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Abstract

Background: The spatial and space-time scan statistics are commonly applied for the detection of geographical
disease clusters. Monte Carlo hypothesis testing is typically used to test whether the geographical clusters are
statistically significant as there is no known way to calculate the null distribution analytically. In Monte Carlo
hypothesis testing, simulated random data are generated multiple times under the null hypothesis, and the p-value
is r/(R + 1), where R is the number of simulated random replicates of the data and r is the rank of the test statistic
from the real data compared to the same test statistics calculated from each of the random data sets. A drawback
to this powerful technique is that each additional digit of p-value precision requires ten times as many replicated
datasets, and the additional processing can lead to excessive run times.

Results: We propose a new method for obtaining more precise p-values with a given number of replicates. The
collection of test statistics from the random replicates is used to estimate the true distribution of the test statistic
under the null hypothesis by fitting a continuous distribution to these observations. The choice of distribution is
critical, and for the spatial and space-time scan statistics, the extreme value Gumbel distribution performs very well
while the gamma, normal and lognormal distributions perform poorly. From the fitted Gumbel distribution, we
show that it is possible to estimate the analytical p-value with great precision even when the test statistic is far out
in the tail beyond any of the test statistics observed in the simulated replicates. In addition, Gumbel-based
rejection probabilities have smaller variability than Monte Carlo-based rejection probabilities, suggesting that the
proposed approach may result in greater power than the true Monte Carlo hypothesis test for a given number of
replicates.

Conclusions: For large data sets, it is often advantageous to replace computer intensive Monte Carlo hypothesis
testing with this new method of fitting a Gumbel distribution to random data sets generated under the null, in
order to reduce computation time and obtain much more precise p-values and slightly higher statistical power.

Background
Introduction
Geographic cluster detection and evaluation are impor-
tant in disease surveillance. One frequently used method
for cluster detection is the spatial scan statistic [1-3]
and the related space-time scan statistic [4]. This
method has been used to study the geography of infec-
tious diseases such as malaria [5], vector borne diseases
such as West Nile Virus [6], many different forms of
cancer [7-11], low birth weight [12], syndromic surveil-
lance [13-17], and bovine spongiform encephalopathy
[18], among many other diseases.

The spatial scan statistic is found by moving a scan-
ning window across the geographical region of interest,
generating a large collection of window locations and
sizes that meet pre-defined criteria. A likelihood ratio is
calculated for the data corresponding to each window
location and size and the spatial scan statistic is the
maximum of these likelihood ratios. The window loca-
tion and size with the maximum likelihood ratio is the
most likely cluster; that is, the cluster that is least likely
to have occurred by chance [1,2]. Except for the sim-
plest scenarios, there is no known closed-form theoreti-
cal distribution for the spatial scan statistic. Therefore,
p-values for scan statistics are usually obtained using
Monte Carlo hypothesis testing [19].* Correspondence: allyson_abrams@harvardpilgrim.org
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In Monte Carlo hypothesis testing, a large number of
random replicates of the observed data are generated
under the null hypothesis. Monte Carlo p-values are
asymptotically equivalent to p-values from exact permu-
tation tests as the number of random replicates
increases, but the key property of Monte Carlo hypoth-
esis testing p-values is that they maintain the correct
alpha level, exactly, as long as the number of replicates
plus one is a multiple of 1/a [19-21]. Monte Carlo
hypothesis testing can therefore be useful when theoreti-
cal distributions are unknown and the number of per-
mutations prohibits a full enumeration. One major
drawback to the approach is that small p-values can
only be obtained through a very large number of Monte
Carlo replicates, which may be computer intensive and
time consuming. For the spatial and space-time scan
statistics, Monte Carlo hypothesis testing requires the
calculation of the likelihood ratio for each location and
size of the scanning window, for each replicated data
set. Thus, the approach can be computer intensive for
very large data sets.
In disease surveillance, the space-time scan statistic is

sometimes calculated on a daily basis, to continuously
monitor a disease in near real-time [13,22]. These clus-
ters may then be reported to local, state, or federal pub-
lic health officials for potential investigation. Using a
conventional 0.05 a-level would on average result in
one false rejection of the null hypothesis every 20 days.
Because of limited resources, health officials are not able
to investigate a lot of false alarms [13,22]. To control
the number of false rejections at a more tenable level,
one might instead use an a-level of 1/365 = 0.00274 or
1/3650 = 0.000274, corresponding to one expected false
positive every year or every ten years, respectively, for
daily analyses. So, instead of 999 replicates for an alpha
level of 0.05, we may want to use 99,999 replicates or
more for an alpha level of 0.000274, keeping approxi-
mately the same ratio. If multiple diseases are under
surveillance, this may require a high computational bur-
den with millions of random replicates to be simulated
each day when Monte Carlo hypothesis testing is used.
In this article, we propose a way to do hypothesis test-

ing for very small alpha levels with fewer calculations.
The approach we take is to find a distribution which
closely approximates the distribution of the test statistics
that were generated under the null hypothesis, which
themselves reflect the distribution of the scan statistic
under the null. To do this we generate a relatively small
number of random simulated replicates under the null
hypothesis. We then use them to estimate parameters
for a distribution with a well-characterized functional
form. If this distribution fits the sample distribution
well, we can use it as an estimate of the distribution of
the spatial or space-time scan statistic under the null

and use it to generate arbitrarily small p-values. Because
we are interested in small p-values, it is particularly
important that the estimate is good in the tail of the
distribution.
We note that although this paper is focused on the

spatial and space-time scan statistics, the general metho-
dology that we propose in this article can easily be
applied to other test statistics that rely on Monte Carlo
hypothesis testing.

Scan statistics
The spatial scan statistic is used to identify potentially
unusual clustering of events on a map. Events may, for
example, be cases of disease incidence, prevalence or
mortality. Suppose that there are p geographical coordi-
nate pairs marked on a map, each representing a region.
The analysis is conditioned on the total number of
events, and under the null hypothesis, each event is
independently and randomly located in a region with
probability proportional to the population in the region,
or to some covariate-adjusted population based denomi-
nator. How best to adjust for covariates is a critical
issue which we do not consider in this paper.
We look at all unique subsets of events that lie within

a collection of scanning windows to detect clusters.
Although any shape scanning window may be used, we
use circles throughout this paper. Consider all circles,
Ci,r, where i = 1,..., p indicates the coordinates around
which a circle may be centered, and r indicates its
radius, which ranges from 0 to some pre-specified maxi-
mum. Based on the observed and expected number of
events inside and outside the circle, calculate the likeli-
hood ratio for each distinct circle [1,2]. The circle with
the maximum likelihood ratio is the most likely cluster,
that is, the cluster that is least likely to have occurred
by chance. For computational simplicity, the logarithm
of the likelihood ratio is typically used instead of the
ratio itself, and the log-likelihood ratio associated with
this circle is defined as the scan statistic. Likelihoods
can be calculated under different probability models,
such as binomial or Poisson.
The space-time scan statistic is analogously used to

identify clusters in regions of space and time. Envision-
ing each discrete moment of time as a separate map,
and the set of times as a stack of maps, the circles men-
tioned above can extend through the maps, making
cylinders that are the potential clusters. The cylinder
with the maximum likelihood ratio is the most likely
cluster, and its log-likelihood ratio is the space-time
scan statistic. In space-time models, we consider Poisson
as well as space-time permutation-based probability
models [4,23].
For this study, we used the SaTScan™ [24] statistical

software program, which calculates the scan statistic and
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implements Monte Carlo hypothesis testing to calculate
a p-value. SaTScan™ allows the user to vary many
parameters including the maximum cluster size, the
probability model, and the number of Monte Carlo
replicates.

Monte Carlo hypothesis testing
When the underlying distribution for the test statistic is
unknown it is not possible to calculate a standard analy-
tical p-value. When it is still possible, however, to gener-
ate data under the null hypothesis, then Monte Carlo
hypothesis testing can be used to calculate Monte Carlo
based p-values, as proposed by Dwass [19]. To do this,
one first calculates the test statistic from the real data.
Then, a large number of random data sets are generated
according to the null hypothesis, and the test statistic is
calculated for each of these data sets. If one creates
R random replicates of the data and r-1 of those repli-
cates have a test statistic which is greater than or equal
to the test statistic from the real data, so that r is the
rank of the test statistics among the real data, then the
Monte Carlo based p-value of the observed test statistic
is r/(1+R). If the test statistic from the real data set is
among the highest 5 percent from the random data sets,
then we can reject the null hypothesis at the a = 0.05
level of statistical significance.
As pointed out by several statisticians [19-21,25], a

nice feature of Monte Carlo hypothesis testing is that
the correct a-level can be maintained exactly. This is
simply done by choosing R so that a(1+R) is an integer.
For example, if a = 0.05, then the probability to reject
the null hypothesis is exactly 0.05 when R = 19, 99, 999,
or 9999 random replicates. Following Bernard [19], sup-
pose R = 19. Under the null hypothesis, the one real
and 19 random data sets are generated in exactly the
same way, so they are all generated from the same
probability distribution. This, in turn, means that the
ordering of the 20 test statistics is completely random,
so that any single one is equally likely to be the highest,
2nd highest, 3rd highest, and so on, as well as equally
likely to be the lowest. Hence, under the null hypothesis,
the probability that the test statistic from the real data
set has the highest value is 1/20 = 0.05, exactly. If
it does have the highest test statistic, the Monte
Carlo based p-value is p = r/(1 + R) = 1/(1 + 19) = 1/20
= 0.05, and since p ≤ a = 0.05, the null hypothesis is
rejected.
Since the correct alpha level is maintained exactly

whether R is small or large, one may think that the
choice does not matter, but that is not the case, as
fewer replicates means lower statistical power [25-27].
Hence, more replicates are always better. For a = 0.05,
999 replicates gives very good power, but for smaller

alpha levels, an increasingly higher number is needed
[21,25].
One drawback with Monte Carlo hypothesis testing is

that the p-value can never be smaller than 1/(1 + R).
For example, with R = 999, the p-value is never less
than 0.001. In most applications, with a 0.01 or 0.05
a-level, that is not a problem, as it is not necessary to
differentiate between p-values of, say, 0.001 and 0.00001.
A relatively small number of replicates will be sufficient.
However, in the context of daily analyses in real-time
disease surveillance, a cluster with p ≤ 0.05 will by
chance happen once every 20 days, on average. That is
too often, and the goal is to detect clusters of disease
that are very unusual, and only the most unusual clus-
ters will be investigated further. P-values on the order of
0.0001 or even smaller may be required before an inves-
tigation is launched. These p-values require at least
9999 Monte Carlo replicates and even more are needed
to ensure good statistical power [21,25]. The number of
Monte Carlo replicates required is determined by the
desired precision of the p-value, and each additional
decimal place requires 10 times the number of Monte
Carlo replicates and hence about 10 times the comput-
ing time.

The Gumbel distribution
The spatial scan statistic described above is the maxi-
mum value taken over many circle locations and sizes,
so the collection of these statistics generated from the
Monte Carlo replicates is a distribution of maximum
values. Since our technique involves finding a distribu-
tion which closely matches the distribution of the repli-
cated statistics, it is natural to consider one of the
extreme value distributions as one possible candidate to
approximate the desired distribution. The Gumbel
distribution is a distribution of extreme values, either
maxima or minima. Here, we limit ourselves to distribu-
tions of maxima since the scan statistic is a maximum.
The cdf for the Gumbel distribution of maxima is
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where X is the sample mean and s is the sample

standard deviation [28,29].
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Methods
To evaluate whether it is possible to obtain approximate
small p-values with only a limited number of Monte
Carlo replicates, we performed computer simulations fit-
ting different probability distributions to the sample test
statistics from the random data sets generated under the
null. For our baseline set-up, we use a map of 245 coun-
ties and county equivalents in the Northeast United
States, with each county represented by its census-
defined centroid [24]. Under the null hypothesis, the
number of cases in each county is Poisson distributed.
Conditioning on a total of 600 cases, the cases were ran-
domly and independently assigned to a county with
probability proportional to the 1994 female population
in that county [30]. The maximum circle size of the
scan statistic was set to 50% of the population.
First, we generated 100,000,000 Monte Carlo replicates

of the data under the null hypothesis. The maximum
log-likelihood ratio among all distinct circles is the sta-
tistic reported from each replicate. These 100,000,000
statistics generated our “gold standard” distribution of
log-likelihood ratios, which we treat as if it were the
actual distribution of the statistic under the null. Using
this distribution, we find the ‘true’ log-likelihood ratio

corresponding to a given a-level by finding the log-
likelihood ratio for which the rank divided by
100,000,000 gives the desired a-level. For example, the
log-likelihood ratio with a rank of 1,000,000 corresponds
to an a-level of 0.01, since 1,000,000/100,000,000 = 0.01.
Using the same parameter settings, we also generated

sets of 999 Monte Carlo replicates of the data. We used
the 999 maximum log-likelihood ratios obtained from
the Monte Carlo replicates to fit normal, gamma, log-
normal and Gumbel distributions to the data to see if
any of them would approximate the true distribution of
these log-likelihood ratios. The first three were chosen
because they are three of the most commonly used con-
tinuous distributions, without any deeper rationale. The
extreme value Gumbel distribution was chosen since the
test statistic is a maximum taken over many possible
circles.
For the normal, gamma, and lognormal distributions

we used maximum likelihood parameter estimates, and
we used the method of moments estimators of the
Gumbel distribution parameters. For each set of 999
replicates, we get a different set of parameter estimates
for each distribution. Figure 1 shows an example of a
histogram from 1 set of 999 log-likelihoods with the
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Figure 1 Histogram of 999 log-likelihoods from 1 set of Monte Carlo replicates with estimated normal, lognormal, gamma, and
Gumbel distributions.
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estimated normal, lognormal, gamma, and Gumbel dis-
tributions. Even if the choice of distribution is the cor-
rect one, there is some error in the parameter estimates
that plays a role in the ability of the approach to accu-
rately estimate the p-value. While we used the moments
estimator for the Gumbel distribution, which is very
easy to compute, it is possible that the maximum likeli-
hood estimates would have given slightly better results.
The approach hinges on the ability of the estimated
parameters to approximate the far tail of the true distri-
bution of the statistic under the null, using only a rela-
tively small number of randomly generated data sets. If
the tail of the proposed distribution corresponds well to
the far tail of the “gold standard” empirical distribution
based on 100,000,000 random data sets, then the
approach will be successful.
The idea now is to use the fitted distribution function

to obtain a p-value. The p-value is calculated by finding
the area under this distribution that is to the right of
the observed test statistic. For this to work, it is impor-
tant that the right tail of this function is similar to the
right tail of the true distribution that is represented by
the gold standard distribution from the 100,000,000
replicates. In order to check this, we used the cumula-
tive distribution function (cdf) of each fitted distribution
to find the critical value of the log-likelihood ratio cor-
responding to the nominal a-level. We then ranked
each critical value among the 100,000,000 log-likelihood
ratios in the gold standard distribution to find the true
probability of rejecting the null at that critical value. We
call this the rejection probability, and for the test to be
unbiased, the expected value of this rejection probability
must be equal to the nominal (desired) a-level. For each
type of distribution, we did this 1000 times which
resulted in 1000 critical values and, therefore, 1000
rejection probabilities. The average of these rejection
probabilities is an estimate of the true (actual) a-level,
which is then compared with the nominal a-level.
Here we present a formal description of this process; a

schematic diagram is shown in Figure 2. Let d x( ) be

the probability density function (pdf) of the distribution,
d, obtained by using the log-likelihood ratios generated
from the Monte Carlo replicates to estimate the para-
meters for d. Here we use d = normal, lognormal,

gamma, and Gumbel. Let Φ d x( ) be the associated cdf.

For the nominal a-level,  n , and each distribution, we

first find the critical value  d n, for which

1 − ( ) = ( ) =
∞

∫Φ d d d nn
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 
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( )x . Now, let ( )x be the true pdf of the log-
likelihood ratios and let Γ( )x be the corresponding cdf.
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Of course, Γ( )x is unknown, and here we use the

observed 100,000,000 replicates as a proxy. Effectively,
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where llri is the ith log-likelihood ratio in the gold-stan-

dard distribution. The average of the 1000 rd n, ’s is our

estimate of the true a-level, when the nominal a-level is
 n . Note that the a-level found using Monte Carlo

hypothesis testing, which we denote  MC n, is proven

theoretically to be correct, so that  MC nn, ≡ .
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Figure 2 Schematic for finding the rejection probability. First
find the critical value  d n, from the fitted distribution, then use
that value to find rd n, , the ‘true’ probability of rejecting the null
hypothesis in the ‘gold standard’ pdf obtained from the 100,000,000
replicates under the null.

Abrams et al. International Journal of Health Geographics 2010, 9:61
http://www.ij-healthgeographics.com/content/9/1/61

Page 5 of 12



In addition to the baseline set-up, we repeated the
same experiment with different numbers of cases, differ-
ent maps, different probability models, different maxi-
mum circle sizes, and different numbers of Monte Carlo
replicates. We also repeated the experiment adding a
temporal dimension. The combinations that we used are
summarized in Table 1. United States 3-digit zip code
populations were obtained from the 1990 United States
Census [31]. For each set of conditions in Table 1, we
performed the experiment using 99, 999, and 9999
Monte Carlo replicates to generate the fitted distribu-

tion. We chose 5 nominal a-levels ( n = 0.05, 0.01,

0.001, 0.0001, 0.00001). All scan statistics were calcu-
lated using the SaTScan™ software.

Results
a-levels
The most important evaluation criterion in classical
hypothesis testing is to ensure that the a-level (type I
error) is correct. For the baseline experimental set-up,
each histogram in Figure 3 shows 1000 rejection prob-
abilities, one for each set of 999 Monte Carlo repli-
cates generated under the null, for each fitted
distribution. The mean of these rejection probabilities
is an estimate of the true a-level achieved through this
process. Note that in order to maintain the correct
a-level, it is enough for the mean of the distribution
to equal a, while the variance around a is irrelevant.
Therefore, to maintain the correct a-level, it is suffi-
cient that the rejection probabilities are centered
around the desired a-level. Among the distributions
assessed here, the rejection probabilities from the
Gumbel approximation are centered around the nom-
inal a-levels; for the other distributions the rejection
probabilities are centered to the right of the nominal
a-level. Thus, using any of these distributions other
than the Gumbel distribution to approximate the
underlying distribution of the spatial scan statistic
results in anti-conservatively biased a-levels, or in

other words, p-values that are too small. This can also
be seen in Figure 4, where we show a plot of the ratio
of the estimated true a-level to the nominal a-level for
each distribution. Figure 4 shows that the Gumbel
approximation has very little bias. When 999 or 9999
Monte Carlo replicates were used the slight bias is
conservative, whereas the bias from all other distribu-
tions is large and anti-conservative.
The above results are all based on the baseline

experimental setting. For the other settings, the true
a-levels are presented in Tables 2 and 3 for the Gum-
bel distribution, showing the robustness of this
method. Overall, the Gumbel approximation works
quite well. The a-levels are slightly conservative when-
ever 999 or 9999 Monte Carlo replicates were used,
and slightly anti-conservative with 99 replicates. The
bias becomes increasingly conservative with an increas-
ing number of replicates, and this conservatism is
more pronounced in the space-time settings. The
worst spatial results using the Gumbel distribution
were for the very extreme scenarios when there are
only 6 disease cases in all of the northeastern United
States, when there is a non-negligible conservative
bias. This is probably due to the extremely small sam-
ple size, and can be viewed as a worst case scenario.
When the maximum scanning window size was limited
to contain at most one county, there is a non-negligi-
ble anti-conservative bias. In this one-county experi-
ment, every single county is evaluated as a potential
cluster, but two or more counties are never combined
to form a cluster. We are still taking the maxima when
calculating the test statistic but it is a maxima over
only 245 rather than tens of thousands of potential
clusters. This may explain why the Gumbel extreme
value distribution does not work as well in this
scenario.
We also evaluated the other three distributions using

all of the settings, and the bias was similar to, and as
bad as, the results shown in Figures 3 and 4 (data not
shown).

Table 1 Combinations of settings used; bold indicates baseline settings

Number of cases Region Probability Model Maximum cluster size

Spatial combinations 600 NE counties Poisson 50% population

600 NE counties Bernoulli 50% population

600 NE counties Poisson 1 county

600 US 3-digit zip codes Poisson 50% population

6 NE counties Poisson 50% population

6000 NE counties Poisson 50% population

60000 NE counties Poisson 50% population

Space-time combinations 600 NE counties, 60 days Poisson 50% population, 7 days

600 NE counties, 60 days Space-time permutation 50% population, 7 days
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Statistical power
Statistical power is another important evaluation criter-
ion. While the variance in the probabilities depicted in
Figure 3 do not influence the a-level, a larger variance
will slightly reduce the statistical power of the test, as
implied by the proof of Jöckel [27]. We informally com-
pared the power for the Gumbel approximation to the
power obtained from Monte Carlo hypothesis testing by
looking at the variance of the rejection probabilities
used to calculate a-levels. Using the parameter set from
the baseline experimental settings, Figure 5 shows the
same type of histograms of the rejection probabilities as
in Figure 3, but only for the Gumbel approximation and
from Monte Carlo hypothesis testing, and using variable
numbers of Monte Carlo replicates. The figure suggests
that the variance in the rejection probabilities from the
Gumbel approximation is smaller than the variance in
the rejection probabilities from Monte Carlo hypothesis
testing. Numerically, the ratio of the standard deviation
of the rejection probabilities from the Gumbel approxi-
mation to the standard deviation of the rejection prob-
abilities from Monte Carlo hypothesis testing is less
than 1 when the same number of replicates are used for
both methods, indicating that the scan statistic has
greater power when the Gumbel approximation is used
than with traditional Monte Carlo hypothesis testing.

When we use 9999 replicates for Monte Carlo hypoth-
esis testing and only 999 replicates for the Gumbel
approximation this ratio is about 1; the same is true if
999 replicates are used for Monte Carlo hypothesis test-
ing and 99 replicates are used for the Gumbel approxi-
mation. This suggests that in this example, 10 times as
many replicates are required in order to get about the
same power with Monte Carlo hypothesis testing as
with the Gumbel approximation. Approximately the
same relationship was observed in the space-time and
other spatial settings.

Discussion
We have shown that the Gumbel distribution can be
used to obtain approximate p-values for the spatial and
space-time scan statistics with great accuracy in the far
tail of the distribution. This can be done using far less
computation than required by the traditional method
based on Monte Carlo hypothesis testing. As a rule of
thumb, we suggest using at least 999 random Monte
Carlo replicates to estimate the parameters of the Gum-
bel distribution, when possible, but the approach also
works with a smaller number of replicates.
A key question is then when to use Monte Carlo

hypothesis testing versus Gumbel based p-values. If the
primary interest is in 0.05 and 0.01 alpha levels, or if the

Figure 3 Histograms of the rejection probabilities obtained from each of the fitted distributions. The vertical gray lines indicate the
nominal a-level. For a = 0.05, a = 0.01, and a = 0.001, the scales are the same within those columns with the scale marked at the bottom of
each column. For a = 0.0001 and a = 0.00001, the scale is different for the normal distribution than for the other 3 distributions, as is indicated
at the bottom of the histograms.
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data set is small so that it is easy to generate and calcu-
late the test statistic for hundreds of thousands of simu-
lated replicas, then traditional Monte Carlo hypothesis
testing works well, and the benefit of Gumbel based
p-values is at most marginal. However, there are several

instances in which the Gumbel approximations offer a
clear advantage.
If the same number of replicates is used, then the

Gumbel approximation has higher power than Monte
Carlo hypothesis testing. When the number of replicates

13:50 Friday, September 17, 2010 1

Figure 4 Ratio of estimated a-levels to nominal a-levels for 4 distributions and different numbers of Monte Carlo replicates used to
estimate the parameters for each distribution.
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divided by the desired alpha level is large, the difference in
power is marginal, but when it is small, there is a clear
advantage of the Gumbel approximation. More specifi-
cally, the Gumbel approximation with one-tenth the num-
ber of replicates used by Monte Carlo hypothesis testing
provides approximately the same statistical power, while
using one-tenth of the computing time. Although there is
some bias with the Gumbel approximation, the bias is
small and, in most cases, conservative.
The most important benefit of the Gumbel approxi-

mation is its ability to calculate very small p-values

with a modest number of simulated replicates. For
example, as shown in Figure 4, p-values on the order
of 0.00001 can be conservatively calculated with only
999 random replicates by using the Gumbel approxi-
mation, while it would require more than 99,999 repli-
cates to get the same precision from Monte Carlo
hypothesis testing.
The attempts to calculate p-values with the normal,

lognormal and gamma distributions all resulted in anti-
conservatively biased a-levels. The bias from these
approximations was so large that we do not recommend

Table 2 Estimated a-levels for the Gumbel approximation for different parameters, corresponding to five nominal
a-levels

Nominal alpha

Number
of cases

Maximum
circle size Region

Probability
Model

Number of Monte
Carlo replicates 0.00001 0.0001 0.001 0.01 0.05

6 50% NE counties Poisson 99 0.000003 0.00004 0.0006 0.008 0.051

999 0.000001 0.00002 0.0004 0.007 0.048

9999 0.000001 0.00002 0.0004 0.007 0.047

600 50% NE counties Poisson 99 0.000013 0.00012 0.0012 0.011 0.054

999 0.000006 0.00008 0.0009 0.010 0.051

9999 0.000006 0.00007 0.0008 0.010 0.050

600 50% NE counties Bernoulli 99 0.000014 0.00013 0.0012 0.011 0.053

999 0.000007 0.00008 0.0009 0.010 0.050

9999 0.000007 0.00008 0.0008 0.010 0.047

600 50% US 3 digit zip codes Poisson 99 0.000014 0.00013 0.0012 0.011 0.054

999 0.000007 0.00008 0.0009 0.010 0.052

9999 0.000006 0.00008 0.0009 0.010 0.051

600 1 county NE counties Poisson 99 0.000033 0.00022 0.0016 0.012 0.053

999 0.000020 0.00016 0.0012 0.011 0.051

9999 0.000018 0.00015 0.0018 0.011 0.050

6000 50% NE counties Poisson 99 0.000013 0.00012 0.0011 0.011 0.053

999 0.000007 0.00008 0.0009 0.010 0.051

9999 0.000006 0.00007 0.0008 0.010 0.050

60000 50% NE counties Poisson 99 0.000013 0.00012 0.0011 0.011 0.054

999 0.000006 0.00007 0.0009 0.010 0.051

9999 0.000006 0.00007 0.0008 0.009 0.050

Table 3 Estimated a-levels for the Gumbel approximation for different parameters for the space-time scan,
corresponding to five nominal a-levels

Nominal alpha

Number of
cases

Maximum
circle size

Maximum
cluster length

Region Probability
Model

Number of Monte
Carlo replicates 0.00001 0.0001 0.001 0.01 0.05

600 50% 7 days NE
counties

Space-time
Permutation

99 0.000003 0.00004 0.0006 0.008 0.051

999 0.000006 0.00007 0.0009 0.010 0.053

9999 0.000003 0.00005 0.0007 0.009 0.051

600 50% 7 days NE
counties

Space-time
Poisson

99 0.000002 0.00005 0.0007 0.010 0.051

999 0.000006 0.00007 0.0008 0.010 0.051

9999 0.000003 0.00004 0.0006 0.008 0.049
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their use to approximate p-values for spatial or space-
time scan statistics.
The circular purely spatial scan statistic and

the space-time scan statistic are only two examples of
the many types of scan statistics. Other types include
the elliptical shaped spatial scan statistics [32], non-
parametric irregular shaped spatial scan statistics
[33-35], as well as spatial and space-time scan statistics

for ordinal [36] and exponential data [37,38]. While we
have not tested the Gumbel approximation for other
types of scan statistics, these statistics are all maxima
and generating p-values for any of them relies on
Monte Carlo hypothesis testing. It would be reason-
able, then, to evaluate whether p-values for these other
scan statistics could also be approximated with the
Gumbel distribution.

Figure 5 Histograms of the rejection probabilities obtained using the Gumbel approximation and from Monte Carlo hypothesis
testing based on 99, 999, or 9,999 Monte Carlo replicates.
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The method used here of fitting a distribution to the
statistics obtained from the Monte Carlo replicates can
be applied to any other application in which Monte
Carlo hypothesis testing is used and where very small
p-values are required or where computing time is lim-
ited. There is no reason to expect the Gumbel distribu-
tion to work well in all situations, however. In this
particular example it makes sense intuitively because the
scan statistic generated in each replicate is a maximum
over many circles and the Gumbel distribution is a dis-
tribution of maxima. Other applications may lend them-
selves naturally to a different choice of distribution.
To summarize, in applications in which the precision

of small p-values is not important, we suggest using
Monte Carlo hypothesis testing to obtain the p-values
for the spatial scan statistic. In applications in which the
precision of p-values is important or where each repli-
cate takes a long time to complete, the Gumbel based
p-values are often advantageous for reasons of both
computational speed and statistical power. To facilitate
its use, Gumbel based p-values have been added to ver-
sion 9 of the freely available SaTScan software, which
can be downloaded from http://www.satscan.org.
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