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Abstract

Background: Non–small-cell lung cancer (NSCLC) is categorized into various histologic subtypes that play an
important role in prognosis and treatment outcome. We investigated the antitumor activity of motesanib, a
selective antagonist of vascular endothelial growth factor receptors (VEGFR) 1, 2, and 3, platelet-derived growth
factor receptor, and Kit, alone and combined with chemotherapy in five human NSCLC xenograft models (A549,
Calu-6, NCI-H358, NCI-H1299, and NCI-H1650) containing diverse genetic mutations.

Results: Motesanib as a single agent dose-dependently inhibited tumor xenograft growth compared with vehicle
in all five of the models (P< 0.05). When combined with cisplatin, motesanib significantly inhibited the growth of
Calu-6, NCI-H358, and NCI-H1650 tumor xenografts compared with either single agent alone (P< 0.05). Similarly, the
combination of motesanib plus docetaxel significantly inhibited the growth of A549 and Calu-6 tumor xenografts
compared with either single agent alone (P< 0.05). In NCI-H358 and NCI-H1650 xenografts, motesanib with and
without cisplatin significantly decreased tumor blood vessel area (P< 0.05 vs vehicle) as assessed by anti-CD31
staining. Motesanib alone or in combination with chemotherapy had no effect on tumor cell proliferation in vitro.

Conclusions: These data demonstrate that motesanib had antitumor activity against five different human NSCLC
xenograft models containing diverse genetic mutations, and that it had enhanced activity when combined with
cisplatin or docetaxel. These effects appeared to be mediated primarily by antiangiogenic mechanisms.
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Background
Lung cancer is the primary cause of cancer death and
the second most frequent cause of new cancer cases in
the United States [1]. The majority of these cases are
non–small-cell lung cancer (NSCLC) [2], which com-
prises nonsquamous carcinoma (including adenocarcin-
oma, large cell carcinoma, and other cell types) and
squamous cell carcinoma [3]. Survival among patients
with advanced NSCLC is poor with currently recom-
mended doublet chemotherapy regimens [3,4]. Targeted
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therapies, and particularly those that inhibit angiogen-
esis, are being actively explored as alternative treatment
options [5].
Vascular endothelial growth factor (VEGF), a pro-

angiogenic cytokine, is frequently overexpressed in
NSCLC tumors, and its overexpression is associated
with increased microvessel density [6-8]. Furthermore,
high VEGF expression has been associated with nodal
metastasis, poor prognosis, and reduced survival in
NSCLC [6,7,9]. Bevacizumab, a monoclonal antibody
targeting VEGF-A, has been shown to improve overall
survival when administered with carboplatin/paclitaxel
[10] and to prolong progression-free survival in com-
bination with gemcitabine/cisplatin [11] in patients with
nonsquamous histology.
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There is increasing evidence that NSCLC histologic
subtype is useful for predicting patient outcome and
clinical benefit from treatment with cytotoxic and
argeted cancer therapies [12-14]. In a recent re-
trospective analysis of the phase 3 E4599 study of
bevacizumab combined with carboplatin/paclitaxel in
nonsquamous NSCLC, median overall survival was
14.2 months in the bevacizumab arm compared with
10.3 months in the control arm among patients with
adenocarcinoma (hazard ratio [95% CI], 0.69 [0.58–
0.83]). In contrast, among patients with large cell car-
cinoma, median overall survival was 10.0 months in
the bevacizumab arm and 8.7 months in the control
arm (hazard ratio [95% CI], 1.15 [0.60–2.24]) [15].
Prognosis and response to targeted treatment also ap-
pear to be influenced by a number of characteristic
NSCLC driver mutations that are thought to be re-
sponsible for the initiation and maintenance of the
malignancy. The most common are somatic mutations
in the KRAS, EGFR, and ALK genes but mutations in
other genes, including BRAF, occur as well [16]. It is
well established that EGFR mutations can significantly
predict patient outcome and response to the epidermal
growth factor receptor (EGFR) inhibitor gefitinib in
Asian patients with advanced NSCLC [17-20]. The po-
tentially predictive value of other NSCLC driver muta-
tions is still under investigation [21,22]. The emerging
significance of both histologic subtype and presence of
mutations in NSCLC suggests that testing of novel tar-
geted therapies in preclinical models of varying histol-
ogies and genetic backgrounds may be a critical step
in the evaluation process.
Motesanib is a small-molecule antagonist of VEGF

receptors (VEGFR) 1, 2, and 3; platelet-derived growth
factor receptor (PDGFR); and Kit [23]. In tumor xeno-
graft models, including models of thyroid cancer and
breast cancer, oral administration of motesanib, alone or
in combination with chemotherapy resulted in tumor re-
gression and inhibition of angiogenesis [23-26]. In phase
1 and phase 2 studies in advanced solid tumors inclu-
ding advanced nonsquamous NSCLC, motesanib as a
monotherapy and combined with chemotherapy has
shown evidence of antitumor activity [27-31].
The objective of the present study was to investigate

the antitumor activity of motesanib as monotherapy
and in combination with cisplatin or docetaxel in five
human NSCLC xenograft models of varying histologic
subtypes and genetic backgrounds, with the hypothesis
that combined treatment would improve antitumor ac-
tivity over that of single-agent treatment. Motesanib
had antiangiogenic and antitumor activity against all
five human NSCLC models and had enhanced antitu-
mor activity when combined with cisplatin or doce-
taxel chemotherapy.
Results
Expression of VEGFR2 and effect of motesanib on NSCLC
tumor cell proliferation
Western blot analysis failed to detect expression of total
or phosphorylated VEGFR2, one of the molecular targets
of motesanib, in A549, Calu-6, NCI-H358, NCI-H1299,
or NCI-H1650 cells in full-serum media, following
serum starvation, or after treatment with recombinant
human VEGF (50 ng/mL) for 5 minutes. In contrast,
cultured human umbilical vein endothelial cells
(HUVECs) expressed total VEGFR2 in all three culture
conditions and phosphorylated VEGFR2 in full-serum
conditions which was further increased after stimulation
with recombinant human VEGF (Figure 1A). Microarray
analyses showed that A549, Calu-6, NCI-H1299, and
NCI-H1650 tumors expressed similar levels of VEGF
mRNA; and that A549, Calu-6, NCI-H1299, and NCI-
H1650 tumors expressed VEGFR1, 2, and 3 mRNA (data
not shown). A549 was the only line to express PDGFRα,
and none of the cell lines expressed PDGFRβ or Kit
(data not shown; NCI-H358 cells were not tested). In
vitro assays demonstrated that 5 μM motesanib had no
effect on the proliferation of A549, Calu-6, NCI-H358,
NCI-H1299, and NCI-H1650 tumor cells but inhibited
the proliferation of endothelial cells (IC50, 10 nM)
(Figure 1B). In the same experiment, the cytotoxic
chemotherapy agent docetaxel inhibited proliferation of
each of the cultured cell lines, including HUVECs with
IC50 values in the low nanomolar range (Figure 1B).
These data do not support a direct antitumor effect of
motesanib on NSCLC cells.

Effect of single-agent motesanib on human NSCLC tumor
growth
The effect of motesanib on NSCLC tumor growth
in vivo was assessed using A549, Calu-6, NCI-H358,
NCI-H1299, and NCI-H1650 subcutaneous tumor xeno-
grafts. Treatment with motesanib significantly inhibited
growth in each of these models. In the A549, NCI-
H1299, and NCI-H1650 xenograft models, motesanib
demonstrated a dose-dependent effect on tumor growth.
In mice with established A549 tumors, all three doses of
motesanib tested (7.5, 25, and 75 mg/kg BID) signifi-
cantly inhibited tumor growth (45%, 84%, and 107%, re-
spectively), compared with vehicle (Figure 2A). In
animals bearing Calu-6 tumors, a significant inhibitory
effect of motesanib on tumor growth (66% inhibition)
was only seen at the highest dose tested of 75 mg/kg
twice daily (BID) for 17 days compared with vehicle
(Figure 2B). In the NCI-H358 xenograft model, signifi-
cant inhibition of tumor growth (94% and 127%,
respectively) compared with vehicle was seen at the two
highest motesanib dose levels (25- and 75-mg/kg BID;
Figure 2C). In the NCI-H1299 xenograft model,
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Figure 1 Expression of VEGFR2 and effect of motesanib on NSCLC tumor cell proliferation in vitro. (A) Relative expression levels of total
and phosphorylated human VEGFR2 protein by HUVECs, A549, Calu-6, NCI-H358, NCI-H1650, and NCI-H1299 cells in full-serum media (lane 1),
serum-free conditions (lane 2), or serum-free conditions with 50 ng/mL recombinant human VEGF (lane 3). (B) In vitro proliferation of HUVECs,
A549, Calu-6, NCI-H358, NCI-H1650, and NCI-H1299 cells in full-serum conditions or (HUVECs only) in serum-free conditions with 50 ng/mL
recombinant human VEGF after addition of motesanib (at concentrations of 0.0025 to 5000 nM) or docetaxel (at concentrations of 0.001
to 5000 nM). (C) IC50 curves for in vitro proliferation of each of the cell lines shown in panel B. IC50 =Half-maximal inhibitory concentration.
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significant inhibition of tumor growth (56% and 72%, re-
spectively) compared with vehicle was observed at the
two highest motesanib dose levels (25- and 75-mg/kg
BID; Figure 2D). In mice bearing NCI-H1650 xenografts,
motesanib at all three administered doses (15, 50, or
75 mg/kg BID) significantly inhibited tumor growth
(45%, 67%, and 78%, respectively) compared with vehicle
(Figure 2E). In all treatment groups across the various
models, motesanib was well tolerated. Body weights
remained stable over the treatment periods and were
similar to those of vehicle-treated control animals
(Figure 2). Similar effects of VEGF inhibition on
tumor growth were observed in a KRAS-driven genet-
ically engineered mouse model of lung adenocarcin-
oma (see Additional file 1).
Table 1 summarizes the mutational status of cells from
the various tumor xenografts along with representative
antitumor activity of motesanib in each model. DNA se-
quencing confirmed the presence of KRAS mutations,
one of the most common driver mutations in lung
adenocarcinoma, in three of the xenograft models and
mutations in BRAF and NRAS, two less frequently oc-
curring mutations associated with NSCLC [32], in two
of the models. The functional significance of the BRAF
mutation (heterozygous deletion of exon 2) is unknown.
Notably, in all five NSCLC xenografts, motesanib mono-
therapy administered at 75 mg/kg BID inhibited tumor
growth by at least 66%, suggesting that motesanib has
broad antitumor activity independent of the mutational
characteristics of the NSCLC cells.
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Figure 2 Effect of single-agent motesanib on various NSCLC xenograft tumor models. Tumor volume (top) and body weight (bottom) over
time in response to single-agent motesanib. (A) A549 tumors treated with vehicle or motesanib 7.5 mg/kg BID, 25 mg/kg BID, or 75 mg/kg BID
for 17 days. {P < 0.01 regression; day 21 vs day 38. (B) Calu-6 tumors treated with vehicle or motesanib 37.5 mg/kg BID, 75 mg/kg QD,
or 75 mg/kg BID for 17 days. (C) NCI-H358 tumors treated with vehicle or motesanib 7.5 mg/kg BID, 25 mg/kg BID, or 75 mg/kg BID for 21 days.
}P< 0.0001 regression; day 4 vs day 25. (D) NCI-H1299 tumors treated with vehicle or motesanib 7.5 mg/kg BID, 25 mg/kg BID, or 75 mg/kg BID
for 21 days. (E) NCI-H1650 tumors treated with vehicle or motesanib 15 mg/kg BID, 50 mg/kg BID, or 75 mg/kg BID for 35 days. Data are
expressed as mean± SE. For all panels, *P < 0.05 vs vehicle, †P < 0.0001 vs vehicle.

Coxon et al. Molecular Cancer 2012, 11:70 Page 4 of 13
http://www.molecular-cancer.com/content/11/1/70
Effect of motesanib in combination with cisplatin on
human NSCLC tumor growth
The antitumor activity of motesanib or cytotoxic chemo-
therapy alone in Calu-6, NCI-H358, and NCI-H1650
xenograft models was enhanced by the combined ad-
ministration of both agents. In some of these experi-
ments, suboptimal doses of motesanib (based on
previous dose–response data) were used to allow for the
observation of additive activity. In animals bearing estab-
lished Calu-6 tumors, motesanib (75 mg/kg BID) or cis-
platin (5 mg/kg QW), a standard-of-care chemotherapy
agent in NSCLC, significantly inhibited tumor growth
compared with vehicle. However, when both agents were
combined at the same dose and schedule as in the
Table 1 Mutational status of NSCLC xenograft tumor models

Xenograft tumor
model

Tumor volume at
initiation of therapy (mm3)

Motesan
dose

A549 153

Calu-6 336

NCI-H358 202

NCI-H1299 141

NCI-H1650 179

BID, twice daily.
*Data from a single experiment.
†By DNA sequencing (see Methods, Cell Lines and Reagents).
{Based on once daily administration.
}NCI-H358 and NCI-H1299 cells are TP53 null per previously published literature [52
}The functional significance of the BRAF mutation (heterozygous deletion of exon 2
CDKN2A, EGFR, and TP53 [50,51].
monotherapy experiments, tumor growth inhibition was
significantly greater than that observed with either single
agent alone (Figure 3A). Similarly, in mice bearing NCI-
H358 tumors, combination treatment with motesanib
(15 mg/kg BID) and cisplatin (5 mg/kg QW) resulted in
significantly greater tumor growth inhibition than that
achieved with either monotherapy (Figure 3B). In these
two models, both treatment modalities (monotherapy
and the combination of motesanib plus cisplatin)
appeared tolerable as there were no significant changes
in the animals’ body weight over the course of the
experiments (Figures 3A and 3B).
Similar cooperative activity was observed in mice bear-

ing established NCI-H1650 tumors. As seen with the
and associated motesanib antitumor activity

ib monotherapy
(mg/kg BID)

% Tumor growth
inhibition*

Confirmed
mutations†

75 107 KRAS, STK11

75 66 KRAS, TP53

75 127 KRAS, TP53}

75 72 NRAS, TP53}

75{ 78 EGFR, BRAF, TP53}

,53].
) is unknown. NCI-H1650 cells have been reported to carry mutations in
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Figure 3 Effect of motesanib in combination with cisplatin on various NSCLC xenograft tumor models. Tumor volume (top) and body
weight (bottom) over time in response to motesanib plus cisplatin. (A) Calu-6 tumors treated with vehicle, motesanib 75 mg/kg BID, cisplatin
5 mg/kg QW, or motesanib plus cisplatin at the same dose and schedule for 14 days. *P < 0.0001 for all groups vs vehicle; †P≤ 0.05 for
combination vs either single agent alone. (B) NCI-H358 tumors treated with vehicle, motesanib 15 mg/kg BID, cisplatin 5 mg/kg QW, or
motesanib plus cisplatin at the same dose and schedule for 22 days. {P≤ 0.001 for combination vs either single agent alone; P < 0.0001 for
combination vs vehicle. (C) NCI-H1650 tumors treated with vehicle, motesanib 15 mg/kg QD, cisplatin 4 mg/kg QW, or motesanib plus cisplatin
at the same dose and schedule for 21 days. }P = 0.001 for combination vs either single agent alone; P < 0.0001 for combination vs vehicle.
#P < 0.0001 for combination vs vehicle, motesanib, or cisplatin alone. Data are expressed as mean± SE.
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other two xenograft models, combining both motesanib
(15 mg/kg QD) and cisplatin (4 mg/kg QW) resulted in
significantly greater tumor growth inhibition than that
measured with either agent alone (Figure 3C). However,
animals that received combination therapy showed a sig-
nificant reduction from baseline (approximately 10%) in
body weight (P < 0.0001 vs vehicle, motesanib alone, and
cisplatin alone; Figure 3C). The differential effects of
motesanib and cisplatin on body weights in the NCI-
H358 and NCI-H1650 models suggests that the mechan-
ism of body weight loss observed in the NCI-H1650
model is not a general phenomenon related to the com-
bination of motesanib and cisplatin. Efforts to under-
stand this differential activity are being explored.
Effect of motesanib in combination with docetaxel on
human NSCLC tumor growth
Experiments parallel to those described above were per-
formed for motesanib and docetaxel, another standard-
of-care chemotherapy in the treatment of NSCLC, using
the A549 and Calu-6 tumor xenograft models. To allow
for the observation of additive activity, suboptimal doses
of motesanib were used in some models based on previ-
ous dose–response data. As seen with cisplatin, the anti-
tumor activity of the combined treatment modality was
greater than that for either agent alone. In mice bearing
A549 tumors, treatment with motesanib (7.5 mg/kg
BID) combined with docetaxel (5 mg/kg QW) resulted
in significantly greater inhibition of tumor growth than
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either agent alone (Figure 4A). In this experiment, both
monotherapy and combination regimens had no adverse
effect on the body weight of the animals (Figure 4A).
Additive antitumor efficacy was also observed in the
Calu-6 xenograft model. In mice bearing Calu-6 tumors,
motesanib (75 mg/kg BID) or docetaxel (30 mg/kg QW)
alone significantly inhibited tumor growth, and that ef-
fect was even greater when both agents were combined
(Figure 4B). However, the combination of motesanib and
docetaxel in the Calu-6 model was associated with a sig-
nificant decrease from baseline in mean body weight
(approximately 15%; Figure 4B).
To better understand the enhanced antitumor efficacy

in vivo, we performed a separate set of experiments to
test whether treatment with motesanib plus chemother-
apy had a direct effect on the proliferation of the differ-
ent NSCLC cell lines in vitro. There was no difference in
cell viability between cisplatin or docetaxel single-agent
and motesanib/chemotherapy combination treatment.
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Results from a representative experiment with cisplatin
and motesanib using Calu-6 cells are shown in Figure 5.
We also investigated the possibility that the measured

treatment effect of motesanib plus chemotherapy on the
various tumor xenograft models was the result of
changes in the plasma exposure of the respective agents.
No consistent variations in the pharmacokinetics of
motesanib or either of the chemotherapy agents when
administered in combination were noted in the NSCLC
models tested here (data not shown). This is in line with
earlier experiments using xenograft models of other
tumor types, reporting no significant changes in the
pharmacokinetics of motesanib and docetaxel when
administered alone or in combination [24].
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s NSCLC xenograft tumor models. Tumor volume (top) and body
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cisplatin. Immunohistochemical staining of NCI-H358
and NCI-H1650 tumors at the end of the experiments
(day 33 and day 43, respectively) demonstrated that the
vessel area percentage was significantly decreased after
treatment with the suboptimal dose of motesanib
(15 mg/kg) alone or in combination with cisplatin at
5 mg/kg (NCI-H358; Figure 6A) or 4 mg/kg (NCI-
H1650; Figure 6C), compared with vehicle or cisplatin
monotherapy. In addition, tumor burden (tumor viable
fraction × tumor weight) was significantly decreased in
both the NCI-H358 and the NCI-H1650 xenograft mod-
els when motesanib plus cisplatin was administered in
combination, compared with either vehicle or cisplatin
monotherapy (Figures 6B and 6D). In contrast, at the
doses tested tumor burden was not decreased in either
xenograft model when motesanib or cisplatin were given
as monotherapy, presumably because both agents were
used at suboptimal doses.

Discussion
Recently, there has been increased recognition of histo-
logic subtype as a potential predictor of efficacy with
first-line treatment of advanced NSCLC [12,13]. A retro-
spective analysis of the pivotal E4599 trial of first-line
bevacizumab combined with carboplatin/paclitaxel in
nonsquamous NSCLC showed that patients with adeno-
carcinoma (the most frequent histologic subtype) who
received bevacizumab combined with carboplatin/pacli-
taxel had favorable overall survival compared with
patients who received carboplatin/paclitaxel alone [15].
Although the number of enrolled patients with other
histologic subtypes was small, clinical benefits among
these patients appeared more limited than among those
with adenocarcinoma. Current multidisciplinary recom-
mendations for changes in NSCLC classification [33]
support the potential value of histologic subtype in influ-
encing treatment decisions in NSCLC. In addition to
histology, research has revealed the importance of driver
mutations in NSCLC, which are particularly prevalent
among adenocarcinomas, presenting at different inci-
dence rates in specific patient groups. Preclinical and
clinical evidence has shown that these mutations may
affect response to targeted therapy [16,22], suggesting
that a further division of NSCLC into clinically relevant
mutational subgroups may allow for a more tailored
treatment approach. Targeted treatments that may be ef-
fective regardless of mutational status may be even more
desirable.
Hence, it appears critical that preclinical studies asses-

sing investigational agents should be designed to test ac-
tivity in models that represent more than one NSCLC
subtype. The antitumor activity of a number of VEGFR
inhibitors either as single agents or combined with
chemotherapy has been demonstrated in a variety of
NSCLC xenograft models [34-38]. However, few of these
studies have assessed activity in more than one or two
different models. The present study aimed to assess the
antitumor activity of motesanib as a single agent or
combined with chemotherapy in human NSCLC xeno-
graft models with varying genetic backgrounds and hist-
ology [36,39-41]. When administered alone, motesanib
inhibited the growth of all five NSCLC xenografts, A549,
Calu-6, NCI-H358, NCI-H1299, and NCI-H1650, in a
dose-dependent manner. Calu-6 tumors were relatively
resistant to treatment compared with the other cell lines:
only the highest motesanib dose administered (75 mg/kg
BID) resulted in xenograft growth inhibition (66%).
Decreased responsiveness to single-agent VEGFR inhibi-
tors, including motesanib, and epidermal growth factor
receptor (EGFR) inhibitors in the Calu-6 model (com-
pared with other tumor xenograft models) have been
described previously [34,35,42]. The reasons for this dif-
ferential responsiveness are not immediately evident, but
based on the above studies, it is likely rooted in causes
other than variations in experimental design, because it
has been seen across independent studies and with vari-
ous therapies focusing on different molecular targets. In
all models, tumor xenograft growth inhibition increased
when motesanib was combined with QW cisplatin or
docetaxel, agents that are components of standard two-
drug chemotherapies for NSCLC treatment [4],
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Figure 6 Histomorphometric analyses of viable tumor burden and tumor blood vessel area in representative NSCLC xenografts treated
with motesanib and/or cisplatin. Representative images and quantification of tumor blood vessel area (A) and viable tumor burden (B) from
NCI-H358 xenografts treated with vehicle, motesanib 15 mg/kg BID, cisplatin 5 mg/kg QW, or motesanib plus cisplatin at the same dose and
schedule. *P < 0.05 vs vehicle; †P < 0.05 vs vehicle and cisplatin monotherapy. Representative images and quantification of tumor blood vessel
area (C) and viable tumor burden (D) from NCI-H1650 xenografts treated with vehicle, motesanib 15 mg/kg QD, cisplatin 4 mg/kg QW, or
motesanib plus cisplatin at the same dose and schedule. *P < 0.0001 vs vehicle; †P< 0.0001 vs vehicle and cisplatin monotherapy; {P = 0.0039 vs
vehicle. Data are expressed as mean± SE (panel A, n = 6; panel B, n = 10; panel C, n = 10; panel D, n = 10). Bar, 100 μm (panels A and C) or 2 mm
(panels B and D).
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compared with either single-agent treatment. The results
from the experiment with the Calu-6 model are particu-
larly noteworthy because of its relative resistance to
treatment with angiogenesis inhibitors and EGFR-
targeted agents alone. One possible explanation for the
improved antitumor activity of the combination treat-
ments is that angiogenesis inhibitors may modulate the
tumor vasculature, resulting in enhanced delivery of
chemotherapy to target cells [43,44], but we have not
directly addressed this issue in the current study. Muta-
tional status of the cells appeared to have had no influ-
ence on the antitumor activity of motesanib treatment.
Regardless of whether cell lines had common driver
mutations (ie, KRAS) or less frequently occurring muta-
tions (ie, BRAF, NRAS) or a combination of mutated
genes, treatment with motesanib as monotherapy or in
combination with chemotherapy resulted in tumor
growth inhibition, albeit at different doses depending on
the model. Targeted treatments that may be effective re-
gardless of mutational status of the patient may be par-
ticularly desirable, particularly for agents targeting the
stroma, where the mutational spectrum is not expected
to be equivalent.
The antitumor activity that motesanib exhibited

against the NSCLC xenograft models chosen for this
study was mediated, at least in part, by an antiangiogenic
mechanism rather than a direct effect on the tumor cells
themselves. Unlike human medullary cancer cells that
express VEGFR2 [26], VEGFR2 could not be detected in
any of the cell lines and phosphorylated VEGFR2 could
not be detected following exogenous administration of
VEGF. Motesanib did not inhibit the proliferation of
cells from any of the cell lines in vitro. The lack of inhib-
ition of proliferation also suggests that other motesanib
targets (eg, PDGFR and Kit) are not important in this
context. It should be noted that some studies have
reported that sorafenib and vandetanib (both of which
inhibit VEGFR signalling) can attenuate the proliferation
of lung cancer cells in vitro [45-47]. However, both of
these agents also inhibit EGFR signalling and, conse-
quently, it is not possible to ascertain whether the
observed effects were due to inhibition of VEGFR signal-
ling, EGFR signalling, or both. Treatment with single-
agent motesanib or motesanib plus cisplatin showed
significant reductions in tumor blood vessel area com-
pared with vehicle in NCI-H358 and NCI-H1650 xeno-
grafts. These results are consistent with those from
previous studies reporting that motesanib alone or com-
bined with chemotherapy had antitumor activity in
xenograft models of breast, thyroid, and colorectal can-
cer, which was also associated with a significant decrease
in tumor blood vessel area [23-26]. Overall, our data
support a predominant role for antiangiogenesis in in-
hibition of tumor growth by motesanib.

Conclusions
Our data show that motesanib has antiangiogenic and
antitumor activity in all five tested NSCLC subcutaneous
xenograft models of varying histologic subtypes and gen-
etic backgrounds. When combined with cisplatin or doc-
etaxel, the antitumor activity of motesanib was
significantly greater than single-agent treatment in each
of the four xenograft models in which combination
treatments were tested. Investigation of their activity in
xenograft models with a variety of histologic subtypes is
a valuable and appropriate strategy for preclinical assess-
ment of anticancer agents in NSCLC.

Methods
Cell lines and reagents
Non–small-cell lung cancer cell lines including A549
carcinoma, Calu-6 anaplastic carcinoma, NCI-H358
bronchioalveolar carcinoma, NCI-H1299 lung carcin-
oma, and NCI-H1650 bronchioalveolar adenocarcinoma
cells were originally obtained from the American Type
Culture Collection (Manassas, VA) between 2001 and
2008. A549, Calu-6, NCI-H358, and NCI-H1299 cell
lines were tested and authenticated, at the time of the
experiments, by DNA sequencing of the following genes,
which confirmed the presence of specific mutations
equivalent to those previously described for these cells
[48,49]: KRAS, NRAS, EGFR, BRAF, P53, PTEN, cMET,
PIK3CA, and STK11 (see also Table 1). NCI-H1650 cells
have been reported to carry mutations in CDKN2A,
EGFR, and TP53 [50,51]. We did not sequence these
genes in this cell line but did identify an additional mu-
tation in BRAF (heterozygous deletion of exon 2). NCI-
H358 and NCI-H1299 cells are TP53 null per previously
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published literature [52,53]. Cells were maintained at 37°C
in an atmosphere of 95% air and 5% CO2. A549 cells were
cultured in F-12K nutrient medium with 10% fetal bovine
serum (FBS) and 2 mML-glutamine (Invitrogen Corp.,
Carlsbad, CA). Calu-6, NCI-H358, NCI-H1299, and NCI-
H1650 cells were cultured in RPMI 1640 medium with
10% FBS and 2 mML-glutamine; NCI-H1650 cultures
were further supplemented with 1× nonessential amino
acids. Human umbilical vein endothelial cells (HUVECs)
were obtained from Lonza Walkersville Inc. (Walkersville,
MD) and cultured in EGM-2 medium with EGM-2 Single-
Quot supplement (Lonza Walkersville Inc.).
Docetaxel was obtained from Aventis Pharmaceuticals,

Inc. (Bridgewater, NJ) and resuspended in PBS for in vitro
cell assays. For in vivo assays, docetaxel was resuspended
in the manufacturer-provided diluent and adjusted to the
final concentration used before injection with phosphate-
buffered saline (PBS). Cisplatin (1 mg/mL) was obtained
from Bedford Laboratories (Bedford, OH) and APP Phar-
maceuticals (Shaumburg, IL) and diluted in PBS for both
in vitro and in vivo studies.

In vitro cell proliferation assays
Cells (3,000/well) were seeded in 96-well plates using
DMEM High-Glucose medium (Invitrogen Corp.)
supplemented with 10% FBS and 2 mML-glutamine (for
A549, Calu-6, NCI-H358, NCI-H1299, and NCI-H1650
cells); or DMEM High-Glucose medium supplemented
with 2 mML-glutamine and 50 ng/mL of recombinant
human VEGF (R&D Systems, Inc., Minneapolis, MN)
(for HUVECs treated with motesanib). Cells were cul-
tured overnight before being treated, in duplicate, with
10-point serial dilutions of single-agent motesanib
(0.0025 to 5000 nM in medium containing 1% dimethyl
sulfoxide [DMSO]) or docetaxel (0.001 to 5000 nM
in PBS) for 72 hours at 37°C. Cell viability was mea-
sured using an ATPlite™ 1-step luminescence assay
(PerkinElmer, Waltham, MA) as described previously
[24]. To assess the effect of motesanib plus chemo-
therapy combination treatment on in vitro proliferation,
A549, Calu-6, NCI-H358, NCI-H1299, and NCI-H1650
cells were seeded as described above and then treated
with motesanib (10, 100, and 1000 nM in medium con-
taining 1% DMSO) plus serial dilutions of cisplatin or
docetaxel in PBS for 72 hours at 37°C. Cell viability was
determined using the ATPlite™ luminescence assay as
described [24].

In vitro tumor cell VEGFR2 phosphorylation
Phosphorylation of VEGFR2 in tumor cells and
HUVECs was assessed as described [26]. Briefly,
HUVECs, A549, Calu-6, NCI-H358, NCI-H1299, and
NCI-H1650 cells were cultured in full-serum condi-
tions, serum-starved conditions, and serum-starved
conditions plus recombinant human VEGF at a final
concentration of 50 ng/mL for 5 minutes before harvest-
ing. Cells were lysed, and VEGFR2 protein was immuno-
precipitated using an anti-human VEGFR2 polyclonal
antibody (R&D Systems) and Protein A beads. Phos-
phorylated VEGFR2 protein was detected by Western
blot using 4G10 horseradish peroxidase (HRP)–linked
antiphosphotyrosine monoclonal antibody (Millipore,
Billerica, MA). To detect total VEGFR2, the blot was
stripped and reprobed with the polyclonal anti-VEGFR2
antibody (R&D Systems). Signals were detected with
chemoluminescence using SuperSignal West Pico
(Pierce Biotechnology Inc., Rockford, IL). Blot imaging
was performed with a VersaDoc Imaging System Model
500 (Bio-Rad, Hercules, CA) and blot quantification
with ImageQuant 5.2 software (Molecular Dynamics,
Piscataway, NJ).

Tumor xenograft models
Animals were obtained from the following sources: fe-
male CD1 nu/nu mice (Calu-6 models) from Charles
River Laboratories (Raleigh, NC), female athymic nude
mice (A549, NCI-H358, and NCI-H1299 models) from
Harlan Sprague Dawley (Indianapolis, IN), and CB-17
severe combined immunodeficiency mice (NCI-H1650
models) from Charles River Laboratories (Montreal, QC,
Canada). Procedures met the standards of the Amgen
Animal Care and Use Committee. The facilities where
experiments involving animals were conducted were
approved by the Association for Assessment and Ac-
creditation of Laboratory Animal Care.
On day 0, mice (approximately 5 to 9 weeks old) were

injected subcutaneously on the right flank with either of
the following: cultured Calu-6 (1 × 107 cells in 200 μL of
RPMI 1640 with 33% Matrigel [BD Biosciences, San Jose,
CA]); A549 (5 x 106 cells in 100 μL of F-12K with 50%
Matrigel); NCI-H358 (5 × 106 cells in 100 μL RPMI 1640
with 50% Matrigel); NCI-H1299 (5 × 106 cells in 100 μL
of RPMI 1640 with 50% Matrigel); or NCI-H1650 cells
(5 × 106 cells in 100 μL of RPMI 1640 with 50% Matri-
gel). After tumors became established, mice (9 to 10 per
treatment group) received the following agents either
alone or in combination as specified by the experimental
protocols: vehicle (water, pH 2.5) or motesanib orally
once daily (QD; 15 to 75 mg/kg) or twice daily (BID; 7.5
to 75 mg/kg); PBS or intraperitoneal cisplatin (4 or
5 mg/kg) once weekly (QW); or PBS or intraperitoneal
docetaxel (5 or 30 mg/kg QW). For combination experi-
ments, vehicle was added to the single agent dosing regi-
men at the appropriate route and schedule to match the
combination group. Tumor dimensions were assessed
twice weekly using an electronic digital caliper. For the
Calu-6 tumor model, tumor volume was calculated as
(length ×width × height). For the A549, NCI-H358,
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NCI-H1299, and NCI-H1650 models, tumor volume
was calculated as (width2 × length/2) where width was
the smaller of two measurements and length was the
larger of two measurements. All combination tumor
studies were done in a blinded fashion. Body weight
was recorded twice weekly as an index of toxicity.

Tumor histology
The methods of tumor xenograft histologic examination
have been described previously [24]. Briefly, tumors were
removed at the end of experiments, weighed, bisected
sagittally, and fixed in either zinc formalin (Anatech Ltd,
Battle Creek, MI) or cold zinc-Tris fixative (BD Bios-
ciences) and embedded in paraffin. Tumor sections fixed
in zinc-Tris were immunostained for CD31 (vascular
endothelium marker) using a monoclonal antibody (BD
Biosciences, San Jose, CA) followed by 3,3’-diaminoben-
zidine (Dako Corp., Carpinteria, CA) as the chromogen.
Tumor viability was assessed by hematoxylin staining.
Tumor cross-sectional area and viable area were
assessed by thresholding and automated pixel counting.
The viable fraction was expressed as a percentage of
total area. Estimated tumor burden was calculated as
viable fraction × tumor weight. Scanned images of slides
were analyzed using VisioMorph software v3.0.8.0
(Visiopharm, Horsholm, Denmark).

Statistical analysis
The effects of single-agent or combination treatment
with motesanib, cisplatin, or docetaxel on tumor growth
and body weight were assessed by repeated-measures
analysis of variance (RMANOVA) followed by Scheffé,
Bonferroni/Dunn, or Dunnett post hoc testing using
StatView software (version 5.0.1; SAS Institute, Inc.,
Cary, NC). For immunostaining, blood vessel area and
viable tumor burden of tumors were compared by
Student t test. P < 0.05 was considered statistically
significant.

Additional file

Additional file 1: Figure S1. Effects of treatment with an Amgen
proprietary small-molecule VEGF receptor inhibitor (“Compound 72”) on
lung mass in a KRAS-driven genetically engineered mouse model of
lung adenocarcinoma. In this model, development of lung tumors was
induced by intratracheal delivery of adenovirus containing the Cre-
recombinase to KRASLSL-G12D mice. Animals with established lung tumors
were treated with (A) vehicle (n = 12) or (B) small-molecule VEGF
receptor inhibitor 30 mg/kg QD (n = 10). Figure S2 Representative
computed tomography images of mice with mutant KRAS G12D lung
cancer (as described in Additional file 1) 11 weeks after induction of
disease and 3 weeks after treatment with an Amgen proprietary
small-molecule VEGF receptor inhibitor (“Compound 72”). (A) Vehicle.
The image shows wide-spread tumor burden and minimal viable lung
space. (B) Treatment with a small-molecule VEGF receptor inhibitor
resulted in visible preservation of normal, viable lung with less tumor
burden.
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