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Abstract
Background: Travel time is an important metric of geographic access to health care. We
compared strategies of estimating travel times when only subject ZIP code data were available.

Results: Using simulated data from New Hampshire and Arizona, we estimated travel times to
nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2)
population centroids as origin, 3) service area rings around each cancer center, assigning subjects
to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around
each center, assuming the subjects follow the population distribution within the ZIP code. We used
travel times based on street addresses as true values to validate estimates. Population-based
methods have smaller errors than geometry-based methods. Within categories (geometry or
population), centroid and service area methods have similar errors. Errors are smaller in urban
areas than in rural areas.

Conclusion: Population-based methods are superior to the geometry-based methods, with the
population centroid method appearing to be the best choice for estimating travel time. Estimates
in rural areas are less reliable.

Background
Spatial accessibility is an important factor in assessing
overall access to healthcare, and road-network-based
travel time has become a popular way to measure this
component of accessibility. As geographic information
systems (GIS) become increasingly available, public
health practitioners and researchers now have easy-to-use
tools to calculate travel times that once were technically
and computationally beyond the reach of most, especially
for large datasets. A challenge remains, however, in how
to estimate subjects' travel times when the exact address is

not available. Due to confidentiality and/or data quality
reasons, point location information of subjects is often
aggregated to larger areal units. The ZIP code is often the
finest granularity of geography available to health
researchers, and studies of healthcare accessibility or dis-
tance are commonly based on travel times estimated from
a subject's ZIP code to a known destination. While ZIP
codes are actually collection of postal delivery routes that
are modifiable at the level of the postmaster, they are still
a commonly used geographic unit in health research. An
important question that arises is how to measure a dis-
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tance from a polygon (i.e. ZIP code area) to a point (i.e.
exact, known address of a destination or a facility). Differ-
ent strategies for handling this issue may result in varying
outputs, which may in turn lead to different conclusions
about accessibility. We are not aware of any formal com-
parison and validation of different methods in the public
health literature.

Practical methods of estimating travel time from aggregate
data can be based on point model or polygon models. The
point model assumes that all subjects within an areal unit
are concentrated on a single point, whereas the polygon
model assumes that the subjects are spread across the unit.
Both models can take either a geometric or population-
based approach: (1) a geometric point method uses the
geometric centroid of an areal unit as the origin for all the
subjects from that unit when calculating travel times [1,2];
(2) a population-based point method uses the population
centroid of an areal unit as the origins for the subjects [3];
(3) a geometric polygon method creates travel time zones
around facilities and assigns subjects assuming an even
distribution across an aggregate unit [4,5]; (4) a popula-
tion-based polygon method assigns subjects to a travel
time zones under the assumption that the locations of the
subjects within a unit follows the distribution of the pop-
ulation in that unit.

In this study, we sought to determine the best of the above
four methods by comparing their outputs with actual
travel times calculated from subjects' exact locations.

Methods
Data sources
We first identified two states to compare different meth-
ods of address estimation. New Hampshire and Arizona
demonstrate a number of important characteristics that
allow for our results to be more generalizable to the rest
of the nation. New Hampshire is a small New England
state of 24,239 km2 and a population of 1,317,987 [6].
The state is predominately rural, with only one popula-
tion center of over 100,000 people (Manchester). The
mean population density is 110 people per km2, though
the median is 33. Arizona is comparably a larger state of
295,254 km2 and a population of 5,882,273 [6]. The
mean population density is 608 people per km2 though
the median is 31.8. There are multiple population centers,
including the large cities of Phoenix and Tucson.

For each state, we obtained residential, geocoded
addresses from a national data firm (Melissa DATA Cor-
poration, Rancho Santa Margarita, California). Nation-
ally, the database contains 142 million total records and
is updated monthly. In NH, there were 614,211 possible
addresses, and in AZ there were 2,872,268 possible
addresses. Our initial sampling strategy was to make the

spatial distribution of subjects follow the distribution of
the population, which mimics the distribution of actual
subjects. However, if we apply a single sampling scheme
to the entire state, most samples will be concentrated in
urban areas and many rural areas will not be represented.
We chose the ZIP code as our aggregate unit of analysis
due to its popularity and availability in health research.
We hypothesized distance estimates in urban and rural
areas might vary, as ZIP code areas are usually smaller in
urban than rural areas. Based on this assumption, we
requested separate sampling processes in urban and rural
areas for both states. Acknowledging that different rural
classification systems my categorize some areas differently
and that there is no "right" system of classification [7], we
chose to use the urban-rural scheme provided by ESRI for
consistency with the other available sources of data. For
New Hampshire, we requested a total of 2,000 samples,
with 100 sampled from urban areas. For Arizona, we
requested a total of 3,000 samples, with 400 sampled
from urban areas. We received 1,998 samples for New
Hampshire, with 101 in urban areas, and 3,016 samples
for Arizona, with 413 in urban areas. Data were selected
for each town, stratified as urban or rural. The number of
samples allocated to each town was proportional to the
total number of address records available for that town,
which was correlated to the population size of the town.
Every 10th address record was picked until the required
number of samples were met. For rural towns with very
small populations, we oversampled to ensure every town
had at least one subject. The data company geocoded all
the selected subjects to the longitude and latitude at a pre-
cision of 6 digits to the right of the decimal. We associated
each geocoded subject to their ZIP code area.

Destinations were designated as the geocoded address of
each state's National Cancer Institute Comprehensive
Cancer Center or affiliated satellites [8]. The locations
were determined through geocoding the official addresses
of each center or satellite from the cancer center's web site.
There was 1 destination associated with the Cancer Center
in Arizona, and 3 in New Hampshire (1 of the 3 was
located in Vermont, immediately across the border from
New Hampshire).

The data of ZIP code areas, urban areas, road network, and
Census Block centroids and their associated population
were from data included in our GIS package (ArcGIS,
ESRI, Redlands, CA). Source data for ZIP Code areas and
Census Blocks were from TeleAtlas North America and
ESRI, with source data for Urban Areas from the US Cen-
sus and ESRI. The calculation of travel time was based on
the 2006 ESRI street network dataset. These data are based
on U.S. Census TIGER line data for street centerlines, with
Census Feature Class Codes (CFCC) assigned to each line
segment to provide speed limit information. CHCC codes
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classify road types and assign a corresponding speed limit
(i.e. CFCC code 'A00' is classed as Road: Major and minor
categories unknown and given the speed limit 40 mph).
LandScan Global population data, for characterizing the
spatial distribution of population within a ZIP code area,
were obtained from the Oak Ridge National Laboratory,
described below [9]. All data were transformed to their
corresponding State Plane Coordinate Systems to mini-
mize errors in distance and area calculations.

Actual Travel Time
Use of roads by motorized vehicles is often the preferred
method of travel to reach health facilities in developed
countries [10]. We therefore calculated travel time based
on the travel distance over the road network from an ori-
gin to a destination and speed limits for each segment of
road using Network Analyst in ArcGIS. Details of the
implementations of the four methods of approximation
are as follows and illustrated in Figure 1.

Geometric point method
For each ZIP code area, the geometric centroid (the point
at the geometric center of the area) was used as the com-
mon origin of all the subjects falling into that ZIP code.
The assumption of this method was that all the subjects
live at the geometric center of the area, and consequently
all have the same travel time and use the same nearest
facility.

Population-based point method
We located the population centroid of each ZIP code area
through weighted averaging of the geometric centroids of
all the Census Blocks within the ZIP code, with the popu-
lation of the Census Blocks used as the weights. We used
this weighted population centroid as the common origin
of all the subjects falling into the ZIP code.

Geometric polygon method
The implementation of a polygon method is different
from that of the point methods in that instead of measur-
ing travel time from point to point, it defines travel time
zone(s) around a facility. Subjects' travel time is based on
which time ring falls on their location. In our study, we
created travel time zones using the service area function of
Network Analyst in ArcGIS. This function created a buffer
area around a specified facility based on travel time (e.g. a
30-minute service area of a hospital defines the area where
subjects can reach the hospital within 30 minutes). We
created a series of service area rings (i.e. travel time zones)
around each of the cancer centers or satellites, using 5-
minute intervals, until the entire state had coverage. When
travel time zones of different facilities overlapped each
other, we preserved the one with the shortest travel time.
Once travel time zones were defined, subjects were allo-
cated to the zones to obtain travel time estimates. Under

the geometric approach, the number of subjects from a
ZIP code area allocated to a specific travel time zone was
based on the proportion of the ZIP code area falling into
the zone (e.g. if a ZIP code area has 10 subjects and 30%
of the ZIP code (in terms of area) fell into the travel time
zone of 10–15 minutes, then 3 subjects would be allo-
cated to that zone). This geometric approach only consid-
ers the geometry of the ZIP code (shape and area) and
assumes that the subjects are distributed evenly across the
area.

Population-based polygon method
The difference between this method and the geometric
polygon method only lies in how to allocate subjects in
each ZIP code area into travel time zones. Instead of
assuming that the subjects are evenly distributed across a
ZIP code area, this method allocates subjects under the
assumption that the subjects follow the distribution of
population. This method requires spatially detailed infor-
mation about population distribution within a ZIP code.
We used LandScan Globe data for this purpose, with a res-
olution in New Hampshire and Arizona of approximately
800 m × 800 m, which is smaller than the sizes of most
ZIP code areas in the two states. LandScan data, from the
Oak Ridge National Laboratory, allocates U.S. Census
counts of the population to equally-sized cells. The value
of each 800 m × 800 m cell is the total number of people
within the area represented by that cell based on likeli-
hood coefficients derived from imaging data of land
cover, road proximity, lighted areas at night, and slope of
the land [9]. Land cover and lighted areas at night are col-
lected through remote sensing, and models are verified
with high-resolution images. We first allocated all the sub-
jects in a ZIP code into the LandScan cells enclosed by the
ZIP code area. The number of subjects in each cell was
determined by the proportion of the people in that cell
from the total population of the ZIP code. Using the spa-
tial location of each cell, we identified the corresponding
travel time zone.

Validation

We used travel times calculated based on the individual
exact locations as the "true value" to validate the estimates
from the four methods presented above. We computed
the mean absolute error (MAE, calculated as

, where ti is the travel time calculated based

on individual exact location,  is the estimated travel

time based on aggregate data, and n is total number of
subjects), the root mean square error (RMSE, calculated as

), and Pearson's correlation coefficient.

A larger MAE or RMSE indicate a less accurate estimation.
We performed paired t-tests to determine whether the esti-
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Examples of 4 methods of approximating distance to a facility from an estimated addressFigure 1
Examples of 4 methods of approximating distance to a facility from an estimated address.
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location of all the subjects in the 
polygon.  In the above example, this 
method assumes that all the 23 
subjects in ZIP code polygon 03045 
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calculated based on Census Block 
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c. A ZIP code polygon divided into 
“service area” zones defined by travel 
time.  In the above example, the 23 
subjects in ZIP code polygon 03045 
are proportionally distributed into 
different zones, with the proportion 
determined by the percentage of the 
area of a zone in the ZIP code.  
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d. Similar to c, but the proportion is 
determined by the percentage of the 
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Population is calculated based on the 
LandScan data, shown by the 
background grid above. 
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mates were significantly different from the true values and
if the results from different methods were significantly dif-
ferent from each other.

We also investigated the relationship between the accu-
racy of the estimate and the size of the ZIP code polygon,
and that between the accuracy and the population density
of the polygon. Specifically, we first calculated the MAE
and MSE of each method for each polygon, then calcu-
lated the correlation coefficients between these error
measurements and the sizes and population densities of
the polygons.

Results
Of the 242 ZIP codes in New Hampshire, the size ranged
from 1.6 to 958 square kilometers (mean 98). In Arizona,
the 319 ZIP codes ranged from 0.4 to 10,057 square kil-
ometers (mean 925). The overall mean travel time from
individual residence to cancer facility in Arizona was 185
minutes (range: 0.84 – 719 minutes). In urban areas,
travel times were markedly less (98.1 minutes, range: 0.84
– 160 minutes), while in more rural areas travel times
were slightly above the average (197 minutes, range: 21 –

719 minutes). The median travel time was 169 minutes
overall, 115 minutes in urban areas, and 214 minutes in
rural areas. In New Hampshire, the overall mean travel
time from individual residence to cancer facility was 41
minutes (range: 0 – 159 minutes). In urban areas, travel
times were again shorter (12.6 minutes, range: 0.74 – 24
minutes), while in more rural areas travel times were
longer (42.6 minutes, range: 0 – 159 minutes), though
there was less of a range than seen in Arizona. The median
travel time was 36.8 minutes overall, 14.7 minutes in
urban areas, and 37.7 minutes in rural areas.

The MAE and RMSE values (Table 1) for both states show
that 1) the population-based methods had smaller errors
than the geometric methods; 2) within the same category
(geometry- or population-based), the point method and
the polygon method had similar accuracy; 3) except for
the population-based point method, the other three
methods tended to overestimate the travel time (in rural
areas of Arizona, overall the two geometric methods over-
estimated by nearly 20 minutes); 4) the estimate errors in
rural areas were always greater than their counterparts in
urban areas; and 5) the errors in New Hampshire were

Table 1: Variation in estimated travel time compared to the true travel time for Arizona and New Hampshire.

Method OVERALL URBAN RURAL

AVERAGE TIME
(min)

MAE
1

RMSE
2

AVERAGE TIME (min) MAE
1

RMSE
2

AVERAGE TIME (min) MAE
1

RMSE
2

ARIZONA

Actual Time 185 98.1 197.4

Population Centroid 185.8 5.2 8.9 97.5 2.3 4.5 198.4 5.6 9.3

Geometric Centroid 201.4 21.1 34.4 99.3 3.5 7.1 215.9 23.6 36.7

Service area based on 
LandScan

187.8 5.4 13.2 98.5 2.1 3.4 200.6 5.8 14.1

Service area based on area 202.5 20.7 34.7 100.9 4.0 9.3 216.9 23.1 37.0

NEW HAMPSHIRE

Actual Time 41.1 12.6 42.6

Population Centroid 40.7 2.3 12.0 12.6 1.5 4 42.2 2.4 12.5

Geometric Centroid 41.9 3.0 18.1 13.7 2.1 13.1 43.5 3.0 18.4

Service area based on 
LandScan

41.6 2.0 11.5 12.8 1.5 4.3 43.1 2.0 11.9

Service area based on area 43.3 3.1 27.8 14.4 2.5 14.2 44.9 3.1 28.5

(1) MAE: Mean Absolute Error; (2) RMSE: Root mean square error
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generally smaller than the errors in Arizona. In terms of
the magnitude of error, the contrast between urban and
rural areas was less striking in New Hampshire than in Ari-
zona. Additionally, performance of the point methods
and polygon methods was not consistent across states or
across urban and rural areas. For example, in Arizona the
population-based point method was slightly less accurate
than the population-based polygon method in urban
areas (2.3 vs. 2.1 for MAE and 4.5 vs. 3.4 for RMSE) but
was more accurate (in terms of RMSE) in rural areas; in
New Hampshire, however, the pattern was reversed.

All methods demonstrated correlation coefficients greater
than 0.9 when compared to the actual address in Arizona
(Table 2). The geometric centroid method had the lowest
correlation in urban areas at 0.96. Correlation coefficients
in New Hampshire were similar. Pairwise t-tests demon-
strated that estimation methods only tended to agree with
each other (as opposed to the true address as measured by
the correlation coefficient) in urban areas of New Hamp-
shire where ZIP codes are generally of smaller size, though
even in this sub-population the agreement was not uni-
form (data not shown). In the majority of comparisons
for urban, rural, and overall groupings, however, mean
estimates of time were statistically different from each
other.

Correlation coefficient values demonstrated fairly strong
positive relationships between the estimated travel time
error and the size of polygon (i.e. larger polygons tended
to have greater errors) (Table 3). The relationship between
the error and population density was less strong, but was
consistently negative (i.e., the lower the population den-
sity, the greater the error). The two population-based
methods were less sensitive to the size and population
density of the polygon than the two geometry-based
methods. The population-based point method was the
least sensitive one among all the methods.

Discussion
In this study we quantitatively compared four different
methods of estimating travel time when the subject's loca-
tion data were only available at the area unit level. We
summarize our findings from this study as follows: 1) the
estimates from all the methods were statistically different
from the travel times calculated based on the actual
addresses; 2) in terms of accuracy, the two population-
based methods were superior to the two geometric meth-
ods; 3) within the same category (geometric or popula-
tion-based), the overall accuracies of the point method
and the polygon method were not considerably different,
though the point method seemed to be more accurate
than the polygon method; 4) the larger the areal unit or
the lower the population density, the less accurate the esti-
mate, with accuracy having a stronger relationship to the
size of the areal unit than the population density; 5) esti-
mates in rural areas were less reliable than those in urban
areas, calling for special attention to those states with large
rural areas and/or states with both large metropolitan
areas and rural areas (e.g. Arizona) when estimating travel
time using polygon-level data and drawing conclusions
based on summarized statistics.

Based on our results, we recommend the population-
based point method as the best choice for the following
reasons: 1) in our testing, it was the most accurate
method; 2) this method was least sensitive to the size of
the areal unit and population density; 3) Census Block
data for calculating the population centroid are readily
available; and 4) the process of calculating the population
centroid is computationally easier than the process of first
calculating service area rings and then allocating subjects
based on population distribution.

There were relative high correlations among all methods.
This may indicate that the general trends in the estimates
from different methods are very similar leading to a con-

Table 2: Pairwise correlations comparing actual travel times to four estimation methods, for urban and rural areas of Arizona (AZ) 
and New Hampshire (NH).

Estimation Method

Location of actual travel time Geometric Centroid Population Centroid Service area based on LandScan Service area based on area

AZ Urban 0.957* 0.994* 0.991* 0.957*

AZ Rural 0.988* 0.995* 0.997** 0.980*

NH Urban 0.920** 0.966 0.967 0.933*

NH Rural 0.988* 0.991* 0.992* 0.986*

* p < 0.001
** p < 0.05
† NS
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clusion that if we were interested in the relative difference
in travel times (e.g., in a social justice study), analyses
using different estimation methods may give similar
results. On the other hand, if we are interested in the abso-
lute difference in travel times (e.g. in a planning project or
positioning a new health facility), the accuracy of the esti-
mated travel time might be more critical and the differ-
ence among different methods might be important.

We were surprised by the fact that the computationally
difficult population-based polygon method using the
LandScan data was not superior to other methods. In
terms of overall accuracy, it was not substantially different
from the recommended population-based point method.
We suspect two reasons for this observation: 1) in urban
areas, the resolution of the LandScan data (approximately
800 m × 800 m) is much lower than that of the Census
Block data used by the point method; and 2) in rural
areas, where the LandScan data is more precise than the
Census Block data, the number of subjects in a ZIP code
polygon is usually small and may have been better "cap-
tured" by the "concentrating" strategy of the point
method than by the "spreading" strategy of the polygon
method. Nevertheless, we believe that the population-
based polygon method is potentially promising, as it has
the capacity of incorporating more spatially-detailed pop-
ulation data when they are available.

Our analysis showed that choosing a travel time method
based on the geometric centroid method may lead to
greater errors in estimation. Using the geometric center of
a ZIP code without taking into consideration the distribu-
tion of population led to considerable bias, particularly in
rural areas with larger ZIP codes. In regions with shorter
travel times to destinations, the choice of estimation
method is less important, though population-based
methods still appear to be superior. The variation across
methods in NH was less than that of AZ. This may be due
to the fact that travel times in NH are much shorter than
those of AZ, and as a result the absolute differences across
different methods are expectedly smaller in NH than in
AZ. The travel times of NH are smaller because NH is a
much smaller state, and its patients are closer to multiple
cancer centers, whereas AZ only has one cancer center. In
addition the ZIP code polygons in NH are relatively
smaller compared with some large polygons in AZ. With
small polygons, the absolute difference between methods,
e.g., the distance between the geometric centroid and pop-
ulation centroid, will be less drastic.

The literature on geographic accessibility dates back over
30 years [11,12], and some observations made then about
potential errors in assessment of time or distance using
proxy measures of address are still important to note.
Hillsman and Rhoda describe a number of potential

Table 3: Pairwise Correlation between MAE1 and RMSE2 and ZIP code area and population density for Arizona and New Hampshire.

Estimation Method

Error Measurement Method Geometric Centroid Population Centroid Service area based on LandScan Service area based on area

ARIZONA

MAE – area 0.535* 0.410* 0.417* 0.578*

RMSE – area 0.489* 0.221* 0.315* 0.330*

MAE – population density -0.357* -0.244* -0.271* -0.432*

RMSE – population density -0.207* -0.1143** -0.148* -0.196**

NEW HAMPSHIRE

MAE – area 0.552* 0.302* 0.274* 0.552*

RMSE – area 0.517* 0.173** 0.256* 0.476*

MAE – population density -0.202** -0.160** -0.189** -0.220**

RMSE – population density -0.136** -0.074 -0.104 -0.139**

(1) MAE: Mean Absolute Error; (2) RMSE: Root mean square error
* p < 0.001
** p < 0.05
† NS
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errors when determining distance, or as an extension,
time, to a destination. The issue of multiple service desti-
nations may create error by estimating the distance to the
wrong service center (described as Source C error) [13].
Using the geometric as opposed to the population-based
centroid may exacerbate this area in situations of multiple
destinations, such as New Hampshire in our simulation.
It is also possible that the distance to a service center
within the same aggregate unit as the origin address may
result in distances that underestimate the actual location
(notes as Source B error by Hillsman et al.). By using a
population-based point method, we hope to mitigate this
error by not assuming equal dispersion of the population
throughout the polygon. Improved network routing algo-
rithms in modern GIS software should help to mitigate
Source C errors. Another issue well-described in the liter-
ature that deserves mention is the choice of aggregation
level. Francis et al. describe the balance between reducing
aggregation error by using smaller units of aggregation
and computational effort and data availability[14]. The
ratio of subject locations (demand points) to facilities is
crucial to consider; as the number of subject locations
increases with a fix number of facilities, the error
decreases. As this ratio decreases, the risk of error may
increase, and users should consider increasing the number
of aggregated spatial units or redefine spatial zoning
(while considering the effect of MAUP) to mitigate errors.

Our findings build on the work of others studying geo-
graphic accessibility and methods of aggregation. Appari-
cio, et al. examined population-weighted and geographic
centroids and found a 5 to 10% difference in measure-
ment between them in urban areas [15]. This is in align-
ment with our findings, which we expand to include rural
areas as well as estimation methods based on polygon
approaches. Our work adds to the growing body of litera-
ture on understanding the dynamics between demand for
services and locations of subjects. Health services research
that uses distance measures, including the development of
Primary Care Service Areas to evaluate resource utilization
among primary care practices, will benefit from refined
methods to approximate patient addresses [16]. Research-
ers using the floating catchment method [17] will also be
better informed by the current study when choosing an
appropriate strategy to define the catchment of a health
care facility. As noted by Rushton [18], appropriate geoc-
oding of the population and facilities is necessary for this
method to work, and an improved method of estimating
an actual address from the ZIP code should improve the
results of this method.

Our methods have a number of limitations that warrant
further research. We were not able to account for traffic,
road conditions, or weather in our network distance anal-
ysis, and were unable to test if there was a significant dif-
ference in these factors between Arizona and New

Hampshire. Similarly, we did not test all possible travel
time bands for the LandScan or area-based travel ring
method – we instead choose a granularity deemed fine-
grained to account for clinically relevant travel variability
in urban areas that is computationally efficient.

It is possible that our actual addresses had some error in
geocoding or placement along a street network, though
this would impact all methods of estimation equally.
While we tried to include a nationally representative sam-
ple by choosing two states of different size and location, it
is possible that other states or nations may exhibit differ-
ent road network characteristics that could potentially
impact our conclusions.

Our methods of distance estimation relied on a network
analysis based on available road data. We did not consider
travel off the street network as a way to reach a destination
in this discussion. As noted previously, most patients in
the U.S. and other developed countries will utilize the
street network to reach a health facility, though in devel-
oping countries this may not be the case [19]. In these sit-
uations, a raster-based model using a least-cost path
approach may be the preferred method of distance esti-
mation [20]. These methods do not limit travel across a
road network as network methods require, but instead
allow travel across terrain, and can account for barriers
such as rivers [21]. These methods require considerably
more data depending on the complexity of the least-cost
model, including land use, elevation, road data, and bar-
riers. While we believe a network analysis utilizing posted
road speeds is a more accessible approach to most users
and provides an extremely accurate measure of travel
time, researchers studying travel time across terrain with-
out streets should consider this alternate method of anal-
ysis.

Conclusion
Despite these limitations, we believe that the best method
of distance estimation need not be the most complicated.
Population-based methods are superior to the geometry-
based methods, with the population centroid method
appearing to be the best choice for estimating travel time.
Appropriate methods of estimation are particularly
important in rural areas, and in areas of low population
density. Researchers should thoroughly examine their
geographic data to determine which method of estima-
tion is most reasonable.
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