in associations between KRAS
mutations and patient outcome, the P-value for significance
was adjusted by Bonferroni correction to P =0.025 [=0.05/
2, for the two groups of codons (codons 12 and 13, and co-
dons 61 and 146)], P = 0.013 (=0.05/4, for the four codons),
or P=0.005 (=0.05/10, for the 10 most common muta-
tions). The proportionality of hazards assumption was satis-
fied by evaluating time-dependent variables, which were
the cross products of the KRAS indicator variables and sur-
vival time (all P-values>0.07).

Literature search

A systematic literature search was performed in Pubmed,
up to April 5, 2014, using combinations of the following
search terms; KRAS, codon, (61 or 146), (colon, rectal or
colorectal), and (cancer, carcinoma or adenocarcinoma). All
eligible publications were retrieved, and their references
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were checked to identify further relevant studies. In
addition, we contacted some corresponding authors to ob-
tain detailed data.

Additional files

Additional file 1: Table S1. Clinicopathological, and molecular
characteristics of KRAS-wild-type, only-one-KRAS-codon mutated,
or two-or-more-KRAS-codons mutated cases.

Additional file 2: Table S2. Clinicopathological, and molecular
characteristics according to KRAS mutation status in 1067 BRAF-wild-type
cases.

Additional file 3: Table S3. Clinicopathological features of 51 KRAS
codon 61 or 146 mutated cases in 1067 BRAF-wild-type cases.
Additional file 4: Table S4. Stage I-Il, BRAF-wild-type colorectal cancer
patient mortality according to KRAS mutation status.

Additional file 5: Table S5. Stage IlI-IV, BRAF-wild-type colorectal cancer
patient mortality according to KRAS mutation status.

Additional file 6: Table S6. Previous studies examining KRAS codon 61
and 146 mutations in colorectal cancer.

Additional file 7: Figure S1. Pyrosequencing assay design and
pyrograms for KRAS codons 61 and 146.
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