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Abstract
Background: Extreme heat events are the number one cause of weather-related fatalities in the
United States. The current system of alert for extreme heat events does not take into account
intra-urban spatial variation in risk. The purpose of this study is to evaluate a potential method to
improve spatial delineation of risk from extreme heat events in urban environments by integrating
sociodemographic risk factors with estimates of land surface temperature derived from thermal
remote sensing data.

Results: Comparison of logistic regression models indicates that supplementing known
sociodemographic risk factors with remote sensing estimates of land surface temperature improves
the delineation of intra-urban variations in risk from extreme heat events.

Conclusion: Thermal remote sensing data can be utilized to improve understanding of intra-urban
variations in risk from extreme heat. The refinement of current risk assessment systems could
increase the likelihood of survival during extreme heat events and assist emergency personnel in
the delivery of vital resources during such disasters.

Background
The impact of climate change on human health is a major
concern for the global public health community [1-5].
Health outcomes expected to be impacted by climate
change include, but are not limited to, asthma, heart dis-
ease, infectious diseases and heat-related illnesses [6-9]. In
North America, extreme heat events (EHEs) are the
number one cause of weather-related mortality [10]. This
is likely the case for countries across the world, although
it is difficult to prove due to lack of health surveillance
data [11]. Climate models project year-round tempera-
tures across North America for the first half of the 21st cen-
tury will warm approximately 1 to 3°C [12], increasing
the magnitude and duration of EHEs in portions of the

U.S. where they already occur [13]. Late in the 21st cen-
tury, projected annual warming is likely to be 2 to 3°C
across the western, southern, and eastern continental mar-
gins, but more than 5°C at higher latitudes[13], where
many U.S. urban areas that have been affected by lethal
heat waves are located.

Despite the projections of a warming climate and an
increase in EHE frequency and intensity, there is a lack of
public recognition involving the hazard of extreme heat
exposure. U.S. metropolitan areas generally lack prepared-
ness measures such as heat wave response plans [14-16].
Much of the problem lies in the fact that heat waves are
silent killers that do not leave a trail of physical destruc-
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tion in their wake. Like other natural disasters they are
sporadic phenomena, but unlike hurricanes or tornadoes,
heat waves do not leave lasting reminders of physical dev-
astation.

Epidemiologic studies indicate that individuals at higher
risk of adverse health effects from extreme heat exposure
include the elderly, the urban poor, those living alone,
and persons who do not have access to air conditioning
[17-20]. In addition, persons with chronic mental disor-
ders, pre-existing medical conditions (obesity, cardiovas-
cular, neurological and psychiatric diseases) are at
elevated risk. Medications that interfere with salt and
water balance, such as diuretics, anticholergic agents, and
tranquilizers that impair sweating, also increase risk.

There has been a renewed emphasis on the relationship
between place and human health. Recent reviews have
recommended increased integration of spatial informa-
tion in health behaviour and health outcomes research to
develop a more comprehensive understanding of place-
based effects, as well as new analytical approaches
[21,22]. Census data provide information about the spa-
tial distribution of some sociodemographic (population-
based) characteristics associated with vulnerability to
EHEs at multiple levels of aggregation (county, census
tract, census block group). Even with the availability of
population indicators from census data, surveillance and
alert for heat-related conditions is currently only con-
ducted at a regional or county level [19,23-25]. This reso-
lution of surveillance lacks sufficient spatial detail to
account for intra-urban variability in risk. Methods that
provide more spatially specific information may better
inform planning and intervention in areas where
increased prevalence of heat-related illness is likely to
occur.

Previous studies of EHE risk factors suggest mapping soci-
odemographic variables (i.e. vulnerability, population
density) from census data to provide indication of the spa-
tial variation in vulnerability [26-30]. However, this
approach does not account for physical environment var-
iables that may contribute to increased risk from EHEs.
For example, vulnerable residents living in an area of low
environmental heat load may be less at risk than a group
living in an area of high heat load. Accounting for the
coincident relationships between both social and physical
environmental factors in assessing risk from EHEs may
support improved planning and intervention strategies.

The environmental heat load in urban areas is partially
indicated by the urban heat island (UHI) effect. The UHI
is the observed difference between the rural and urban
temperature gradient [31]. Typically, surface temperatures
in urban areas are higher than rural locations. This phe-

nomenon may have an exacerbating effect during heat
waves and potentially contributes to heat-related death
[32,33]. Moreover, the UHI effect is spatially dynamic,
consisting of differing areas of intensity within the city
[34]. The UHI shows strong seasonal fluctuations in its
diurnal intensity but the temperature extremes between
the urban and rural areas are most pronounced during the
day in the summer months [35,36]. However, the noctur-
nal UHI additionally shows drastic temperature dispari-
ties with the contiguous rural space. These intensity levels
are strongly associated with the land cover types [37-40].
It is thought that a model incorporating surface tempera-
ture variations with socioeconomic indicators of heat-
related vulnerability may yield a more robust predictor of
risk than one accounting for the socioeconomic indicators
alone.

Results
All models developed are shown in table 1. The model
predicting heat-related mortality using only sociodemo-
graphic count variables and total population (model 1),
was found not significant using the Hosmer-Lemeshow
(H-L) test. It is important to note that this particular
model produced a sensitivity and specificity of .79. How-
ever, it is excluded from discussion due to its apparent
lack of fit with the original variables.

Model 2 (attributes shown in table 1) included only land
surface temperature (LST) variables extracted from Land-
sat TM data. Maximum, mean and range of LST were
found to be statistically significant variables and the over-
all model was significant using the Hosmer-Lemeshow
test. The ROC examination shows a .72 area under the
curve, but it is not statistically different from using model
4, the sociodemographic rate data (the standard). Exam-
ining the thermal variables in this model suggests that for
each unit increase in the mean LST, risk of death increases
by a factor of 6. The odds ratio of .352 for maximum LST
indicates that for each unit decrease in maximum LST the
odds of death increase by a factor of 2.84. As the maxi-
mum LST value for each census tract increases, the proba-
bility of death decreases; but not to the same degree as it
increases with increased mean LST. This is somewhat
counterintuitive but if the maximum LST is removed, leav-
ing only the mean and the range, the sensitivity and spe-
cificity is degraded to .68. A standard unit increase in the
range LST raised the probability of death by a factor of
1.94.

Model 3 assimilated LST data with the sociodemographic
count and total population data. Results were significant
as determined by the Hosmer-Lemeshow test. Age 65+ in
poverty and total population in poverty were the only
sociodemographic variables found to be significant (see
table 1). Maximum, mean and range were significant LST
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variables. The probability of heat-related death increased
by a factor of 1.89 as the count of age 65+in poverty
increased by one standard unit. Similar to model 1, the
odds ratio for poverty counts was 1.68. Maximum, mean,
and range of LST were comparable to results observed in
model 2. The inverse relation with maximum LST is still
present. If maximum LST is removed the model is
degraded to .79 in sensitivity and specificity as compared
to .81 (2) when maximum LST is included (table 2; figure
1); this is still significantly different from the standard.

Overall, model 3 performed the best in predicting heat-
related mortality.

Model 4 included only socioeconomic rate and popula-
tion density variables. Low education rate and African-
American rate emerged as significant predictors, with
odds ratios of 1.53 and 1.68, respectively (table 1). This
model, due to the frequent usage of socioeconomic rate
data in risk assessment, was used as the standard against
which other models were tested. The ROC curve (table 2;
figure 1) for this model is .69; indicating specificity and
sensitivity. This model is significantly different from a ran-
dom classification (.50) but would indicate a reasonably
ineffective model for this event. The odds ratios suggest
that as low education rate and African-American rate
increase by a unit of 1, risk would increase by a factor 1.53
and 1.66 respectively. This finding is also supported by
previous studies suggesting low education is a risk factor
in heat-related death as well as other urban health prob-
lems [41-43].

Table 1: LOGITS, Odds Ratios and level of significance for the variables included in the models

Models B Odds Ratio p

Model 1 - Socioeconomic Counts
Hosmer-lemeshow Test p < .05 (not significant)
Poverty 0.601 1.823 0.0001
Age 65 up in Poverty 0.666 1.947 0.0001

Model 2 - Thermal Data
Hosmer-lemeshow Test p >.05 (significant)
Maximum LST -1.045 0.352 0.002
Mean LST 1.797 6.034 0.001
Range LST 0.66 1.935 0.0001

Model 3 - Thermal Data and Socioeconomic Counts
Hosmer-lemeshow Test p > .05 (significant)
Max LST -1.186 0.305 0.002
Range LST 0.706 2.026 0.001
Mean LST 1.41 4.095 0.0001
Age 65 up in Poverty 0.639 1.894 0.0001
Poverty 0.521 1.684 0.004

Model 4 - Socioeconomic Rates
Hosmer-lemeshow Test p > .05 (significant)
Low Education Rate 0.426 1.531 0.001
African-American Rate 0.505 1.657 0.0001

Model 5 - Thermal Data and Socioeconomic Rates
Hosmer-lemeshow Test p > .05 (significant)
Max LST -0.999 0.368 0.002
Range LST 0.715 2.044 0.004
Mean LST 1.709 5.523 0.0001
African-American Rate 0.396 1.486 0.0001

Table 2: ROC comparison using Model 4 (socioeconomic rates) 
as the gold standard

ROC Curve Comparison against the Standard

Model Curve Area P

#1 0.7864 Not significant using H-L Test
#2 0.7174 0.4543
#3 0.8134 0.0001
#5 0.7407 0.0583
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Model 5 (table 1) supplemented the sociodemographic
rate and population density data with LST. Low education
rate was not statistically significant when LST data were
included. The African-American rate produced an odds
ratio of 1.49. Results for maximum, mean and range of
LST are similar to model 2 and 3. As maximum LST
decreases by a standard unit, the odds of death increase by
a factor of 2.72. This again is counterintuitive, but maxi-
mum LST could be acting as a cap in the logistic modelling
approach. When mean LST increases by a standard unit,
the odds of death increase by a factor of 5.52. Range of LST
produced an odds ratio of 2.04. This particular model has
a specificity and sensitivity of .74 which is not signifi-
cantly different from the standard (p = .058) (table 2; fig-
ure 1).

Discussion
The model incorporating only LST variables (model 2),
was not statistically better than using the sociodemo-
graphic rate data alone (model 4). We did not anticipate
that vulnerability models using remotely sensed LST vari-
ables alone would perform as well as one including mul-
tiple socioeconomic variables. However, figure 2 shows
how the two classes of variables differ in their spatial clas-
sification. In the classification breakdowns, the LST model

includes 12 census tracts in the lowest area of risk which
actually included a death. The sociodemographic rate
model includes 25 census tracts containing a death in this
same stratification level. In this context, the sociodemo-
graphic rate model (the current standard) is outperformed
by the model utilizing only remotely sensed data. Based
on this finding, the LST variables appear to provide a bet-
ter clue to risk than the sociodemographic rate variables
tested.

Results from models 2, 4, and 5 indicate that mean LST
had the highest odds ratio of the variables examined in
this study. The interplay between mean LST and maxi-
mum LST appears counterintuitive; as the mean increases
and the maximum decreases, the probability of death
appears to be higher. Although a model not incorporating
this counterintuitive association would be easier to
explain, removing maximum LST degrades model per-
formance.

A possible explanation for this result is illustrated in figure
3. It is apparent and intuitive that as the mean tempera-
ture increases the likelihood of death would increase. This
relationship is true when modelling only mean LST with
mortality. Moreover, when the mean LST is included in

Comparison of ROC curvesFigure 1
Comparison of ROC curves.
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any of the models, its odds ratio is the highest of all vari-
ables examined. Therefore, it is likely that the mean LST is
an important component to the modelling of extreme
heat vulnerability. On average, mean LST is negatively
skewed; closer to the maximum than the minimum
within the examined dataset. The models possibly suggest
(figure 3) that the closer the mean is to the maximum,
within the residential space of the census tract, the greater
the risk of mortality. Previous studies have reported simi-
lar associations in temperature (average and maximum
proximity) are predictive of death from extreme heat
[44,45]. The inverse relationship with maximum LST may
be a product of the negatively skewed nature of the mean
even it is not collinear. Drawing on this analysis a possible
explanation is that as the range of temperature values
encountered in the neighbourhood increases, and if the
mean and maximum LST are close to one another, the
likelihood of death from extreme heat during this partic-

ular event would be high. Moreover, if these factors are
spatially coincident with areas of high urban poverty or
high proportions of African Americans the risk is even
more substantial. It may be possible to test this in future
studies by introducing measures of skewness and kurtosis
for the thermal variables. If one encounters a negative
relationship with skewness (i.e. as skewness decreases
(become more negative) death increases) then the prox-
imity of the mean with the maximum may prove to be
another important component for modelling extreme
heat vulnerability.

In all the models incorporating remote sensing variables,
increases in the LST range variable were associated with
increased risk of heat-related mortality. This result may be
counter to some initial thought that lower variability of
LST in warmer microclimates - suggesting the possibility
of a high minimum with a high maximum - would be

Comparison of spatial modelsFigure 2
Comparison of spatial models.
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associated with increased risk, unless the overall tempera-
ture profile of the census tract were low. In fact, the mod-
els suggest the opposite. The increase in range suggests a
broader temperature profile leading to potentially
broader thermal exposures. However, the range is perhaps
the lowest order measure of variability (standard devia-
tion was not significant in any model) and when it is
removed there is a degradation in sensitivity and specifi-
city. Range LST is an important measure when describing
the distribution of the high compared to the low. There-
fore, as the difference between the minimum and maxi-
mum increase, coupled with the possible mean LST and
maximum LST associations, the risk of death is slightly
higher.

Figure 2 shows the spatial comparison between models 2-
5. An issue with model 3 is that it includes 16 census tracts
that had an occurrence of death in the lowest risk category
(24 for the standard). However, it is more accurate in its
spatial specificity when comparing the ROC curves and
the spatial comparison. The most important variable in
this model is the mean temperature of the census tract,
which increases the risk of death by a factor of 4 for each
standard unit increase.

Consistent with the overall goals of the study, remotely
sensed variables proved to be important predictors of risk
for heat-related mortality that improved the spatial specif-
icity of vulnerability models compared to models that use
only sociodemographic variables. In all models that
included the LST variables, LST maximum, mean and
range were more significant predictors than sociodemo-

graphic factors. When combined with sociodemographic
factors, models incorporating LST variables were consist-
ent with findings from previous studies that conclude
older age and poverty [9,17,43] are indicators of risk and
their coincident relationship with thermal characteristics
[27,29] of the neighbourhood are key to indentifying risk
locations.

Conclusion
Previous studies have suggested the need for more spatial
specificity in the assessment of risk from extreme heat [26-
29,46]. This study builds on previous work to demon-
strate a parsimonious method using logistic regression.
The method employs measures of vulnerability from cen-
sus variables and assimilates them with physical environ-
ment variables derived from thermal remote sensing data.
The long-term goal of this application is to provide local
emergency response personnel with a practical tool to bet-
ter plan and prepare for heat waves by facilitating better
resource allocation and tailoring of health communica-
tion messages to groups most at risk. Further examination
should yield to the spatial examination of vulnerability,
including the spatial arrangement of at risk groups in rela-
tion to thermal properties of the environment.

In review, heat mortality data for the Philadelphia 1993
EHE were collected from the Pennsylvania Department of
Vital Records and assimilated with vulnerability and LST
data. Models utilizing the sociodemographic data in the
form of counts coupled with measures of LST provided
the best assessment of vulnerability. This was indicated by
ROC analysis and examination of the spatial classification

The interplay between the LST variablesFigure 3
The interplay between the LST variables.
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accuracy against the realization. However, using the LST
data alone did not provide a ROC curve that was signifi-
cantly better than the sociodemographic rate data (the
standard for examination). The utilization of only meas-
ures of LST did provide a model which only categorizes 12
census tracts in the lowest risk category which included a
death. This aspect provides indication that potentially this
particular model outperforms the selected sociodemo-
graphic measures of vulnerability.

All models utilizing LST showed that the most predictive
variable was the mean temperature (LST) of the census
tract. Maximum temperature was the second best per-
forming LST variable, although it was inversely related to
mortality. The interplay between mean and maximum
LST suggests that the closer these values are to one another
the greater the risk. If these measurements are close to one
another and spatially coincident with areas of urban pov-
erty, the elderly and/or the African-American population
then the risk is even greater.

The results of this research have several practical implica-
tions for vulnerability modelling in planning and policy
decisions concerning response to heat waves. Many cities
do not incorporate information on where the most vul-
nerable populations reside as part of their mitigation
planning. Emergency response professionals typically are
aware of the locations of poorer neighbourhoods, but do
not have the knowledge necessary to determine if these
areas are coincident with areas of higher temperature. The
process outlined in this work could be implemented to
help close this information gap.

By using information on the spatial coincidence of vulner-
ability indicators during EHEs, warning systems and
emergency response during such disasters could be
directed in such a way as to save resources and foster their
delivery in a timely manner. Maps from an alert system
integrating social and environmental risk factors could be
provided to emergency personnel, digitally or in analog
form, so that mitigation activities could be directed in the
field to the most vulnerable communities. The National
Weather Service (NWS) has increased availability of sub-
county level warnings for severe weather, such as tornados
and severe thunderstorms, which inform both warning
and response processes. Similarly, maps developed from
processes presented in this paper could be used by local
authorities to alert the public to where the intensity of the
heat wave is most severe and to plan for the delivery of
services to mitigate impacts in the most vulnerable com-
munities

It is important to emphasize that the methods presented
in this paper represent a first step toward developing a sys-
tem for improving determination of risk to EHEs within a

city. Several limitations should be noted. The remotely
sensed processes used are also likely to introduce some
uncertainties. The Landsat TM data used in this study pro-
vides a spatial resolution in the thermal channel of 120 m.
This means that each pixel covers an area of 14,400 square
meters. Since we are dealing with a highly urbanized area,
many different land cover types are present, ranging from
grass to impervious surfaces. Therefore, results are
dependent on the spatial resolution of the imaging sys-
tem. There is also error involved in the calculation of LST,
much of which is due to atmospheric conditions at the
time of image acquisition. Studies have suggested that typ-
ically this error is < 1 K [47]. In future studies it will likely
be important to use a sensor of better thermal resolution
(ASTER) so that error in LST estimation can be further
diminished.

It has also been demonstrated that heat-related mortality
is likely underreported due to the nature of identifying
heat-related death and the lack of surveillance [11]. For
example, a medical examiner performing an autopsy may
identify a decedent's cause of death to be from a myocar-
dial infarction. Another medical examiner may identify
the same conditions from another decedent as being a
myocardial infarction catalyzed by hyperthermia. Local
individual level conditions play an important role. For
example, some individuals living in high risk areas may
have adequate protection from the extreme heat, such as
air conditioning. Further, some vulnerable individuals
may still have a very strong social network where friends
or relatives can provide assistance when needed. The lack
of social networks in elderly individuals has been shown
to be a major contributor to heat-related death [48,49].
This type of individual level preparedness is impossible to
measure without extensive person-to-person interviews.

Methods used in this study demonstrate a parsimonious
approach to vulnerability mapping during extreme heat
events. However, the transferability of the approach used
in this study could be refined and validated using other
retrospective datasets from extreme heat events in other
locations. Also, other census variables could be examined
in the context of vulnerability. It might prove beneficial to
do an exploratory data analysis of a large range of other
census variables to highlight which might either directly
or indirectly elucidate vulnerability. Additionally, exami-
nation of thermal measures derived from other remote
sensing platforms with greater spatial resolution should
be explored.

Results of this research suggest that augmenting sociode-
mographic vulnerability with LST variables enhances vul-
nerability prediction during an extreme heat event. As
with the remote sensing variables, examination of socio-
demographic variables at finer spatial scales (e.g., block
Page 7 of 13
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groups and neighbourhoods) should be explored; these
finer levels of aggregation may yield different results. A
goal of future studies in this area should be to inform pol-
icy and intervention during extreme heat events so that
cities can better respond to this aspect of climate change
impact on human health.

Methods
In the summer of 1993, Philadelphia, PA experienced an
EHE which lasted from July 3rd to July 14th. The daily high
temperature ranged from 35 to 38.5°C; with the low
never below 23.3°C. A total of 118 deaths were directly
attributed to this event [50-52]. Death certificates attrib-
uted to the heat event were collected from the Pennsylva-
nia Department of Health and the addresses of the
decedents were geocoded to current street centerline data
for Philadelphia with 96.6% accuracy. Locations of death
were then assigned to their respective census tracts (1990)
with the output being a binary dataset; those census tracts
with a heat-related death and those without.

Following studies already conducted on vulnerability to
extreme heat, sociodemographic risk factors were
extracted from the 1990 Census summary file 3 dataset for
the 357 census tracts in Philadelphia [26,27,29,53]. These
variables (shown in table 3) included population counts
of Hispanic, African-American, Asian, Native American,
other race, age 65 and over, age 65 and over in poverty,
age 5 and under, persons below poverty and adults with-
out a high school education. These data were added to the
census tract dataset including the mortality data as both
counts and rates of vulnerable groups per 1000 (1000/
total population * number of persons in the vulnerable
group).

Population density (see table 3) is another variable which
is suggested to be useful in the determination of vulnera-
bility to extreme heat [26,54]. Studies have also suggested
that population density and the intensity of the UHI are
highly correlated, with R values exceeding 0.90 [55]. This
relationship is often examined at the scale of the entire
city. However, some studies have examined this relation-
ship at finer scales and found that the positive relation-
ship still exists [55-57]. Due to this apparent intrinsic
relationship, population density was investigated as a
potential explanatory variable in the analysis. We
included a measure of total population for use with
count-level data, and population density (total popula-
tion/residential area) in the sociodemographic rate data-
set.

In order to extract thermal characteristics a Landsat TM 5
scene for the Philadelphia region collected on July 10th,
toward the end of the event, was acquired for processing.
Landsat revisit times average 16 days so the collection of

another image during this event was not possible. The
dataset was spatially clipped using the minimum bound-
ing rectangle for the Philadelphia county boundary. The
spatial resolution of the thermal band for Landsat TM is
120 meters, sufficient enough to measure intra-census
tract level variations in estimated land surface tempera-
ture (LST). LST is not directly equivalent to ambient air
temperature which is measured by ground based ther-
mometers (the standard high and low temperature in
weather forecasts). LST is a remote measure of the thermal
inertia of surface characteristics in the city. Ambient air
temperature (collected in situ) measures the thermal iner-
tia of the surface atmospheric components (i.e. air tem-
perature). Previous studies have suggested that areas of
higher surface temperature contribute to higher levels of
localized ambient air temperature [36] and contribute to
a decrease in human thermal comfort [33]. However,
much uncertainty exists as to the exact relationship
between surface temperatures and the ambient air temper-
ature, which is dependent of wind conditions which are
many times highly variable in urban areas. Much of this
uncertainty has to do with urban geometry and land use
land cover characteristics [31,37]. Wind also causes mix-
ing in the atmosphere contributing to a decrease in ambi-
ent air temperature [36]. The present study assumes that
the surface temperature contributes to a decrease in
human thermal comfort during EHEs.

LST was estimated using the measure for at-satellite
brightness temperature [34,58]. This method requires the
input of the high and low gain of the sensor at the time of
acquisition; in this case 11:00 am. After input the image
values are converted into estimates of the LST in degrees
Kelvin. One then can observe the relative values of the
temperatures within the scene and can query pixels for a
range of temperatures (Figure 4). A zonal calculation was
done using the LST image and the census tracts (residen-
tial space within) of Philadelphia as the zone dataset. This
created the minimum, maximum, mean, range, and
standard deviation of LST (table 3) within each census
tract (see section below on the calculation of temperatures
within the residential space). The minimum and maxi-
mum are the values for the lowest temperature pixel and
the highest temperature pixel respectively within the tract.
The mean, range, and standard deviation of the LST utilize
all pixels within the tract. These descriptive values are used
as the temperature variables for comparison with mortal-
ity and sociodemographic values.

In order to facilitate spatially focused analysis it was nec-
essary to calculate the amount and locations of residential
space within all census tracts for Philadelphia during the
study period. To accomplish this, the National Land
Cover Dataset (NLCD) was collected for Philadelphia.
The NLCD was developed from satellite imagery obtained
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Table 3: Descriptive statistics of the environmental and sociodemographic variables

Variable N Minimum Maximum Mean Std. Deviation

African Am. Rate 357 0.0 1.0 0.4 0.4

Native Am. Rate 357 0.0 0.0 0.0 0.0

Asian Rate 357 0.0 0.8 0.0 0.1

Other Race Rate 357 0.0 0.7 0.0 0.1

Hispanic Rate 357 0.0 0.8 0.1 0.1

Age 65 + Rate 357 0.0 0.6 0.2 0.1

Age 5 - Rate 357 0.0 0.3 0.0 0.0

Less than H.S. Ed. Rate 357 0.0 0.6 0.2 0.1

Poverty 65+ Rate 357 0.0 0.2 0.0 0.0

Poverty Rate (persons) 357 0.0 0.8 0.2 0.2

Total Population 356 14.0 17971.0 4441.2 2936.0

African Am. 356 0.0 12154.0 1774.3 2347.2

Native Am. 356 0.0 110.0 9.3 15.4

Asian 356 0.0 1714.0 120.8 237.5

Other Race 356 0.0 7126.0 161.9 629.6

Hispanic 356 0.0 8798.0 235.7 769.8

Age 65 + 356 0.0 2949.0 677.5 548.0

Age 5 - 356 0.0 872.0 194.7 150.8

Less than H.S. Ed. 356 0.0 4822.0 1026.9 808.2

Poverty 65 + 356 0.0 573.0 106.5 98.6

Poverty 356 0.0 7262.0 880.3 913.3

Population Density sqkm 356 3.59 2908.2 879.3 466.9

Minimum LST 356 286.0 307.6 300.8 3.0

Maximum LST 356 301.9 316.1 308.7 1.8

Range LST 356 2.1 21.1 7.8 2.8

Mean LST 356 297.3 309.4 305.4 2.1
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during 1993 and thus is contemporaneous with the heat
wave event. NLCD pixels containing high, medium and
low density residential areas were re-coded into a single
residential class. The thermal data that spatially coincided
with residential areas within each census tract were used
to calculate descriptive statistics of the thermal properties
of the residential space. This was deemed an important
step in the analysis of the thermal conditions of the resi-
dential areas. For example, if the thermal pixels contained
in the entire census tract were used for the calculation of

the thermal properties of the neighbourhood it could pro-
vide an erroneous characterization in the analysis. If a par-
ticular census tract under investigation contained an area
of elevated surface temperature which was not coincident
with residential space its inclusion would likely skew the
results. Therefore, this step focuses the analysis on the
thermal properties in areas where people reside. The min-
imum, maximum, mean, range and standard deviation of
LST in residential areas were then added to the dataset

Landsat TM Image of Philadelphia, PA, July 10, 1993Figure 4
Landsat TM Image of Philadelphia, PA, July 10, 1993.
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containing the mortality and census sociodemographic
data.

The primary method of analysis employed in this study is
binary logistic regression. Logistic regression has been uti-
lized in many epidemiological studies applying both
aspatial and spatial methods [59-61]. All variables calcu-
lated for each census tract, were standardized by z scores
and then examined in relation to the occurrence or non-
occurrence of death from extreme heat. This provides a
parsimonious indicator of the census tract properties
which appear to be risk factors for mortality from the
EHE. Five logistic regression models for predicting the
occurrence of heat related mortality were compared: a
model containing only census sociodemographic count
data (model 1), one with LST data (model 2), another
with sociodemographic count data supplemented with
LST (model 3), one with census sociodemographic rate
data (model 4; the standard to which the other models
will be tested), and census sociodemographic rate data
supplemented with LST (model 5). Model 4 is used to
compare the other models for significance since sociode-
mographic rate data is so pronounced in the vulnerability
literature.

All variables were assessed for multicollinearity by exam-
ining the variance inflation factors in multivariate linear
regression. If the variance inflation factor exceeded a value
of ten (10) then the variable was assumed to contribute
significantly to multicollinearity and was removed from
further analysis. After the removal of variables contribut-
ing to multicollinearity, the models were developed by
adding all variables into an initial model. The variables
which were not significant using the likelihood ratio F test
(p < .05) were removed one by one until a model was
found which included only variables which were statisti-
cally significant. Once we found variables that were signif-
icant we again tested those variables for multicollinearity
using the variance inflation factors. The contributions of
these remaining variables were assessed using Wald's test
of significance (p < .05). The final five models were
assessed for validity using the Hosmer-Lemeshow test at
the .05 significance level.

Two final steps were used to further assess the validity of
each model. First, Receiver Operator Characteristic (ROC)
curves were created for each model. The models supple-
mented with LST were analyzed using this approach to
determine if they significantly aided the classification
(over using sociodemographic vulnerability alone) at the
.05 significance level. The standard (model) used for com-
parison utilized sociodemographic vulnerability rate data
which is typical of vulnerability models and is informed
from previous studies [43]. The ROC method, suitable for
binary response models, also allows for the direct visual

and statistical comparison of the sensitivity of the model,
provided such a model is statistically significant [61-64].
Performance of the models using the ROC method, are
determined using the metrics of specificity and sensitivity.
Sensitivity measures the proportion of actual positives, in
this case census tracts containing a heat-related death, cor-
rectly identified. The higher the value for sensitivity the
more likely all census tracts containing a death are cor-
rectly tagged. It is calculated by (number of true positives/
number of true positives + number of false negatives).
Alternately, specificity measures the proportion of nega-
tives which are correctly classified, (number of true nega-
tives/number of true negatives + number of false
positives). The higher the specificity the fewer the false
positives; census tracts not containing a death labelled as
containing a heat-related mortality.

Secondly, the odds of each census tract having an occur-
rence of death, using each of the 5 models, were added to
a census tract level dataset and stratified using a quartiles
approach. This classified each census tract into the range
of, 0-25%, 26% - 50%, 51% - 75%, 76% - 100%, proba-
bilities of the occurrence of death.
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