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Abstract

Background: A semiparametric density ratio method which borrows strength from two or more
samples can be applied to moving window of variable size in cluster detection. The method requires
neither the prior knowledge of the underlying distribution nor the number of cases before
scanning. In this paper, the semiparametric cluster detection procedure is combined with Storey’s
q-value, a type of controlling false discovery rate (FDR) method, to take into account the multiple
testing problem induced by the overlapping scanning windows.

Results: It is shown by simulations that for binary data, using Kulldorff’s Northeastern benchmark
data, the semiparametric method and Kulldorff’s method performs similarly well. When the data
are not binary, the semiparametric methodology still works in many cases, but Kulldorff’s method
requires the choices of a correct probability model, namely the correct scan statistic, in order to
achieve comparable power as the semiparametric method achieves. Kulldorff’s method with an
inappropriate probability model may lose power.

Conclusions: The semiparametric method proposed in the paper can achieve good power when
detecting localized cluster. The method does not require a specific distributional assumption other
than the tilt function. In addition, it is possible to adapt other scan schemes (e.g., elliptic spatial scan,
flexible shape scan) to search for clusters as well.

Background
Scan statistics arise when scanning in time, or space, or
both, looking for clusters of certain events or cases. Here
the cluster can be defined as a certain spatial or temporal
subregion where the the probability distribution of an
event is different from that in the rest of the region. More
generally, a cluster is a subregion where the behavior of
an observable is different from the behavior of the
observable in the rest of the region. For instance, a
subregion comprised of several counties with higher rate
of one certain type of cancer than the rate of other
counties in the study region defines a cancer cluster [1].

Besides epidemiology, more examples of clusters can be
found in many other fields, including criminology,
genetics, mining, astronomy, and so on. See Glaz and
Balakrishnan (1999), Glaz et al. (2001) [2,3].

As a contemporary research topic, research on scan
statistics can be traced back to the 1960’s [4]. Since then
it came out many scan statistics methods, such as scan
statistics with Poisson assumptions [3], scan statistics in
purely temporal domain [5], Upper-level set scan [6-8],
Flexible shaped scan [9,10], etc. Among them, Kulldorff’s
spatial scan statistics has been one of the most popular
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methods and has been applied in many scientific fields
for detecting either purely spatial or higher dimensions
clusters, e.g. space-time scan [11-15]. However, Kull-
dorff’s method requires assumptions on the underlying
distribution (Bernoulli, Poisson, exponential, etc.) of the
scan region. If an inappropriate model is chosen, the
power of cluster detection may significantly decrease
[16]. In addition, the method requires knowledge of the
number of events over the region of interest for Monte
Carlo hypothesis testing.

Kedem and Wen (2007) [16] proposed a semiparametric
cluster detection procedure which requires much less
than complete distributional assumptions, and which
does not require the number of cases prior to scanning.
They also performed a limited power study showing that
when data are largely compatible with the Bernoulli or
Poisson assumptions, the semiparametric method could
be as powerful as the focused test [17] and as Kulldorff’s
method, but the semiparametric method could achieve
higher power when data deviate from the Bernoulli or
Poisson assumptions. However, the power study did not
involve a scanning stage where the moving window scan
the whole study region for cluster candidates. It was
assumed that the cluster was already known, and only
wanted to compare which method, either Kulldorff’s
method or the semiparametric one, had higher power in
detecting the difference correctly between the cluster
region and the background. Hence, the power study was
called limited. Although the case study for the North
Humberside childhood leukemia data set [11,18] of the
paper had the scan stage, the significant level was not
adjusted for multiple testing yet.

In this paper, we extended the original semiparametric
cluster detection procedure by incorporating Storey’s
q-value method [19,20], a type of false discovery rate
(FDR) methodology [21], to take into account the
multiple testing problem inherent in cluster detection.
A comprehensive power study was then conducted using
Kulldorff’s northeastern benchmark data set [22] for
binary power comparison and generated quantized
normal data for non-binary power comparison. The
results show that for binary data the semiparametric
method and Kulldorff’s method are quite comparable.
However, when data are not binary, the semiparametric
method performs well regardless of the probability
model whereas Kulldorff’s method requires the correct
model in order to get a comparably good power. When
the chosen model is inappropriate, Kulldorff’s method
may not achieve good power. This findings are also
consistent with the limited power study performed in
Kedem and Wen (2007) [16]. The extended semipara-
metric method was again illustrated by the North
Humberside childhood leukemia data set.

Methods
Kulldorff’s Scan Statistics
Kulldorff’s scan statistics method uses a large collection
of overlapping scan windows to detect clusters, both the
location and the size, and evaluate their significance. See
Figure 1 for an illustration. For spatial data, the method
first imposes a circular window on a map and let the
circle centroid move across the study region. For any
given centroid, the radius of the window varies
continuously from zero to some upper limit. Usually
this upper limit is set to be the radius which covers 50%
of the whole study region or population. In this way, the
method generates a large set of scan windows ℤ with
different centroid and size. Under the null hypothesis of
no cluster, the underlying behavior of the data through-
out the whole study region is the same. Under the
alternative hypothesis, there is at least one scan window
for which the underlying behavior inside the window is
different as compared with its complement, which
means any scan window Z (Z ∈ ℤ) could be a potential
cluster. In practice, some data are updated periodically.
In such cases, space-time scans are used [13,23]. The
scanning procedure of space-time scans is almost
identical to the purely spatial scan, except that the scan
window becomes a three-dimensional cylinder (see part
(b) of Figure 1) instead of two-dimensional circle. Since
the statistical formulation of space-time scan is identical
to the two-dimensional case, we only describe the 2D
purely spatial scan in this paper.

By Kulldorff’s scan statistics method, each scan window
Z is associated with a likelihood ratio test statistic l (Z)
which can be computed based on the chosen underlying
probability model and the observed data. The scan
window associated with the maximum l (Z) is defined
as the primary cluster candidate occurring not by
random chance. The maximum likelihood ratio itself is
called the Kulldorff’s spatial scan statistic, and the null
hypothesis is rejected for large value. After the spatial

Figure 1
Notation for Kulldorff's method: (a) two-dimensional
purely spatial scan, (b) three-dimensional space-time
scan. (cited from Kedem and Wen, 2007) [16].
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scan statistic and the primary cluster candidate are
determined, a Monte Carlo hypothesis procedure or a
permutation test procedure is executed to generate the
probability distribution of Kulldorff’s scan statistic under
the null hypothesis of no cluster in the study region, and
a p-value is obtained [23,24].

For different types of data, Kulldorff proposed different
scan statistics based on the corresponding probability
models.

Bernoulli model
Bernoulli-based scan statistic is used when individual
entities have only two states such as an individual person
having cancer or not. The part (a) of Figure 1 shows a
typical setup of Kulldorff’s scan statistics method. The
following notation is used.

• G: the whole study region
• Z: the scan window
• μ(G): the total number of individual entities (e.g.
people) in G
• μ(Z): the number of individual entities in Z
• nG: the total number of events in G
• nZ: the number of events inside Z
• p: the rate of events that occurred inside the scan
window Z
• q: the rate of events that occurred outside the scan
window Z

We test the null hypothesis H0: p = q of no cluster. It can
be shown that, for an alternative hypothesis that there is
a hot spot cluster p > q, each scan window Z invokes a
likelihood ratio test statistic as in equation (1):
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scanning for cold spots, then “>” would change to “<”; if
for either hot or cold spots, then it would be “≠”
(Kulldorff, 1999). After all the l (Z) are computed, we
determine the primary cluster candidate Ẑ from

max ( ) ( )
Z

Z Z   , and reject the null for large values of

( )Z . A Monte Carlo based p-value can be obtained
from randomization of the cases across the whole study
region given the total number of cases.

Poisson model
Poisson-based scan statistic is used for the comparison of
the number of cases inside and outside a scan window

when searching for clusters. Suppose we have a study
region composed of I sub-regions. For i = 1, 2,..., I,
assume the number of events xi which occur in an
“interval” μ (Ai) is a Poisson process with intensity rate p
inside the scan window and q outside, respectively.
Similarly to the Bernoulli model, the likelihood ratio test
statistic for each scan window Z for testing H0: p = q is
shown in equation (2):
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where nZ is the observed number of cases inside the
scan window Z, and eZ is the expected number of cases
inside the scan window Z under the null hypothesis of
no cluster. As before, if we were scanning for a cluster
other than hot spot, we simply change the inequality
sign as needed. After getting all the l (Z)’s, find ( )Z
and the Monte Carlo based p-value. When p is small,
e.g. a rare disease, the Poisson model gives a close
approximation to the Bernoulli model and obtains very
similar results [11].

Ordinal model
Jung et al. (2006) [15] proposed an ordinal model,
which is used when individual entities have K > 2
ordinal categories such as the different stages of a
kidney disease, stage 1, 2, 3, 4 and 5. A higher category
may reflect a more serious cancer stage. Suppose the
study region consists of I sub-regions and the variable
of interest is recorded in K categories. Each individual
in the analytical sample falls into one category. Let cik
be the number of individuals in location i who fall into
category k, where i = 1, 2,..., I and k = 1, 2,..., K. Let
Ck = Σi cik be the number of observations in category k
across the study region, and C = ΣkCk = ΣkΣi cik be the
total number of observations in the whole study
region.

The null hypothesis of no cluster in this model means
p1 = q1, ..., pk = qk, where pk and qk are the unknown
probabilities that an observation belongs to category k
inside and outside the scanning window, respectively.
To detect subregions with high rates of higher stages
as compared with the rest of the area, one possible

alternative hypothesis could be p
q

p
q

pK
qK

1
1

2
2

  .

Obviously when K = 2, the ordinal model set up reduces

to the Bernoulli model. Following similar scan proce-

dures as in Bernoulli and Poisson models, the likelihood

ratio test statistic for each scan window is:
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where p̂k and q̂ k are the MLEs of pk and qk under the
alternative hypothesis. A “Pool-Adjacent-Violators” algo-
rithm [25,26] can be applied to compute p̂k and q̂ k .
After all the l (Z)’s are obtained, get ( ),Z Z . A Monte
Carlo based p-value can be obtained by randomization
of the observations across the study region given the
total number of observations in each category, C1, C2,...,
CK.

The above gives a brief summary of Kulldorff’s scan
statistics under Bernoulli model, Poisson model, and
ordinal model, respectively. As for other types of scan
statistics in Kulldorff’s scan statistics family, see Huang
et al. (2007) for the exponential model [14], Kulldorff
et al. (2007) for the multivariate scan model [27],
Kulldorff et al. (2009) for the normal model [28], and
Kulldorff et al. (2006) for elliptic window scans [29].

Kulldorff’s method has been applied successfully in
many applications. However, it requires assumptions on
the underlying distribution (Bernoulli, Poisson, expo-
nential, etc.) of the scan region and the knowledge of the
number of events over the region of interest for Monte
Carlo hypothesis testing. Moreover, It may take con-
siderable amount of computation time to obtain the
Monte Carlo based p-value.

Semiparametric Scan Statistics Method
Kedem and Wen (2007) [16] proposed a semiparametric
scan statistics method for cluster detection using a
density ratio model studied by Fokianos et al. (2001)
and Qin and Zhang (1997) [30,31]. Similar to Kull-
dorff’s scanning procedure, the semiparametric scan
statistics method also uses a movable variable-size
window to scan the whole study region, but performs
for each window a two-sample test. Because the moving
window generates a large set of overlapping scan
windows, it results in a large number of semiparametric
test statistics and their corresponding p-values as well.
The largest test statistic is defined as the semiparametric
scan statistic. To take account of the multiple-testing
problem induced by the multiple scanning windows, the
original p-values are replaced by Storey’s q-values, a type
of controlling false discovery rate (FDR) methodology.
Then the primary cluster candidate will be the window
(subregion) corresponding to the largest test statistic or

equivalently the smallest q-value. If this q-value is less
than a pre-decided level (say 0.05), we claim the located
cluster candidate is a true cluster. We describe briefly the
semiparametric scan statistics method and the q-value
FDR methodology in the following subsections.

Semiparametric Test Statistics
Using Kulldorff’s circular window scan scheme, consider
a scan window which separates the study region into two
parts. This results in two samples,

x
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where x1 is the sample inside the scanning window with
sample size n1, and the x2 is the sample outside the
scanning window with sample size n2, gj(x) is the
probability density function of xji, j = 1, 2, i = 1,..., nj.
Choosing the sample outside the scanning window as
the reference sample and g2(x) as the reference density, it
is assumed that the density ratio between the density
inside the scanning window and the reference density
has an exponential form

g x
g x

x1
2

1 1
( )
( )

exp{ ( )}.    h

Here h(x) is a known vector-valued function of x which
may take on a scalar form such as x or a vector-valued
form such as (x, x2)’, a1 is a scalar, but b1 can be a scalar
or vector depending on h(x). Clearly, b1 = 0 implies a1 =
0. Therefore, b1 = 0 implies the null hypothesis of no
cluster is accepted since the probability distribution
inside and outside the scanning window are equal. See
Kedem and Wen (2007)and Fokianos et al. (2001)
[16,30] for the general setup for m ≥ 2 samples.

Following the profiling procedure discussed in Qin and
Lawless (1994) [32], Qin and Zhang (1997), and
Fokianos et al. (2001), we obtain the log-likelihood:

( , ) log[ exp{ ( )}] [ ( )]   1 1 1 1 1

1
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
(4)

where ti is ith observation in the combined sample t = (x1,
x2)’, and r1 = n1/n2.

It follows from the likelihood (4) that the maximum
likelihood estimators ̂1 and ̂1 from the combined
sample are asymptotically normal as n ! ∞,

International Journal of Health Geographics 2009, 8:73 http://www.ij-healthgeographics.com/content/8/1/73

Page 4 of 16
(page number not for citation purposes)



n
ˆ

ˆ
( , )

 1 1

1 1













  

N 0  (5)

where Σ is a special case of S-1V S-1 under q = 1. See
Appendix 2 for the definition of the matrices S and V .

The maximum likelihood estimator of the reference
(background) distribution function from the combined
sample is given as,
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Kedem and Wen (2007) [16] proposed three test
statistics for testing the null hypothesis H0: b1 = 0,
which means no cluster.

c1 test statistic
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1 1
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where r1 = n1/n2 and Var [h(t)] is the covariance matrix
of h(t) with respect to the reference distribution. It
follows under H0 that c1 is approximately distributed as
Chi-square with v degrees of freedom, where v is the
dimension of b1, which is the same as the dimension of
the function h(x). The null hypothesis H0: b1 = 0 is
rejected for large values of c1. In practice, Var [h(t)] is
replaced by its estimator [16,30]. In addition, if the data
are binary (0-1), the c1 statistic can be simplified to a
close form of equation (15) in the Appendix 1.

c2 test statistic
2

1    n( ) ( ) ( )H H H H  c c (8)

tests for a general linear hypothesis Hθ = c, where θ =
( , , , , , ) 1 1 w w    , w is the total number of samples
excluding the reference sample. H is p’ × [(1 + v)w)]
predetermined matrix of rank v’, v’ < (1 + v)w, c is a
vector in  v , and the variance-covariance matrix Σ =
S-1V S-1. It follows under H0 that c2 is asymptotically
distributed as c2 with (v’) degrees of freedom provided
the inverse exists [33], and H0 is rejected for large values.
This test is useful when one wants to borrow informa-
tion from other sources besides the current study region,
although we did not use it in this paper.

Likelihood ratio test statistic
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Under H0: b1 = 0, LR is asymptotically approximately
distributed as Chi-square with v degrees of freedom, and
H0 is rejected for large values. Recall v is the dimension
of b1 and it depends on the choice of the function h(x).
Similarly, when the data are 0-1 binary, the likelihood
ratio statistic reduces to equation (16) in the Appendix 1.

Storey’s FDR Method and q-value
Controlling the false discovery rate (FDR) is a less
conservative way to handle multiple testing problems. It
was first proposed by Benjamini and Hochberg (1995)
[21]. Since then, the FDR methodology has been further
developed and applied to many fields, especially in
genomic research [34-36]. FDR is defined to be the
expected proportion of falsely rejected hypotheses (false
positives) as in equation (10),

FDR E
V

max R
E
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R
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 

( , )
| ( )

1
0 0 (10)

where V and R are defined in Table 1. From the table it is
clear that if m = m0, which means all the null hypotheses
are true, then FDR is equivalent to the family-wise error
rate (FWER). To see that, recalling FWER is defined as P

(V ≥ 1), m = m0 makes S = 0, and hence E RV
R | 



0 = 1

for all R > 0, and therefore FDR = 1 * P(R > 0) = P(V ≥ 1) =
FWER. If m0 <m, then FDR ≤ FWER, which means a
potential gain in power at the cost of increasing the
likelihood of making type I errors [21].

Storey (2002) and Storey et al. (2004) [19,37] improved
the original Benjamini and Hochberg’s FDR methodol-
ogy by estimating the π0 = m0/m, the proportion of true
null hypotheses. In addition, Storey used positive FDR
(pFDR) as in equation (11) instead of FDR as in
equation (10).

pFDR E
V
R

R 





| 0 (11)

In many cases, when m, the total number of hypotheses,
is large, it easily to have significant ones, which makes Pr
(R > 0) ≈ 1. Thus, pFDR (eq. 11) is close to FDR (eq. 10)
in numerical value, but pFDR has some conceptual
advantages. A thorough motivation of using pFDR rather
than FDR can be found in Storey (2003) [20].

Table 1: Classification of m hypotheses tests

Hypothesis # of Accept # of Reject Total

# of true nulls U V m0
# of true alternatives T S m1
Total W R m
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The q-value is defined to be the pFDR analogue of the
p-value. It gives the error measurement with respect to
pFDR for each observed test statistic of each particular
hypothesis. More precisely, the q-value of one particular
observed test statistic T = t from a set of tests can be
defined to be

q t pFDR
t

-value( ) inf ( ),
:


 


 

 (12)

where Γa is a nested significance region at level a [19].
This means the q-value is the minimum pFDR at which
the corresponding test may be called significant. In this
way, q-value simultaneously takes into account the
multiple testing problem.

In our semiparametric scan situation, we generate a lot of
overlapping scan windows, and each window associates
to a hypothesis test and a test statistic, so m here is
usually large. Because of the large m, we adopted the
algorithm in Storey et al. (2003) [35] to estimated the
q-value for each scan window as follows:

1. Obtain the p-value for each scan window, and sort

p p p m( ) ( ) ( ).1 2  

2. Estimate π0 using a cubic spline function. First, for a
range of l, say l = 0, 0.01,...,0.95, calculate
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4. For i = m - 1, m - 2,...,1, calculate the estimated q-value
for the ith most significant one as
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5. Choose the region with the largest test statistic, for
example, the largest likelihood ratio test statistic, as the
primary cluster candidate, and its q-value is q(p(1)), the
smallest q-value among all the tests. If q(p(1)) is less
than a pre-decided false discovery rate, say q(p(1)) <
0.05, we claim there is clustering and the located primary
candidate is a true cluster region.

The semiparametric approach has several advantages.
First, the reference (or background) distribution, G(x),
and all the parameters such as b1 are estimated from the
combined data t, not just from a single sample either
inside the window or outside the window. Second, for a
properly chosen h(x), the above tests are quite powerful.
The simulation results indicate that the c1-test competes
well with the corresponding F-test [30]. Moreover,
Gagnon (2005) [38] shows that for m = 2 the c1-test
can be more powerful than the common t-test for a
known h(x) but unspecified distributions. Third, in
testing equidistribution, other than an assumption
regarding the tilt function h(t), the semiparametric
density ratio method does not require distributional
assumptions. Fourth, the semiparametric method can be
applied to either continuous or discrete distributions.
Fifth, since the asymptotic distributions of the above
mentioned test statistics are known, in principle there is
no need for the time consuming Monte-Carlo methods
to compute the p-values. Lastly, Storey’s q-value method
can adjust the original p-values, and easily handles the
multiple testing problem inherent in cluster detection.

Data Sets for the Power Comparison
Both Kulldorff’s and the semiparametric scan statistics
methods are suitable for both binary and non-binary
data. So we use both types of data to perform the
simulated power study. The following two subsections
give a brief description of the binary and the non-binary
data sets used in the study.

Binary Data Set — Northeastern USA Benchmark Data
For binary data scans, we use Kulldorff’s Northeastern
USA purely spatial benchmark data [22] which consist of
245 counties in northeastern United States, from Maine,
New York, Rhode Island, Pennsylvania, Maryland,
Washington DC, among others. Each county is graphi-
cally represented by its centroid coordinates. The case
data, which is the number of people who have breast
cancer, are aggregated to each county centroid with the
total number of cases in northeastern states (the whole
study region) being fixed. The population data of each
county are based on the female population of the 1990
census. The benchmark data set contains two types of
data, hot-spot clusters and global clustering data,
generated in different ways.

Hot-spot clusters
Data are generated by a first-order clustering model,
where cases are located independently of each other but
the relative risk is different in different geographical
areas. In this benchmark data set, the cluster region can
be either a single region containing one or more
counties, or a collection of multiple regions, where the
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risk of breast cancer is much higher than in the rest of
area. Three types of clusters, rural, urban, and mixed, are
generated depending on the location of the cluster. A
rural cluster is the type of cluster where a small
population relative to a large graphical area, such as
the Grand Isle county in north Vermont close to the
Canadian border. An urban cluster is the type of cluster
which has a large population relative to a small graphical
area, such as New York county which includes Manhat-
tan. A mixed cluster is the type of cluster where a big city
is surrounded by rural areas, such as Allegheny county in
western Pennsylvania where Pittsburgh is. See Kulldorff
et al. (2003) [22] for more detail.

Global clustering
Data are generated by purely second-order clustering
model, where any one particular case is randomly
located, but the location of cases are dependent on
each other. Thus, under the alternative hypothesis of
global clustering, cases are clustered wherever they occur
in the region. In this benchmark data set, a certain
number of cases are first generated to be randomly
located throughout the whole northeastern states. These
original cases then generate other new cases close by. If
each original case generates one additional case, we call
them twins; if two additional cases are generated, we call
them triplets. The case generation is based on a global
chain rN-nearest neighbor rule. The global chain is
constructed by a Hamiltonian cycle chain which passes
through as many counties as possible exactly once and
any two counties next to each other on the chain always
border each other graphically. For twins, the additional
case is assigned to county j if ΣkI(dik<dij)nk<rN ≤ ΣkI(dik ≤
dij)nk, where nk is the population size of county k, N =
Σknk is the total population size, r is some constant in the
interval of (0,0.5) with the bigger r the broader
geographical area to spread the cases, and dij is the
distance in one particular direction along the chain
connecting county i and county j. For triplets, the two
new cases are assigned in opposite directions along the
chain. Data sets corresponding to different r were
generated from a probability distribution or be deter-
mined in advance. Notice that although the data
generation mechanism of the second-order clustering
model is very different with the first-order clustering
model, the resulting point patterns may look quite
similar, and hence indistinguishable.

Both hot-spot and global clustering data sets in this
benchmark data set have two separate groups of data
with a total of 600 and 6000 simulated cases, respec-
tively. For each group the same null hypothesis of no
cluster is used where the relative risk for each county is

equal, and the cases as well as their locations are
independent of each other. In order to perform power
comparison, 100000 random data sets with a total of
600 and 6000 cases were generated under the null
hypothesis, respectively. They are used to estimate the
critical cut-off point of significance for each group. For
the alternative hypothesis of clusters which are called
scenarios in this paper, 10000 random data sets per
scenarios were generated to estimate the power using the
previous determined cut-off points.

For each group of fixed total cases (600 or 6000 cases),
Kulldorff generated 35 hot-spot clustering scenarios and
26 global clustering scenarios for his power comparison.
For instance, a scenario of “rural and urban 600, size 4”
means that the total of number of cases in the whole
study region is 600 and the study region contains two
hot-spot clusters. One cluster is in a rural region
including four counties, and the other one is in an
urban region including four counties also. A scenario of
“global clustering twin 6000, exponential 0.02” means
that the total number of cases is 6000 and the cases are
generated under the alternative hypothesis of global
clustering. The value r is not constant but randomly
generated from an exponential distribution with mean
0.02 among the data set generated under this scenario.

We did not use all the scenarios in Kulldorff’s North-
eastern US benchmark data in this paper. Instead, we
randomly chose one or two scenarios from each
clustering pattern. Finally, nine hot-spot clustering
scenarios and six global clustering scenarios were used
in our power study for the binary data case. After
selecting these scenarios, Kulldorff’s method with the
Poisson model (Bernoulli model is also appropriate)
and the semiparametric method with the tilt function h
(x) = x were applied to the same data sets in each
scenario to compare the power. Because data are binary,
the simplified semiparametric likelihood ratio test
statistic (eq. 16) is used in the computation. All the
tests are two-sided to detect for either high or low valued
clusters.

Non-binary Data Set — Ordinal Categorical Data
For non-binary data scan, we used the simulated ordinal
categorical data with one data point corresponding to
one observation. The data are aggregated to state level
distributed in 18 US states. Most of them are middle
west and south states, including Alabama (AL), Arkansas
(AR), Texas (TX), Virginia (VA), etc. Each state is
graphically represented by its centroid coordinate.
Figure 2 shows the map of the states included in our
simulation study.
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The ordinal categorical data are generated from quantized
normal data which truncate the integer part of the original
data generated from normal distribution. We refer to
quantized normal II and quantized normal III data as in
Kedem and Wen (2007) [16]. The quantized normal II
data are derived from normal data with the same mean
but relatively large variance difference inside and outside
the cluster region (inside variance is twice of the outside
variance). The quantized normal III data are derived from
normal data with both different mean and variance inside
and outside the cluster region. To see how Kulldorff’s and
the semiparametric methods perform when the difference
(in mean) between the cluster and the non-cluster region
is small, namely a more difficult cluster to be detected, the
data set “Quantized Normal III (small)” was generated.
We did not generate data under quantized normal I (same
variance, different mean) mechanism, because it has
shown that as long as the mean difference is reasonably
large, Kulldorff’s method with even an inappropriate scan
statistic still would work [16]. Table 2 lists the mean and
variance parameters used in this paper to generate the
quantized normal data

For each type of data, the average sample size within
each state is around 130, hence a total number of

130 * 18 = 2340 observations in each generated data set.
Cluster patterns included single cluster and multiple
clusters for Quantized Normal II, Quantized Normal III,
and Quantized Normal III (small) data, respectively. To
perform the power comparison within a reasonable time
scale, we used 100 runs, namely 100 random data sets,
per cluster pattern in our power comparison study. The
single clusters means only one state was randomly
chosen as the cluster region. By multiple clusters we
mean four states were randomly chosen simultaneously
as the cluster region, where the four states are not
necessarily contiguous. Notice that multiple clusters
constitute a stronger clustering pattern which in general
is easier to detect.

In our power comparison for non-binary ordinal
categorical data, Kulldorff’s method chose Poisson
model (inappropriate model) and the ordinal model
(correct model) using SaTScan v7.0.1 http://www.sats-
can.org/. 999 replications were used to decide the p-value
under each model. The semiparametric method chose
the vector tilt function h(x) = (x, x2)’. Observe that it is
also appropriate to choose h(x) = (x, x2)’ for binary data
case, because in that case the coefficient of x2 term is 0.
See Appendix 1 for detail.

Results
Power Comparison
We compared the power of Kulldorff’s and the semi-
parametric scan statistics methods in detecting potential
clusters. Because there are various cluster patterns, either
single or multiple clusters, and each cluster region may
contain one or more counties or states, for simplicity, in
our power comparison we more focus on detecting the
existence rather than the precise delineation of the
cluster region. For instance, for a data set with a pattern
of multiple cluster regions and multiple counties in each
cluster region, we deem the detection successful when-
ever a significance (i.e., p-value or q-value less than 0.05)
is obtained. We do not strictly require the detected
cluster region to be exactly the same as originally
simulated. The detected cluster region could fully or
partially cover the desired area.

Comparison for Binary Data
The results of power comparison for the binary case-
population data using the northeastern US benchmark
data set are shown in Figures 3 and 4 for a total number
of 600 and 6000 cases, respectively. Kulldorff’s method
used Poisson model, and the semiparametric method
used the likelihood ratio test. All tests are two-sided tests.
The radius of the scan window varies continuously from
covering one county to covering no more than 50% of
the whole study region. In each figure, scenario 0 is

Figure 2
Map of the US middle west and south states used in
the simulation for non-binary data. The included states
are denoted with color and the abbreviation of their state
names. The state Illinois with red color is illustrated as one
possible cluster region in our simulated data.

Table 2: Parameters for Generating the Ordinal Categorical
Data from Quantized Normal

Data Type Inside the cluster Outside the cluster

Quantized Normal II μ = 13, s2= 8 μ = 13, s2= 4
Quantized Normal III μ = 7.2, s2= 13 μ = 6, s2= 9
Quantized Normal III (small) μ = 6.5, s2= 13 μ = 6, s2= 9
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under the null hypothesis of no cluster, scenarios 1 to 9
are hot-spot clustering scenarios, and scenarios 10 to 15
are global clustering scenarios. Each scenario contains
five quantities. They are “Kull.paper”, “Kull.me”,
“SemiwFDR = 0.1”, “SemiwFDR = 0.05”, and “Bonfer-
roni”. “Kull.paper” is the corresponding power copied
from Kulldorff et al. (2003) paper [22]. “Kull.me” is the
corresponding power computed by us based on Kull-
dorff Poisson model. It is shown from Figure 3 and 4
that the column of “Kull.paper” is almost equal to the
column of “Kull.me”, which confirms the validity of our
computation. So in the latter section, we will use
“Kulldorff’s method” without distinguishing these two
power results. “SemiwFDR = 0.1” is the corresponding
power computed based on semiparametric method with
a q-value significance level 0.1. “SemiwFDR = 0.0.5” is
the corresponding power based on semiparametric
method with a q-value significance level 0.05. The
smaller the q-value significance level is, the harder it is
to reject the null hypothesis, hence the lower the power
to detect the cluster. “Bonferroni” is the corresponding

power computed based on semiparametric method using
Bonferroni correction with 5% family-wise error rate,
where the original obtained p-values are multiplied by
the number of tests to obtain Bonferroni corrected p-
values. If at least one Bonferroni corrected p-value is less
than 0.05, we claim there is clustering. As we know
Bonferroni correction is a popular but conservative
approach to handle multiple testing problems, we expect
column of “Bonferroni” should have the lowest power
among the five.

For scenario 0, both Figures 3 and 4 show that the type I
error of Kulldorff’s method are all exactly 0.05 for both
600 cases and 6000 cases. This is expected since
Kulldorff’s method uses a Monte Carlo procedure to
derive the cut-off point for the corresponding signifi-
cance level. The power from the semiparametric method
under the q-value significance level of 0.1 is 0.052 for the
600 cases, and 0.054 for the 6000 cases, almost equal to
Kulldorff’s type I error level. Notice that higher q-value
significance level means in favor of the alternative. If the

Figure 3
Power comparison for binary type data between
Kulldorff’s and the Semiparametric method with the
likelihood ratio test using the northeastern US
benchmark data with totally 600 simulated cases.

Figure 4
Power comparison for binary type data between
Kulldorff’s and the Semiparametric method with the
likelihood ratio test using the northeastern US
benchmark data with totally 6000 simulated cases.
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q-value significance level is lower down to 0.05, the type
I error of the semiparametric method reduced to 0.027
for both cases. It shows that if one wants to make the
power comparison under exactly the same type I error
level, say 0.05, the q-value significance level must be set
in the interval between 0.05 to 0.1. In addition, the type
I error of the semiparametric method with Bonferroni
correction is the lowest, which is not a surprise, since
Bonferroni correction is most conservative.

For scenarios No. 1 to 9, both figures show that the two
methods work very well in detecting hot-spot clusters,
but Kulldorff’s method seems to be slightly more
powerful. When the study area has a stronger pattern
of clustering, such as containing more cluster regions, the
power of both methods increases, which demonstrates
the validity of the two methods. For instance, scenario
No. 6 in Figure 3 has a total of 600 cases and two cluster
regions where each cluster region contains 16 counties.
The power of Kulldorff’s method is 0.996, whereas the
power of semiparametric method with q-value signifi-
cance level of 0.1 and 0.05 obtain the power 0.996 and
0.993, respectively, which is quite close to the power of
Kulldorff’s. The semiparametric method with Bonferroni
correction is 0.968, which is expected to be the lowest,
but still is quite reasonable.

For scenarios No. 10 to 15, there is no clear cut to say
Kulldorff’s method or semiparametric method is better,
and both methods do not achieve high power as in hot-
spot detection. This is so because both Kulldorff’s and
the semiparametric methods are not designed to detect
global clustering pattern. It is also shown that for both
methods, the larger the r is, the lower is the detection
power. This is reasonable, because larger r means larger
range for the data to spread, hence more difficult to form
a local cluster pattern.

Comparison for Ordinal Categorical Data
The results of power comparison for non-binary ordinal
categorical data using the simulated middle west and
south US data set are shown in Figures 5, 6 and 7. Similar
as in the power comparison for binary data, the radius of
the scan window varies continuously from covering one
county to covering no more than 50% of the whole study
region. All the tests are two-sided tests. The significance
level for Kulldorff’s method is still 0.05, and the q-value
significance level for the tests in the semiparametric
method is set at 0.05 as well. This means the true type I
error level of the semiparametric method might be lower
than Kulldorff’s as showed in the last subsection.

For ordinal categorical data which are generated from the
quantized normal II type, Figure 5 shows that the

semiparametric method with the likelihood ratio test
has the highest power of detecting potential clusters
among all the tests. The semiparametric method with the
c1 test works well but not as good as the likelihood ratio
test. This is in line with the limited power study in
Kedem and Wen (2007) [16] which showed the like-
lihood ratio test was the most powerful tests among
three tests from the semiparametric density ratio model.
Moreover, when the clustering pattern is stronger, for
instance, the study region contains multiple clusters, the
power of c1 test increases to 0.94, which is almost close
to the power of the likelihood ratio test. The power of
Kulldorff’s method with Poisson model is very low,

Figure 5
Power comparison between Kulldorff’s and the
Semiparametric methods for ordinal categorical
data generated from quantized normal II data, where
the means are fixed at 13 but the variances are 4 and
8, between the cluster region and the rest of the
area, respectively.

Figure 6
Power comparison between Kulldorff’s and the
Semiparametric methods for ordinal categorical
data generated from quantized normal III data,
where means are 7.2 and 6, variance are 13 and 9,
inside and outside the cluster region, respectively.
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because Poisson model is designed to detect the
difference in the mean not in the variance. Kulldorff’s
method with ordinal model is comparable to the
semiparametric method with the c1 test in detecting
potential clusters.

For ordinal categorical data which are generated from the
quantized normal III type, Figure 6 shows that the
semiparametric method performs in the same way as in
the quantized normal II case. The semiparametric
method with the likelihood ratio test still has the highest
power in both single and multiple clusters situation. The
power of all tests increases as the clustering pattern
becomes stronger. Kulldorff’s method with the ordinal
model performs equally well as compared to

semiparametric method. Kulldorff’s method with Pois-
son model “works” but still much less powerful than the
other tests. This is because for the quantized normal III
data, Kulldorff’s Poisson model can detect the changes in
the mean while still ignoring changes in the variance.

The part (a) of Figure 7 shows the power results when
the difference (in the mean) between the cluster and
non-cluster regions is small. The data are still ordinal
categorical data generated from the quantized normal III
type. However, this time the difference is that the mean
in the cluster region was set to be close to the the non-
cluster region, while the variances inside and outside the
cluster region were kept the same as in the previous case
(refer to Table 2 for the simulation parameters). In this
way, the clusters were more difficult to detect. Not
surprisingly, the power for the semiparametric method
with the likelihood ratio test and Kulldorff’s method
with the ordinal model continue achieving the highest
power, although it is much lower than the power in the
previous case where the differences inside and outside
the cluster region were substantial. The power of the c1
test of the semiparametric method also decreases due to
the weaker cluster pattern, and Kulldorff’s method with
the Poisson model yields the lowest power almost 0. The
multiple cluster case is similar to the single cluster case
but with a relatively higher power. Interestingly, if we
look at the accuracy, which means detecting the true
cluster region correctly with its exact size, the most
accurate method as shown in the part (b) of Figure 7 is
the semiparametric method with the likelihood ratio test
statistic, which achieves more than 50% higher accuracy
rate than Kulldorff’s method with the ordinal model.

A Case Study — North Humberside childhood leukemia
data set
The semiparametric method with Storey’s q-value for
adjusting the multiple-testing was again applied to the
North Humberside childhood leukemia data set under
the same conditions as used in Kedem and Wen (2007)
[16]. As shown in Figure 8, both Kulldorff’s method and
the semiparametric method point to the same cluster as
the primary cluster candidate, but but Kulldorff’s
method gave a highly insignificant p-value of 0.674,
whereas the semiparametric method gave a significant p-
value of 0.002 without adjusting for multiple testing and
a close to boundary q-value of 0.073 adjusted by the
Storey’s approach. Thus, the results from the semipara-
metric method are more in line with the medical and
environmental studies of Cuzick et al. (1990), Mckinney
et al. (1991), and Colt and Blair (1998), which suggested
that the North Humberside region had paternal exposure
to solvents which were strongly associated with leukemia
[39,41]. It seems the results from the semiparametric

Figure 7
Power comparison between Kulldorff’s and the
Semiparametric methods for ordinal categorical
data with small difference. The data are in quantized
normal III small type with means 6.5 vs. 6 and variances 13 vs.
9, respectively.
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method that the located cluster candidate is a true cluster
are more credible. More conclusive results may be
obtained by increasing the sample size.

Discussion and Conclusion
In this paper, We extended the semiparametric cluster
detection method of Kedem and Wen (2007) [16] by
incorporating Storey’s q-value method, a type of FDR
method, to overcome the multiple-testing problem
raised by numerous scan windows of variable size. The
results of the power study show that when detecting
localized clusters, both the semiparametric and Kull-
dorff’s method can achieve comparably good power. For
binary population-case data, Kulldorff’s method with
Poisson model may have a slightly higher power than
the semiparametric method with the tilt function h(x) =
x. We may choose the tilt function as h(x) = (x, x2)’ for
binary data as well although the x2 term is not necessary.
See Appendix 1 for a more detailed explanation. For
non-binary data, such as ordinal categorical data, the
semiparametric method with the tilt function h(x) = (x,
x2)’ is slightly more powerful than Kulldorff’s method
with the ordinal model. If Kulldorff’s method is applied
with an inappropriate model, it may fail to detect any
potential clusters as shown in the simulation study for
non-binary data. We also find that in our semiparametric
method the likelihood ratio test seems to have higher
power than the c1 test in detecting potential clusters.
When the localized clustering pattern is strong, for
instance, multiple cluster regions or the difference inside
and outside the cluster region is large, both tests obtain
good power. When the clustering pattern is weak, that is,
the difference is not that large, the likelihood ratio test

seems to be acuter, while the c1 test could be insensitive
to the undesired fluctuations. In addition, the Likelihood
ratio test only can test “either high or low values”, but c1
test can be easily transformed into a one-sided test [16]
for two-sample comparison and scalar tilt function. In
practice, it is prudent to use both tests for potential
clusters. Potentially, if one wants to borrow information
from other sources besides the current study region, the
c2-test of the semiparametric method could be used.

In the power study for non-binary data, we only used the
ordinal categorical data, which are integer data, to
compare the power of the two methods. However,
Kulldorff’s method also provide exponential model to
analyze the survival data, which are mostly assumed to
be exponentially distributed, and a normal model to
analyze continuous data. A future study is to compare
the power of the semiparametric method and Kulldorff’s
method for continuous data. But we may expect the
semiparametric method will still work well, since the
semiparametric density ratio model was originated from
continuous data. In addition, the semiparametric model
may have a more consistent setup than Kulldorff’s
method. Kullorff’s method needs to choose different
models, namely different scan statistics, for different
types of data, whereas the semiparametric method
requires no complete distributional assumptions except
for the tilt function h(x). It could choose h(x) = (x, x2)’
for many types of data, no matter continuous or discrete.

If the underlying distribution is known exactly, semi-
parametric could choose the appropriate tilt function h
(x) to get the best performance. For instance, if the data
are known from Bernoulli or Poisson distribution, we
can use the tilt function h(x) = x; if the data are from
normal, we can use h(x) = (x, x2)’; if the data are from
Gamma distribution, we can use h(x) = (x; log x)’. A clue
of how to choose a satisfactory h(x) for a given situation
can be derived from common exponential families. More
examples can be found in Kedem and Wen (2007) or
Kay and Little (1987) [16,42]. In addition, Fokianos et.
al. (2001) [30] suggested that h(x) could be approxi-
mated by a polynomial, B splines, or kernel estimation.
If the underlying distribution is not known, there could
be a problem of the misspecified tilt function. Fokianos
and Kaimi has discussed that a misspecified h(x) could
decrease the power of the corresponding tests [43,44].
Yet, there are examples where very different choices of h
(x) could lead to similar test results. For instance, in an
application to meteorological data in Kedem et al.
(2004) [45] the choice of h(x) = x or h(x) = log x led
to very similar results. It seems that for a non-
homogeneous regional variance the choice of h(x) = (x,
x2)’ suggested by the normal distribution is sensible.

Figure 8
Detected North Humberside childhood leukemia
cluster denoted in red dot.
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The semiparametric density ratio model essentially tests
the homogeneity or equidistribution of two or more
samples, therefore, besides Kulldorff’s circular scan
window, the semiparametric method may also adapt to
other shape of the scanning window or scanning
schemes, such as the Kulldorff’s elliptic window scan,
irregular shape upper-level set scan, or flexible scan, etc.
More precisely, in scanning for clusters, and regardless of
the regular or irregular shape of the scanning window, as
long as the window separates the whole study region
into two samples, one inside the window and one
outside the window, the semiparametric method can be
applied. However, it also makes the semiparametric
method ignore the information about the location of the
cases except whether the case is inside or outside the
current evaluated window. Thus the semiparametric
method may not have good power for global type
clustering as shown in scenarios 10 to 15 in Figure 3 and
4 where clustering occurs throughout the study region.

A limiting factor of this power study might be that in the
power study for non-binary type data we only used 100
runs at one point for each power comparison. That is
because it is tedious and time consuming to run SatScan
software and document the results manually. In addi-
tion, the semiparametric method also takes longer time
to numerically estimate the parameters a and b
especially when the combined sample size is big, while
for binary scan the MLEs of a and b have already been
obtained in closed forms. However, although 100-run
does not sound like a large number in simulation, the
results are still meaningful. From Figures 5 and 6, it is
already clear to show the semiparametric method
achieves comparable good power as Kulldorff’s method
with the correct model achieves. If Kulldorff’s method is
applied with an inappropriate model, the power may
decrease a lot. Figure 7 demonstrates that when the
difference between the cluster and non-cluster region is
small, the detecting power for both methods decrease,
but the likelihood ratio test from the semiparametric
method seems have better accuracy in detecting clusters.

A last note is about the π0 in Storey’s q-value method.
The critical part of the q-value method of controlling the
false discovery rate is to give a good estimate of π0, the
proportion of the true null hypotheses among all the
tests. The current method we used in this study is based
on the algorithm suggested by Storey et al. (2003) [35]
and assume the distribution of p-value from each test is
uniform over the (0,1) interval. However, Yang (2004)
[46] pointed out that if the p-values were not uniformly
distributed, the power of the q-value method may
decrease. He suggested to compute a weighted average
of π0 from the distribution of the raw p-values which are

greater than a threshold (say 0.4). Thus it may give a
better control and more robust estimate of π0.

Appendix 1 — Simplified Semiparametric Test
Statistics for Binary Data
If the data are 0-1 binary, such as cancer or not cancer,
we can simplify the likelihood and obtain closed forms
for the estimated parameters. Recall:

NG: The combined sample size for the whole study
region.

nG: The number of cases in the whole study region.

NZ: The sample size within the scan window.

nG: The number of cases within the scan window.

ti: The ith observation from the combined sample in the
whole study region, i = 1,..., NG.

r1: The relative sample size, which is equal to NZ/(NG -
NZ).

xZj: The jth observation within the scan window Z, j =
1,..., NZ.

For binary data, choose the tilt function h(x) = x. Then
the profile log-likelihood with parameters a1 and b1 is
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The resulting maximum likelihood estimators are,
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If b1 = 0, it implies a1 = 0 and ea1+b1 = 1, which means
the relative rates inside and outside the scan window are
equal.
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By equation (7), then c1 test statistic then can be
simplified to

  
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Where 1  
NZ

NG NZ
and ̂1 is as in equation (14).

By equation (9), then the likelihood ratio test statistic
can be simplified to
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(16)

If the tilt function h(x) is chosen as (x,x2)’, the parameter
b11 and b12 are associated with the x and x2 term,
respectively. Notice that for 0-1 binary data, x = x2 in
value, thus

  11 12
2

1x x x  ,

the x2 term is confounded with x, and b12 is not
estimable. Therefore, tilt function h(x) = x with para-
meters a1, b1 are sufficient for binary case.

Appendix 2 — Derivation of S, V
The matrices S, V are derived by repeated differentiation
of the log-likelihood (eq. 17), which is the generalized
version of equation (4) for m samples (m = q + 1) with
the mth sample being the reference sample.
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Recall that the asymptotic covariance matrix of the
estimates in (5) is given by the product
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Then E[∇ l(a1,..., aq, b1,..., bq)]=0. To obtain the score
second moments it is convenient to define rm ≡ 1, wm(t)
≡ 1
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for j, j’ = 1,..., q. Then, the entries in
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The last term is 0 for j ≠ j’ and (nj/n)Var [h(∈j1)] for j = j’.

Next, as n ! 1,
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