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Abstract

Purpose: This paper examines the effect of spatial aggregation error on statistical estimates of the association
between spatial access to health care and late-stage cancer.

Methods: Monte Carlo simulation was used to disaggregate cancer cases for two Illinois counties from zip code to
census block in proportion to the age-race composition of the block population. After the disaggregation, a
hierarchical logistic model was estimated examining the relationship between late-stage breast cancer and risk
factors including travel distance to mammography, at both the zip code and census block levels. Model
coefficients were compared between the two levels to assess the impact of spatial aggregation error.

Results: We found that spatial aggregation error influences the coefficients of regression-type models at the zip
code level, and this impact is highly dependent on the study area. In one study area (Kane County), block-level
coefficients were very similar to those estimated on the basis of zip code data; whereas in the other study area
(Peoria County), the two sets of coefficients differed substantially raising the possibility of drawing inaccurate
inferences about the association between distance to mammography and late-stage cancer risk.

Conclusions: Spatial aggregation error can significantly affect the coefficient values and inferences drawn from
statistical models of the association between cancer outcomes and spatial and non-spatial variables. Relying on
data at the zip code level may lead to inaccurate findings on health risk factors.

Introduction
Detecting and analyzing spatial aggregation error in
large spatial data sets is an increasingly important topic
in GIS and public health research [1-5]. Spatial aggrega-
tion error arises because of the agglomeration of indivi-
dual, georeferenced observations into larger spatial
zones. The spatial aggregation process smoothes local
variation, leading to errors in measurement of geogra-
phical variables. This error in turn affects the estimation
of statistical models that incorporate spatially-aggregated
variables. Spatial aggregation error is particularly impor-
tant in cancer research, given that cancer data sets are
often only released publicly at the zip code level due to
privacy and confidentiality issues[6]. Thus, studies that
use zip code-level data to examine the associations

between geographical and environmental variables and
cancer incidence may be adversely affected by spatial
aggregation error. Although spatial aggregation error
has been widely investigated, few studies have examined
how spatial aggregation error affects the statistical analy-
sis of cancer data at the zip code level. This study esti-
mates the potential impact of spatial aggregation error
on the parameter values of multilevel statistical models
which analyze the association between spatial accessibil-
ity to mammography facilities and late-stage breast can-
cer risk. This study focuses on breast cancer based on
the fact that it is the most common cancer among
women and an important cause of cancer mortality in
Illinois [7].
This study develops a Monte Carlo simulation proce-

dure for disaggregating cancer cases from larger to
smaller study units in empirical simulations, and uses
that procedure to examine the implications of spatial
aggregation error for multilevel model coefficients. The
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context sensitivity of spatial aggregation error is also
examined by comparing two study areas. This paper is
divided into the following sections: literature back-
ground; data pre-processing and analytical methodology;
description and analysis of results; and conclusion.

Background
In many scientific disciplines, data are collected at a spa-
tial scale appropriate to the research question of interest.
However, in geography and public health, much data is
publicly available to researchers for analysis in predefined
areas (zones) with an arbitrary and modifiable boundary.
These zones were not optimally designed to answer the
research question, thus introducing geographical bias
which affects subsequent statistical analyses based on
such data. This is the well-known Modifiable Area Unit
Problem (MAUP). One of the most common conse-
quences of this problem is the ecological fallacy.
The ecological fallacy arises when making inferences

from higher to lower levels of analysis [8]. The model
coefficients estimated based on aggregated data differ
from those at the individual level, leading to errors of
interpretation [9-12]. Gehlke and Biehl (1934) found that
the magnitude of the correlation coefficient increased with
aggregation [9]. Openshaw and Taylor (1979) demon-
strated the impact on correlation coefficients of spatial
aggregation of data from smaller to larger geographic
zones [12]. As in earlier work on the ecological fallacy,
they found that spatial aggregation tends to increase the
magnitude of correlation coefficients, confirming that spa-
tial aggregation error has an impact on statistical analysis.
Spatial aggregation error is an example of biased inference
caused by the mismatch between spatial units and the
research question of interest. It particularly occurs when a
large area or a single point is employed to represent spa-
tially distributed individuals [2]. Hillsman and Rhoda
(1978) identified three types of the spatial aggregation
error that arise when estimating a population’s average
distance to the nearest service facility [1]. The three types
of error are based on different geographical characteristics
of origins and destinations and can result in under- or
over-estimation of individuals’ actual travel distances.
Recently, with the rapid expansion of computational

resources and GIS, spatial aggregation error has been
studied more thoroughly. Researchers have adopted dif-
ferent approaches to evaluate the influence of spatial
aggregation error in large study areas. Hewko et al.,
(2002) analyzed the spatial aggregation error associated
with the measurement of neighborhood spatial accessi-
bility (NSA) [3]. Neighborhood spatial accessibility
describes the ease with which residents can travel to ser-
vice facilities, and it can be approximated by the net-
work distance from home to the closest facility. Because
population data are typically aggregated to zones (census

tracts, zip codes), distance is calculated from zonal cen-
troids to facilities resulting in spatial aggregation error.
Hewko et al. (2002) compared three methods for esti-
mating distance: one involves the use of unweighted
(geographic centroids) while the others incorporate
finer-scale, block-level population data thus reducing
spatial aggregation error [3]. Comparing the NSA values
based on these three methods, the authors concluded
that spatial aggregation error does create bias, but the
impact varies with the type of centroids and the number
and locations of service destinations. Spatial autocorrela-
tion tests were also affected. Fortney, Rost & Warren
(2000) studied the impact of spatial aggregation error on
measures of spatial accessibility to physicians [13]. Their
results showed substantial differences between area cen-
troid-based estimates of distance to physicians and dis-
tances calculated from individual residences, confirming
that spatial aggregation error leads to significant “errors
in variables” in measuring spatial accessibility.
Gregorio et al., (2005) studied the impact of spatial

aggregation on tests of spatial clustering. They compared
the analysis of spatial clustering of late-stage cancer in
Connecticut using cancer data at different geographic
scales - block group, census tract and town [4]. Results
showed little difference in the outcomes of spatial clus-
tering tests using data at different scales. In this example,
the impacts of spatial aggregation error were minimal,
contradicting the aforementioned literature and suggest-
ing the need for further analysis of the issue.
Examining spatial aggregation error requires the use of

high resolution data; however, such high resolution data
is often not available due to privacy and confidentiality
restrictions [6]. Although with proper approvals, some
health departments do provide access to high resolution
data; in many cases it is only possible to obtain cancer
data at a low spatial resolution such as county or zip
code. Zip codes are devised by the U.S. Postal Service to
facilitate mail delivery, and each zip code comprises a set
of mail distribution points which can be joined to create
zip code areas. Zip codes vary greatly in geographic and
population size, with an average population size of 30000
in 2000 [14]. The large and variable sizes of zip codes,
and the fact that they are not well-defined geographic
zones, pose challenges for spatial analysis of health data.
Using large-area data increases the risk of spatial aggre-

gation error. Recently, some authors have used Monte
Carlo methods to analyze spatial aggregation error by
assigning data from larger to smaller zones based on the
demographic characteristics of individual cancer cases
[5,15]. To obtain cancer data with a high resolution and
reduce spatial aggregation error, Henry and Boscoe
(2008) used demographically-based geo-imputation to
assign cancer cases from zip codes to census tracts [15].
Cases were assigned to tracts based on their age, gender
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and racial characteristics, and cases were more likely to
be assigned to tracts whose populations have similar
demographic characteristics. To test the geographic accu-
racy of the assignment, the authors obtained data on the
actual residential locations of cancer cases. The actual
census tract of residence was compared to the tract
assigned via geo-imputation. They found that the validity
and reliability of the geo-imputation outcomes were
dependent on demographic variables; that is, using race/
ethnicity in geo-imputation provided a more accurate
disaggregation than the one utilizing population only.
The authors also detected that the geo-imputation per-
formed differently within different census tracts. Homo-
geneous census tracts were more likely to have a low
match rate than more heterogeneous ones.
Spatial aggregation error can also arise when using

hybrid data with point- and polygon-levels [16-18]. Some
methods of analysis require a consistent set of geographic
units, so that hybrid data require conversion of data from
either point to polygon or vice versa. If points are aggre-
gated to corresponding polygons, however, localized
information from point-level data is lost [19].An alterna-
tive approach is to convert polygon data to point data.
For example, one can assign random locations to obser-
vations within polygons, and repeat the process many
times using Monte Carlo simulation to estimate uncer-
tainty[20]. Shi (2009) devised a restricted Monte Carlo
method to assign polygon-level addresses into suitable
random point locations in investigating spatial variation
in lung cancer incidence in New Hampshire [21]. The
method was employed to detect spatial clusters of high
cancer incidence while incorporating spatial uncertainty
associated with imprecise address locations. By quantify-
ing uncertainty, this approach provides an indication of
the error associated with spatial aggregation.
Although previous studies have emphasized the impor-

tance of spatial aggregation error and developed methods
to reduce its effects, less is known about the impacts of
spatial aggregation error on statistical estimates of model
coefficients. Two recent studies investigate this issue with
respect to positional error - a form of geographic error-
in-variables that is similar to spatial aggregation error.
Positional error occurs when residences are placed at
incorrect locations due to errors in geocoding and inac-
curacies in street network information. Griffith et al.,
(2007) studied the impacts of positional error on spatial
regression analysis by comparing analytical results using
datasets with different geocoding accuracies [22]. They
found that positional error had a noticeable influence on
parameter estimates obtained through spatial statistical
analysis. Mazumdar et al., (2008) examined a similar
question using somewhat different methods [23]. They
found that the observed strength of association between
environmental exposure and disease incidence decreased

as positional error increased. The implication is that it is
more difficult to uncover the true association between
environmental exposures and disease using less accurate
spatial data. These studies suggest that geographic error-
in-variables can lead to errors in statistical estimates of
model coefficients. Spatial aggregation error results in a
similar kind of error-in-variables and is likely to have
similar kinds of impacts on model coefficients. The only
difference is that spatial aggregation error has an explicit
spatial structure rooted in the zones to which data are
aggregated. In contrast, positional error does not have an
explicit spatial structure and can be associated with very
large displacements of points from their true locations.
In this paper, we examine the impact of spatial aggrega-

tion error on the coefficients of multilevel statistical mod-
els which analyze the associations between late-stage
breast cancer, demographic variables and distance to
mammography facilities. Using Monte Carlo simulation
methods similar to those adopted by Henry and Boscoe
(2008) and Shi (2007), we generate a large number of ‘dis-
aggregations’ of breast cancer cases from the zip code to
the census block level [5,15]. The assignment of individual
breast cancer cases from zip codes to blocks is propor-
tional to the age/racial composition of block populations
as in Henry and Boscoe (2008). We estimate a multilevel
statistical model of late-stage breast cancer risk that
includes a spatial variable, distance to the nearest mam-
mography facility, as a predictor of late-stage risk. Models
are estimated at the zip code and census block levels, and
differences between model coefficients at the two levels
reveal the impacts of spatial aggregation error.

Methods
Two geographically and demographically diverse study
areas are chosen for analysis: Kane and Peoria counties
in Illinois. Kane County is located in the southwest sec-
tion of the Chicago Metropolitan area. The eastern part
of this county is highly populated, while the western
part is mainly farmland with a few residential areas. The
population is predominantly Caucasian, with concentra-
tions in the young and middle age groups. African-
Americans make up around 6 percent of the county’s
population. Peoria County is located in central Illinois.
Its population characteristics are similar to those of
Kane County, except for a higher representation in the
elderly age group (>65 years). Because zip code bound-
aries sometimes cut across county borders, all contigu-
ous zip codes are included in the study areas as long as
the zip code centroids fall within county boundaries.
The two study areas are illustrated in Figures 1 and 2.
Breast cancer cases in Illinois were obtained from the

Illinois State Cancer Registry (ISCR). The dataset contains
demographic and epidemiologic records at the individual
level and each record is geocoded to the residential zip
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code. Variables include age group, sex, race, diagnosis
stage and year. ISCR utilized a classification scheme paral-
lel with SEER summary stage to measure cancer stage at
diagnosis [24]. Cancer cases at stages 0 and 1 were consid-
ered as early stage, and cases staged from 2 to 7 were
regarded as late stage [7]. Cases with unknown stage were
excluded from this study. For both study areas, female
breast cancer cases from 1998 to 2002 were selected. The
percent of cases at different stages for the two study areas
is shown in Table 1.
The Monte Carlo Simulation procedure involves assign-

ing cancer cases from a zip code area to the census blocks
within that zip code. The probability of assignment is

proportional to the age -race composition of the block
population; so, for example, a cancer case in a black
woman aged 50-69 has a higher probability of assignment
to a census block that has a large population in the same
demographic group. To facilitate this assignment proce-
dure, we divided cancer cases into 6 categories based on
age-race combinations. To differentiate the age categories,
three age groups were used: less than 50-years old,
between 50-and 70-years old, and more than 70-years old.
Research shows that the risk of late-stage diagnosis varies
according to age, and young patients have a higher risk of
late diagnosis [25]. Cases also were divided into ‘black’ and
‘non-black’ racial categories, given that late-stage breast

Figure 1 Census Blocks and Zip Codes in the Kane County Study Area.
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cancer risk is high among blacks [26-30]. The numbers of
breast cancer cases in each county in the six categories are
listed in Table 2.
Demographic information for the year 2000 at the

census-block level was obtained from the U.S. Census

for all the census blocks in the two study areas. There
were a total of 7,619 census blocks in the Kane study
area and 5,689 in Peoria. The census block female popu-
lations were divided into the six subgroups described
above to match the breast cancer data.

Shortest Travel Distance Calculation
The spatial variable examined in this study is travel
distance to the nearest mammography facility. Some
research suggests that poor spatial accessibility to mam-
mography screening facilities is associated with late-stage
diagnosis. There are many ways to measure spatial acces-
sibility, including provider-to-population ratio, and travel

Figure 2 Census Blocks and Zip Codes in the Peoria County Study Area.

Table 1 Breast Cancer Cases by Stage in Kane and Peoria,
1998-2002

Study Area # Cases Unstaged Late-Stage

# Cases Percent (%) # Cases Percent (%)

Kane 1102 65 5.90 406 39.2

Peoria 804 38 4.73 245 32.0
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impedance to nearest provider [31]. We estimated spatial
accessibility based on shortest travel distance –the road
network distance from the zip code or block centroid to
the nearest provider. Many studies have used shortest
travel distance to evaluate spatial accessibility at neigh-
borhood level [32-36]. Within each zip code, population-
weighted centroids were used to better reflect the uneven
distribution of population [37]. Geographic centroids
were used for the block-level analysis. Data on registered
mammography screening facilities in Illinois were
obtained for 2000, and facilities were geocoded using
street address information. Mobile mammography facil-
ities do not operate in either county and thus were not
included in the analysis. The shortest travel distance was
computed from each centroid to its nearest mammogra-
phy screening facility through the road network. The
block-level shortest distances in the Kane and Peoria
study areas are mapped in Figures 3 and 4. In both coun-
ties, the shortest distances do not exceed 46 kilometers,
suggesting that spatial access to mammography is reason-
ably good overall.
Figures 3 and 4 show that within some zip codes, block-

level travel distances vary significantly which indicates the
potential for spatial aggregation error. Summary statistics
for the distance variable at the zip code and block levels
also reveal substantial disparities, particularly for Peoria
County (Table 3). In Peoria County, the average and med-
ian travel distances differ by 4 and 9 kilometers respec-
tively for zip codes and blocks, whereas in Kane County,
the mean and median values are quite similar. This sug-
gests that the impact of spatial aggregation error will be
greater in Peoria County where the distance measure-
ments at the two levels are very different.

Disaggregation of Breast Cancer Data Using Monte Carlo
Simulation
The purpose of the Monte Carlo simulation is to inves-
tigate the impact of the spatial aggregation error by

comparing zip code-level model coefficient estimates
with a reference distribution of values based on small-
area (block level) data. Ideally, one would want to com-
pare the zip-code values with those based on actual
patient residential locations. However, because of priv-
acy and confidentiality issues, we were unable to obtain
breast cancer data below the zip code level. Therefore,
simulation was used to create ‘reasonably’ distributed
cancer cases at the census block level, building upon the
work of [5] and [15]. Each case was randomly assigned
to a block within its zip code, and the likelihood of
assignment depended on the age-race composition of
the block population defined according to the six sub-
groups mentioned earlier.
To implement the Monte Carlo simulation, the block-

level population in each demographic subgroup was
accumulated and summed. The output was then normal-
ized so that each subgroup’s population ranged from 0 to
1, with intermediate values representing the cumulative
share of that subgroup’s population located in each
block. This process was repeated for each zip code and
each subgroup. Based on this data, the Monte Carlo
simulation was implemented.
The Monte Carlo simulation involved several steps.

First, for each cancer case, an array of 1,000 uniform ran-
dom numbers was generated. A nested-structure of gen-
erating seeds was used to ensure the independence of
each random number. Specifically, a series of random
numbers was generated using system time as the generat-
ing seed. Then this series was employed as the secondary
generating seed to produce final numbers. The end result
was an ‘n’ by 1000 matrix in which n is the number of
cancer cases. Rows represent individual cancer cases and
columns represent random numbers. Second, we used
the random numbers to assign a case from zip code to a
block, with each random number representing a simu-
lated block assignment. Each block assignment was based
on the following principle: a case was assigned to a cen-
sus block if the block-level normalized range of values
contained that specific random number. Hence, the
assignment was not based on a uniform distribution, but
was proportional to the block population falling in the
same demographic category as the cancer case. Assign-
ments were made sequentially within each column of the
matrix. Third, within a specific column, once a block
received a cancer case, the block population in that
demographic category was reduced by 1, because one
person cannot be diagnosed with cancer twice simulta-
neously. If a population subgroup within a block went
down to zero, the block was taken out from the remain-
ing candidates for subsequent assignments in the same
demographic category. We iterated the second and third
steps, disaggregating cases from zip codes to blocks, and
thus generated 1,000 disaggregated patterns of cases. As

Table 2 Summary of Breast Cancer Cases by
Demographic Subgroup, Kane and Peoria

Kane Peoria

Population Subset Cases Population Subset Cases

Total Population 1037 Total Population 766

Non-Black Non-Black

Female <50 years 243 Female <50 years 131

Female 50~70 years 420 Female 50~70 years 294

Female >70 years 334 Female >70 years 276

Black Black

Female <50 years 17 Female <50 years 24

Female 50~70 years 14 Female 50~70 years 30

Female >70 years 9 Female >70 years 11
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a result, a final matrix was produced in which rows
represented cancer cases and columns denoted different
assignments of census blocks for each cancer case. The
matrix was diagramed as 1,037 rows by 1,000 columns
for cases in Kane, and 766 rows by 1,000 columns for
cases in Peoria. We wrote the Monte Carlo simulation
procedure using Javascript1.5 and used Eclipse 3.4.0 as
the software interface.

Analysis of Spatial Aggregation Error Using Hierarchical
Logistic Regression
Hierarchical (multilevel) logistic regression was utilized to
evaluate the impact of spatial aggregation error on statisti-
cal models of late-stage breast cancer risk. We used a two-
level hierarchical modeling approach in which individual

cancer patients (level 1) are nested within either zip codes
or blocks (level 2). First, hierarchical models were esti-
mated with the zip code as level 2; then, after Monte Carlo
simulation, models were estimated at the block scale, with
blocks representing level 2. The dependent variable in the
hierarchical regression models is late-stage diagnosis. Only
a limited set of independent variables is included in the
models so that the effects of spatial aggregation error can
easily be observed. Individual variables include the
patient’s age and race categories, defined according to the
categories used earlier. Race is represented by a dummy
variable (BLACK) in which ‘non-black’ is the reference
category. Age is represented by two dummy variables
(AGE < 50, AGE 50-70), and the reference category is the
oldest age group (> = 70). The level 2 independent variable

Figure 3 Block-Level Shortest Travel Distance Distribution in the Kane County Study Area.
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is shortest travel distance (in meters) to the closest mam-
mography facility, measured based on zip code centroid
for the zip code model and block centroid for the block-
level disaggregations. The formulations of the hierarchical
logistic regression are shown below:

The micro specification (level 1) is:

Logit ob Y latestage Race Age Rij j j ij j ij ij(Pr ( )) ( ) ( )= = + + +  0 1 2 (1)

where the bs denote the constant (intercept) and
regression coefficients of the independent variables, i =
1,..., nj denotes individuals within different zip code or
census block areas, and j = 1,..., J denotes zip code or
census block areas. The Rij are micro errors with inde-
pendent normal distributions, Rij ~N(0, s2).
The macro stage (level 2) model is:

  

 

 

0 00 01 0

1 10

2 20

j j j

j

j

ShortestTravelDis ce U= + +

=

=

( tan )

(2)

where Us are macro errors, Uoj ~N(0,
 0
2
) and they are

independent over j and with Rij. Equations (1.1) and

Figure 4 Block-Level Shortest Travel Distance Distribution in the Peoria County Study Area.

Table 3 Summary Statistics for Travel Distance to
Mammography at the Block Zip Code Levels

Variables(Km) Kane Study Area

Min Max Mean Median

Block-level Distance 0.0315 22.601 5.951 4.995

Zip-level Distance 0.670 13.149 5.621 4.564

Variables(Km) Peoria Study Area

Min Max Mean Median

Block-level Distance 0.0527 43.255 11.902 8.027

Zip-level Distance 1.373 36.262 15.569 17.110
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(1.2) define a hierarchical logistic model that can be
written equivalently as a combined single-equation
model by substituting (1.1) - (1.2) into (2):

Logit ob Y latestage ShortestTravelDis ceij(Pr ( )) ( tan )= = + 00 01 jj

ij ij j ijRace Age U R+ + + + 10 20 0( ) ( )
(3)

The variable most likely to be affected by spatial
aggregation error is shortest travel distance, so any
change in model coefficients between the zip code and
block levels is mainly due to changes in measurement of
this variable resulting from spatial aggregation.
All models were estimated using ‘proc glimmix’ in

SAS 9.1 [38]. Given that there are 1,000 randomized
patterns of cases at the block level, macro-level SAS
syntax was used to automatically estimate the block-
level hierarchical regression analyses. The coefficient
estimates for the block level models were displayed as
histograms and compared with the respective values for
the zip code level coefficients.

Results
The comparison of model coefficients at the zip code
and block levels for Kane County is shown in Table 4
and Figure 5. The results for Kane show only a small
impact of spatial aggregation error on model coeffi-
cients. The means of the block coefficients are very
close to the corresponding zip code values except in the
case of shortest travel distance. In addition, the ranges
of block-level coefficients include the corresponding zip
code parameters for all independent variables. The simi-
larity of zip code and block level coefficients is also evi-
dent in Figure 5 which shows, for each independent
variable, a histogram of the block-level coefficients and
a dotted line representing the zip code coefficient. All of
the zip code coefficients are located near the peak of
their corresponding block-level histograms. Moreover, at
both levels, the coefficient for distance indicates no sta-
tistically significant association between shortest travel
distance to mammography and late-stage diagnosis, so
the overall findings are consistent. Therefore, for the
Kane study area, the closeness of the means and the fact
that the zip code values fall within their respective
block-level ranges show that spatial aggregation error
does not have much influence on inferences made based
on statistical analysis at the zip code level.
The findings are very different for the Peoria study

area. Large differences are evident between zip code-
and block- coefficients. As shown in Tables 5, each of
the zip code-level coefficients falls outside the range of
the respective block-level coefficients. Also, the zip code
coefficients differ much more from their respective
block means than was the case in the Kane study area.
This is especially true for shortest travel distance, in

which the coefficient signs for models at the two levels
are different. Specifically, for shortest travel distance, the
zip code-level parameter is negative and an order of
magnitude less (in the negative direction) than the mean
of the block-level values which has a positive sign.
For the Peoria case, we calculated the impact of these

differences in model coefficients on model predictions
by plugging in values for a “reference person” (non-
black, age >70) located at distances of 0 and 20 km
from the closest mammography facility. At zero kilo-
meters, the predicted late-stage risks are very similar for
the zip code and block (average) models – 0.250 and
0.266 respectively. However, at 20 kilometers, differ-
ences are extraordinarily large because the effects of the
different distance coefficients are magnified. The zip
code model gives a predicted late-stage risk of less than
1 percent, a nonsensical value; whereas the block (aver-
age) model yields a predicted risk of 24 percent. Thus,
using the zip code model for predictive purposes does
not give meaningful results.
For Peoria County, impacts of spatial aggregation

error are also apparent in the plots comparing model
coefficients at the zip code and block levels (Figure 6).
For each independent variable, the zip code-level coeffi-
cient falls substantially outside the range of the block-
level values. For the distance variable, the zip code level
parameter estimate is completely isolated from the
block-level values, differing greatly in magnitude and
with the opposite sign as noted above. This suggests
that the association between distance and late-stage can-
cer risk is completely different from that observed based
on zip code data. Among the remaining demographic
variables, the coefficient for black race changed more
than those for the two age variables. Coefficients for the
two age variables move towards zero when we shift
from the zip code to block scale, whereas the coefficient
for black race increases. Block-level models indicate that
black race is more strongly associated with late-stage
breast cancer risk than was evident in the zip code-level
model. Thus, spatial aggregation error affects not only
the coefficient for the spatial variable in the model, dis-
tance to mammography, but also the coefficients for the
other socio-demographic variables, age and race, which
were incorporated in the Monte Carlo simulation
procedure.

Discussion
These results indicate that in some geographic contexts,
spatial aggregation error results in significant bias in
model coefficients, bias that can lead to inaccurate con-
clusions and inappropriate statistical inferences. Results
for Peoria County suggest that if cancer data were avail-
able at the block level, the resulting model coefficients
for all independent variables would most likely be quite
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different from the values observed based on zip code
data. For the distance variable, the impact of spatial
aggregation error is substantial enough to affect statisti-
cal inference. In particular, a significance test (one-
sided, a = 0.1) indicates that the zip code-level coeffi-
cient for the distance variable is significantly different
from zero, suggesting that distance to mammography is
significantly and negatively associated with late-stage

breast cancer risk. This is an unexpected finding imply-
ing that late-stage risk decreases with increasing dis-
tance,. Yet our simulations indicate that this conclusion
is most likely a spurious result of spatial aggregation
error. The block-level coefficients are all close to zero,
suggesting a lack of statistical association. Without
address-level data, we cannot know the true association
between distance and late-stage breast cancer risk;

Table 4 Model Coefficients at the Block and Zip Code Levels for Kane County

Variables Census Block Level Zip Code Level

Mean Coefficient Min Max Coefficient Std Error p-value 95% Confidence Interval

Age < 50 0.536 0.503 0.575 0.537 0.171 0.002 (0.201, 0.873)

Age 50~70 0.326 0.273 0.365 0.328 0.152 0.031 (0.0305, 0.626)

Black 0.396 0.332 0.468 0.391 0.326 0.230 (-0.248, 1.031)

Shortest Travel Distance (m) 5.270E-6 -4.155E-5 5.394E-5 2.620E-6 2.489E-5 0.916 (-4.623E-5, 5.147E-5)

Figure 5 Zip code-level coefficient (red, bold line) and histogram of block-level coefficients for each independent variable, Kane
County.
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however, the simulated block-level values overwhel-
mingly suggest no association.
Although spatial aggregation error is important, the dif-

ferences between the two study areas reveal that the influ-
ence of spatial aggregation error is highly case-sensitive. In
Kane County, spatial aggregation has a minimal impact on
model coefficients; whereas in Peoria County, the impact
is substantial. We believe that these differences are linked
to differences in the underlying spatial distributions of

socio-demographic groups and differences in the sizes and
configurations of zip codes and blocks which are superim-
posed on each county’s demographic landscape. We can
only speculate about the causes of differences observed
between these two counties. Located on the fringe of the
Chicago metropolitan region, Kane County has a higher
population density than Peoria County, and Kane’s popu-
lation appears to be more uniformly distributed, although
with an east-west gradient. Mammography facilities are

Table 5 Model Coefficients at the Block and Zip Code Levels for Peoria County

Variables Census Block Level Zip Code Level

Mean Coefficient Min Max Coefficient Std Error p-value 95% Confidence Interval

Age < 50 0.673 0.661 0.683 0.714 0.219 0.0012 (0.283, 1.145)

Age 50~70 0.445 0.434 0.454 0.482 0.184 0.0089 (0.121, 0.842)

Black 1.082 1.040 1.128 0.943 0.271 0.0005 (0.411, 1.475)

Shortest Travel Distance (m) 1.419E-5 5.950E-6 2.250E-5 -3.51 E-4 2.08 E-4 0.091 (-7.596E-4, 5.678E-5)

Figure 6 Zip code-level coefficient (red, bold line) and histogram of block-level coefficients for each independent variable, Peoria
County.
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well-distributed throughout the more populated areas of
the county. In comparison, Peoria County contains a more
bifurcated rural-urban pattern, with a single, densely
populated city (Peoria) surrounded by low density subur-
ban and rural zones. The few mammography facilities are
concentrated in Peoria city. In this bifurcated landscape,
disaggregation of cases to the block level via Monte Carlo
simulation results in heterogeneous assignments that
greatly influence model coefficients.
Another important finding is that the statistical impacts

of spatial aggregation error are not confined to coefficients
for spatial variables. In Peoria County, coefficients for all
variables are affected. These interconnected impacts most
likely reflect the correlations between race, age and resi-
dential location. Residential segregation by race is a strong
feature of both study areas, and it implies that the ‘black’
and ‘non-black’ racial categories have distinct residential
geographies at the block scale. Disaggregating data from
zip codes to blocks on the basis of racially- and demogra-
phically-based probabilities incorporates these localized,
segregated geographies. Although we used population-
weighted centroids in calculating shortest distance to
mammography, using race- and age-specific population
centroids may be more effective in minimizing spatial
aggregation error associated with residential segregation.
Still, these more finely-tuned centroids can be problematic
when racial groups are both segregated and unevenly dis-
tributed within zip code boundaries as is often the case.

Conclusion
The paper analyzed the impact of the spatial aggregation
error on zip code level statistical analysis of the associa-
tions between spatial and non-spatial variables and late-
stage breast cancer risk in two study areas in Illinois.
Given the difficulties in obtaining cancer cases below
the zip code level, we designed a Monte Carlo simula-
tion procedure to disaggregate cancer cases from zip
codes to census blocks on the basis of the demographic
characteristics of cancer case and block populations.
Spatial aggregation error significantly affected the coeffi-
cients of statistical models in the Peoria study area, lead-
ing to inaccurate inference, whereas in Kane County the
impact was minimal. The distinctive outputs for Kane
and Peoria counties illustrate that the impacts of spatial
aggregation error are context-dependent. Impacts appear
to be most pronounced in areas like Peoria County,
which have both highly uneven and segregated residen-
tial geographies. The spatial autocorrelation of age- and
racially-categorized population groups by block may be
important in affecting spatial aggregation error. Error
also depends on the configuration of zones overlaying
those geographies. Many studies have demonstrated that
large zones are associated with high levels of spatial
aggregation error, but clearly the residential geographies

within the zones are also important. Other factors
affecting spatial aggregation error in analyzing distance
to health services are the number and spatial configura-
tion of service facilities [3]. In general, the potential for
error will be greater in places with fewer facilities and
where facilities are spatially clustered. Compared to
Peoria, Kane County has more mammography facilities,
and facilities are more spatially dispersed, perhaps redu-
cing the scope for spatial aggregation error.
Given the range and complexity of factors involved in

spatial aggregation error, the specific nature of these
associations requires further investigation using a much
wider range of study areas representing varied social
and geographical characteristics. The Monte Carlo simu-
lation procedure implemented here is very useful in
these efforts. Moreover, analyzing how spatial aggrega-
tion error compares with other kinds of uncertainty
such as sampling error in statistical modeling is also cri-
tically important.
Our findings highlight the need to develop methods

and procedures for minimizing spatial aggregation error
in statistical models that rely on zonal health data.
Monte Carlo simulation provides a way to generate the
highly likely distribution of block-level coefficients asso-
ciated with a particular dataset, but the method is both
data- and computationally-intensive. Much simpler pro-
cedures, like using age- and race-specific zip code cen-
troids offer a feasible, low-tech alternative, but these
methods may not be effective in areas where the spatial
distributions of population groups are highly uneven
[39]. Shi and Berke (2009) discuss promising methods
which utilize area-based representations of population
[40]. Another option is explicit modeling of aggregation
effects through the use of variograms and other indica-
tors of spatial autocorrelation. Promising methods have
been developed for use with environmental and popula-
tion data [41], and the methods have great potential
value for health studies [42].
Although we have demonstrated the importance of

spatial aggregation error, our study has several limita-
tions. Because we do not have access to data on actual
breast cancer cases locations, we do not know the real
extent and impact of spatial aggregation error in the
two case study areas. The simulations delineate the
likely distribution of possible coefficient values, but do
not quantify the true spatial aggregation error. Still
knowing the likely extent of error is important in signal-
ing the need for more advanced methodologies that
explicitly address spatial aggregation effects. Another
limitation is that by relying on actual cancer case data
we have no knowledge of, the underlying ‘true’ risk
model for late-stage breast cancer, and we are unable to
control or manipulate that model in the process of
Monte Carlo simulation. A more experimental approach
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based on hypothetical data would enable researchers to
assess the relative magnitude of spatial aggregation error
compared to other sources of error in statistical models
of cancer risk factors. Despite these limitations, this
research demonstrates that spatial aggregation error has
substantial effects in some geographic contexts on the
results of statistical modeling of the association between
cancer and spatial and non-spatial risk factors. Under-
standing how and why these effects vary stands as a key
topic for future research investigations.
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