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Abstract
Background: A supervised land cover classification was developed from very high resolution IKONOS
satellite data and extensive ground truth sampling of a ca. 10 sq km malaria-endemic lowland in western
Kenya. The classification was then applied to an investigation of distribution of larval Anopheles habitats.
The hypothesis was that the distribution and abundance of aquatic habitats of larvae of various species of
mosquitoes in the genus Anopheles is associated with identifiable landscape features.

Results and discussion: The classification resulted in 7 distinguishable land cover types, each with a
distinguishable vegetation pattern, was highly accurate (89%, Kappa statistic = 0.86), and had a low rate of
omission and commission errors. A total of 1,198 habitats and 19,776 Anopheles larvae of 9 species were
quantified in samples from a rainy season, and 184 habitats and 582 larvae from a dry season. Anopheles
gambiae s.l. was the dominant species complex (51% of total) and A. arabiensis the dominant species.
Agricultural land covers (mature maize fields, newly cultivated fields, and pastured grasslands) were
positively associated with presence of larval habitats, and were located relatively close to stream channels;
whilst nonagricultural land covers (short shrubs, medium shrubs, tall shrubs, and bare soil around
residences) were negatively associated with presence of larval habitats and were more distant from stream
channels. Number of larval habitats declined exponentially with distance from streams. IKONOS imagery
was not useful in direct detection of larval habitats because they were small and turbid (resembling bare
soil), but was useful in localization of them through statistical associations with specific land covers.

Conclusion: A supervised classification of land cover types in rural, lowland, western Kenya revealed a
largely human-modified and fragmented landscape consisting of agricultural and domestic land uses. Within
it, larval habitats of Anopheles vectors of human malaria were associated with certain land cover types, of
largely agricultural origin, and close to streams. Knowledge of these associations can inform malaria
control to gather information on potential larval habitats more efficiently than by field survey and can do
so over large areas.
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Background
Malaria transmission is dependent upon presence of pop-
ulations of susceptible Anopheles mosquitoes which feed
upon man. The distribution and abundance of these vec-
tor mosquitoes is strongly associated with landscape fea-
tures such as topography, vegetation, and soil [1-3],
owing to the particular habitat requirements of the
aquatic, larval stages [4-6]. For example, Hightower et al.
[7] observed positive associations between distribution of
adult mosquitoes, prevalence of malaria parasitemia in
humans, and distance of human residence to larval habi-
tats in a rural region of Nyanza Province, western Kenya.
The distribution of the most efficient malaria vector spe-
cies in sub-Saharan Africa, Anopheles gambiae, is influ-
enced by particular topographic and environmental
factors which in turn influence the location and produc-
tivity of the larval habitats in both lowland and highland
[8-10] regions of western Kenya, where malaria is highly
endemic [7,11].

Land cover is one landscape feature that likely plays a cen-
tral role in epidemiology of malaria. Conversion of natu-
ral papyrus marshes to drained fields for cultivation of
crops resulted in increased local temperature, creation of
suitable A. gambiae s.l. larval habitats, and elevated risk of
epidemic malaria transmission in a highland region of
southwestern Uganda [12]. In highlands of western
Kenya, Minakawa et al. [13] found significantly more A.
gambiae s.l. larval habitats located in farmlands along val-
ley bottoms, compared to nearby forests, swamps, road
ways, and pastures in both wet and dry seasons. Higher
water temperatures associated with the habitats located in
farmlands enhanced development of the aquatic stages of
A. gambiae [14]. In the same study, occurrence of A. gam-
biae larvae was negatively associated with canopy cover
and emergent plants in natural habitats located in forest
and swamp land cover types. These findings suggest that
variation in landscape structure is important to bionomics
of malaria vectors and to malaria transmission and that
such variations may be related to land use, vegetation, and
microclimate. However, the influence of landscape struc-
ture in the context of a comprehensive, supervised classi-
fied land cover on these relationships has not been
quantified in a lowland malaria endemic setting.

The application of remote sensing (RS) technology and
geographical information systems (GIS) in malaria epide-
miology has increased greatly in recent years. Initial stud-
ies employed low to high spatial resolution satellite data
[15-18]. Low spatial resolution was useful for general
studies on broad zones and regions [1,19,20]. However,
new very high resolution instruments (such as IKONOS,
3.2 m spatial resolution and QUICKBIRD, 2.4 m spatial
resolution) are being utilized in different ways in research
on malaria vectors, such as in production of digitized land
cover maps [13] and in attempts to locate directly larval

habitats [10]. Ground-based surveys and studies focused
on characterizing A. gambiae larval habitats biologically,
chemically and physically have been conducted in west-
ern Kenya [13,21-23]. However, the specific land cover
types that are likely to harbor larval habitats have not
been extensively explored.

The goal of the present study was several fold. Primarily,
it was to develop a supervised classification of land cover
in a rural area of lowland, western Kenya towards associ-
ating identified land cover types with distribution of larval
habitats of Anopheles mosquitoes. Secondarily, the goal
was to determine whether very high spatial resolution
imagery (IKONOS) provided sufficient resolution to iden-
tify larval habitats directly.

Methods
Study site
The study site has been the focus of intensive malariologi-
cal studies and is described elsewhere [24]. The area under
study encompassed part of the communities of Asembo
and Seme, was 3.216 × 3.216 km (10.34 km2) in area, and
was located at 34°23'E, 0°11'S in Nyanza Province, west-
ern Kenya, approximately 50 km west of the city of Kisumu.
Physiographically, the site falls within the Yala-Nzoia
Plains, a lake lowlands region overlying granite bedrock
and surrounded by Nyanza Low Plateau topography, and
bordering the north shore of Winam Gulf of Lake Victoria
[25]. Most human inhabitants are subsistence farmers who
cultivate maize, cassava, and vegetables; and husband cat-
tle, goats, sheep, and chickens. Fishing in nearby Lake Vic-
toria is an important local economic activity. Rainfall
occurs year-round with two main peaks; the long rains fall-
ing between March and May, and the short rains between
November and December [26]. Total annual rainfall aver-
ages 1400 mm per year and daily temperatures range from
25.5°C to 33.0°C [24]. Malaria due to infection with Plas-
modium falciparum is holoendemic in the region with trans-
mission occurring throughout the year. The principal
malaria vectors in the area are two species in the Anopheles
gambiae sensu latu complex (namely, A. gambiae sensu
strictu and A. arabiensis), and A. funestus [24,27].

Studies on the distribution, location and productivity of
A. gambiae larval habitats in a hilly, highland region of
western Kenya have demonstrated that productive habi-
tats are located in valley bottoms near streams and with
agricultural crops being the predominant land cover type
[10,13,14]. By contrast, our study area is lowland plain
with some gentle, rolling hills, and with temporary
streams that become inundated during the rainy season.
These streams and numerous, small, man-made water res-
ervoirs serve as water sources in the dry season, as does the
lake. Clusters of houses (i.e., compounds), streams, roads
and other physical features have been mapped previously
[7,24].
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IKONOS satellite image
An IKONOS satellite image (Space Imaging, Atlanta,
Georgia) of the study area was acquired to primarily iden-
tify land cover types associated with location of larval hab-
itats for Anopheles mosquitoes. The IKONOS scene
acquired was 100 km2, of which 10.34 km2 were used in
this study. The image was acquired on May 17, 2005 at
8.14 GMT, and was centered on 34.435571E and
0.143949S. The image was registered and orthorectified
with geographic latitude-longitude coordinates using
ground reference points taken with a global positioning
system (GPS). Because changes in land cover types in the
study area are mainly due to seasonal cropping practices
and the deciduous nature of most plant species, only one
IKONOS image was used for both dry and wet seasons.

Larval habitat surveys
Two surveys for aquatic larval habitats were conducted in the
study area from May to June for the wet season, and in Octo-
ber for the dry season. During each survey, all pools of stand-
ing and relatively slow moving water were quantitatively
sampled using an area sampling method as described by
Mutuku et al. [9]. The term "potential habitat" in this study
refers to any discrete body of water that is likely to remain
inundated for at least 2 days. These habitats were categorized
into seven types including drainage channels, burrow pits,
rain pools, cluster of hoof prints, stream bed pools, wet mead-
ows, and tire tracks [8]. In the dry season survey, the small
temporary pools in the form of rain pools, drainage channels,
cluster of hoof prints and wet meadows were absent.

Ground sampling
To determine the accuracy of the land cover/use classification,
the study area (measured 3.216 × 3.216 km covering an area
of 10.34 km2) was divided into 36 grid cells of 500 m × 500 m
each. With the assumption that distribution of different types
of land cover is homogeneous in the study area, 16 of these
grid cells were randomly selected for ground-truthing of land
cover types. One individual, familiar with the territory, tra-
versed each cell and at each of 951 locations mapped the dif-
ferent land cover types. The individual identified the
appropriate land cover type to category by visual inspection,
and completed a GPS reading of the center location of the land
cover. This procedure was repeated for each neighboring land
cover. The process took two weeks and was timed to coincide
with the date when the IKONOS satellite image was acquired.
These points were located using differential GPS with a preci-
sion of about 1 m and were used as ground reference points
for comparison with remotely sensed data and the supervised
classification. The number of points mapped in each of the 16
grid cells was proportional to the land cover heterogeneity in
each particular grid cell.

Supervised classification
The IKONOS imagery obtained from Space Imaging during
the wet season was barely obscured by clouds and shadows,

representing only 4% of the image area, leaving all of the
study area where larval sampling occurred free of cloud
cover. ERDAS IMAGINE 8.5 image processing software [28]
was used for image processing and analysis. Through resolu-
tion merging, a pseudo-1- meter resolution image using the
four multispectral bands and the panchromatic band was
constructed using principal component analysis (PCA) in
ERDAS IMAGINE 8.5 [28,29]. This fused image (henceforth
referred to as the pan-sharpened IKONOS image) was visu-
ally more interpretable than either the 4-meter multispectral
image or the 1-meter panchromatic image. The IKONOS
image was classified through a combination of visual, unsu-
pervised, and supervised methods. The ISODATA (Iterative
Self-Organizing Data Analysis Technique) unsupervised clas-
sification algorithm was performed to differentiate the spec-
tral clusters corresponding to the basic land cover types. The
unsupervised classification used the green, red, and near-
infrared spectral bands to produce 30 spectrally distinct
classes, each based on the analyst's prior knowledge of the
different land cover types in the study region. With the aid of
the ground-truthing reference points, the unsupervised clas-
sified image, and the pan-sharpened IKONOS image, the
multispectral IKONOS image was then visually classified
according to typical land cover types and vegetation. This
process resulted in 27 training signatures with most of them
being spectrally close. The 27 training signatures (subclasses)
were amalgamated to ten major training signatures (classes)
including grasslands, water, mature maize, newly cultivated
fields, clouds, shadows, bare land, short shrubs, medium
shrubs, and tall shrubs (including trees). The subclasses
helped define each class more accurately, for example, shal-
low water and deep water were used for water, 3 maize fields
(subclasses) were trained for mature maize and 5 patches of
grassland were used to train for grassland. The supervised
classification was done on the entire IKONOS scene. Super-
vised classification was then performed, using a maximum
likelihood classifier.

Data analysis
To ensure that the information derived from the classifica-
tion was of high quality and to deduce meaningful indica-
tions on thematic correctness [30], the classified image
was assessed for accuracy using Cohen's Kappa and classi-
fication table metrics 2.C, an ArcView 3.3 extension (ESRI,
Redlands, California). In the assessment, the classified
IKONOS image and the ground reference data were com-
pared. The relationship between these sets of information
was summarized in two ways: (1) a confusion matrix,
which describes the comparison of the remote sensing
derived classification map and the ground truth reference
data; and (2) the Kappa statistic, which provides a meas-
ure of agreement between the classified remotely sensed
data and the ground reference data.

There were no ground reference data for the land cover
classes termed "shadows", "clouds" and "water" in the
Page 3 of 13
(page number not for citation purposes)



International Journal of Health Geographics 2009, 8:19 http://www.ij-healthgeographics.com/content/8/1/19
classified image and hence these were assigned to a "No
Data" classification. Newly cultivated fields were amalga-
mated with mature maize because most of the fields in the
newly cultivated fields land cover class were actually
maize fields. Overall accuracy and class-specific user and
producer accuracies were calculated for each of the result-
ant six land cover classes. Producer's accuracy was
obtained by taking the number of points classified cor-
rectly for a class divided by the number of ground refer-
ence points in that class, while the user's accuracy was the
number of points classified correctly for a class divided by
the number of points classified as that class [31]. When a
point was incorrectly included in a class, an error of com-
mission has occurred. Inversely, when a point was
excluded from the proper class, an error of omission has
occurred.

The spatial distribution of the larval habitats was created
as a layer and overlaid on the land cover layer, and the
number of larval habitats in each land cover class was cal-
culated using Zonal statistics, a tool from the Spatial Ana-
lyst extension in ArcView GIS (ESRI, Redlands,
California). Accuracy in identifying the land cover class
where larval habitats were located was ensured by creating
a 4 meter radius buffer around habitat so that larval habi-
tats located at the edges land cover types will associated
with land cover closet to them, in which the majority land
cover type was identified. A range of buffer areas (4, 8, 12,
16, and 20 meters) was examined but the 4 meter radius
buffer was supported well by the majority neighborhood
statistic. Chi-square analysis for categorical variables was
used to examine whether there were significant differ-
ences in proportions of positive and negative larval habi-
tats located in different land cover classes. Tukey style
multiple comparison of proportions were used for post-
hoc analyses [32]. Seven categories of distance from
streams were created using ArcGIS 9.1 (ESRI, Redlands,
California), i.e., 100, 200, 300, 400, 500, 600, and >600
meter distance to the nearest stream centerline. These dis-
tance categories were overlaid on top of thematic maps of
the classified IKONOS image to extract the proportions of
each land cover type within the various distance catego-
ries. Regression analysis was used to determine the rela-
tionship between the proportions of the various land
cover classes and the distance categories from stream
channels.

Results Habitat enumeration and larval abundance
The distribution of habitats in the study area is shown in
Figure 1A. In the wet season survey, 86% of the 1,198
potential habitats located and sampled had Anopheles lar-
vae; in total 19,776 larvae were collected. In the dry sea-
son, 40% of the 184 potential habitats located and
sampled were positive for Anopheles larvae and in total
582 larvae were collected. Of these larvae, 2,231 were

mature and could be identified morphologically to spe-
cies. Overall, Anopheles gambiae s.l. (a species complex of
two important malaria vector species, A. gambiae s.s. and
A. arabiensis) represented 50.69% of total, A. coustani was
21.07%, A. rufipes was 10.89%, A. pharoensis (5.15%), A.
squamosus (4.71%), A. maculipalpis (4.71%), A. funestus
(1.97%), A. gibbensi (0.40%), and A. pretoriensis (0.40%).
Analysis of 1,078 of the larvae identified morphologically
as A. gambiae s.l. by the PCR method [22] revealed that
796 (73.8%) were A. arabiensis, 19.8% were A. gambiae
s.s., and 69 (6.4%) did not react in the test used.

Results of the supervised IKONOS image classification
Classification results (Figure 1B) revealed that the land-
scape was highly modified by human activities typical of
rural subsistence farming. Most of the study area was cov-
ered by grassland (21%), medium shrubs (16%), short
shrubs (15%), mature maize (14%) and tall shrubs
(13%). Shadow (mainly from tall shrubs) represented a
very small proportion of the total land cover (<1%). It was
combined with the tall shrubs land cover class. Bare land
(10%) and newly cultivated fields (11%) were the least
common land cover types. Twenty-nine percent of Anoph-
eles larvae came from habitats sampled from the mature
maize land cover type, whilst 26% were from grasslands,
17% from newly cultivated fields, and 13% from medium
shrubs. Only 7% were sampled from the short shrubs land
cover type, 6% from tall shrubs, and 3% from habitats
located in the bare land type of land cover.

Descriptions and uses of the land cover types
The vegetative community that dominated the Grassland
land cover was primarily seasonal grasses, often grazed by
cattle, and included Hyparrhania ruffa (Poaceae), Cynodon
dactlylon (Poaceae), and Eragrostis tenuifolia (Poaceae).
The Bare Land was a land cover in areas of exposed and
typically dry soils, found along roads, near clusters of
houses, and at school playgrounds. Corrugated iron roofs
were captured by the supervised classification as being
close to this land cover type, which is consistent with the
bare soil around homesteads. Mature Maize was a domi-
nant land cover, typified by numerous fields of maize
(and occasionally sorghum) at a stage of mature growth.
Maize plants in this class were generally about 2 to 3
meters tall, had tassels and were mainly found on low-
lying areas along the streams. This class formed a closed
canopy in most cases. In addition to crops grown in these
fields, all the other vegetative communities mentioned
under newly cultivated fields were also found in associa-
tion with this class. The Newly Cultivated Fields land
cover consisted of patches of land recently cultivated.
Crops in this class were typically maize under one meter
tall, sorghum, and peanuts. Land cover of this type was
commonly located adjacent to or between mature maize
fields. There were significantly large areas in between the
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A. Distribution of 1,198 larval Anopheles habitats in a rural lowland landscape of a western Kenya lake plain during the wet sea-sonFigure 1
A. Distribution of 1,198 larval Anopheles habitats in a rural lowland landscape of a western Kenya lake plain 
during the wet season. B. Supervised classification of land cover in a rural lowland landscape in western Kenya lake plain, 
showing the distribution of seven classified land cover classes.
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crops where wet, bare soil was exposed but it was classi-
fied as newly cultivated fields given the obvious associa-
tion. Non-cultivated subclasses that were spectrally
similar to the newly cultivated fields included areas cov-
ered by sedges with surface water under them and fallow
lands. Therefore, the vegetative communities that aside
from crops were associated with this land cover included
Trichodesma zeylanicum (Asteraceae), Cyperus articulatus
(Cyperaceae), Commelina africana (Commelinaceae),
Cyperus ajax (Cyperaceae), Pennisetum purpuneum (Napier
grass), Sesbania sesban (Papillionaceae), Malva verficillata
(Malvaceae) and Onagraceae spp. Vegetative communi-
ties in the Short Shrubs land cover were comprised of per-
ennial and herbaceous plant species that were mainly less
than 2 meters in height. Some of the dominant plant spe-
cies included Sphaeranthus suaveolens (Asteraceae), Sola-
num incanum (Solanaceae), Stachytarpheta jamaicensis
(Verbanaceae), Catharanthus roseus (Apocynaceae), Oci-
mum basilicum, Senna (Cassia) occidetalis (Ceasalpi-
naceae), Therettia thevetoides (Apocenaceae), and Methania
angustifolia (Sterculaceae). Goats commonly browsed
these plants, suggesting an agricultural use. The vegetative
communities in the Tall Shrubs land cover were domi-
nated by various species of tall shrubs and trees with an
average height of over 6 meters. Justicia flava (Acan-
thaceae), Euphorbia tirucali (Euphorbiaceae), Acacia polya-
cantha (Mimosaceae) were some of the common plant
species associated with this land cover type. In some cases
the plants formed a closed canopy. Mango trees (Mangif-
era spp., Anacardiaceae) and banana plants (Musa spp.,
Musaceae), both cultivated for their fruit, occurred in this
land cover class. Vegetative communities of the Medium
Shrubs class were dominated by perennial plants with a
mean height of 3–6 meters, especially Lantana camara
(Verbenaceae), but also Indigofera spicata (Papil-
lionaceae), Ipomoea spathulata (Convolvulaceae), Nerium
oleander (Apocynaceae), and Senna (Cassia) floribunda
(Ceasalpinaceae). One obvious use of this land cover type
was in border plantings, where oleander and lantana were
planted in hedgerows. The majority of streams and still
water bodies (such as man-made ponds) were undetecta-

ble by the satellite imagery, either because of a closed veg-
etation canopy (streams) or because the spectral
characteristics were similar to bare soil because of turbid
water. Therefore, most true bodies of water fell within
other land cover classes, and in any case Open Water per
se was an uncommon land cover in the study area and was
not included as a classified category. Cloud shadows were
found mainly on the northwest area of the image, outside
of the study grid. Areas covered by shadow within the
study area were primarily as a result of shadows cast by tall
trees and small buildings, so the Shadows land cover type
was incorporated into the tall shrubs or bare soil land cov-
ers, respectively.

Accuracy of image classification
The overall accuracy of the land cover classification from
the IKONOS multispectral image was 89% (Kappa statis-
tic, 0.86). The confusion matrix showed that the IKONOS
classification was best at distinguishing mature maize and
grassland land cover types (Table 1). Generally, the fre-
quency of confusion of classification was low but did
occur; for instance, medium shrubs were sometimes con-
fused with both maize and tall shrubs, and turbid water
was confused with bare land. Bare land had the lowest
classification accuracy because it was largely confused
with mature maize, grassland and short shrubs (Table 1).
Overall, instances of confusion were minimal and did not
affect user's classification accuracy (Table 2). The user's
accuracy ranged between 77 and 95%, with relatively low
errors of commission (excesses), varying between 5 and
23% (Table 2). The producer's accuracy ranged between
85 and 93%, with similarly relatively low errors of omis-
sion (deficits) depending on the class (7–15%).

Land cover classes and larval habitat location
Most Anopheles larval habitats were located within the
mature maize land cover (28%), followed by grasslands
(25%), newly cultivated fields (15%), medium shrubs
(13%), tall shrubs (9%), short shrubs (7%), and bare land
(3%) (Figure 2). There were far more habitats in the wet
season compared to the dry season, and more potential

Table 1: Confusion matrix of the IKONOS imagery of supervised classification of land cover types in a rural lowland in western Kenya.

Ground truth (Pixels)

Land cover types Maize Grassland Short shrubs Medium shrubs Tall shrubs Bare land Total

Maize 243 6 0 3 1 2 255
Grassland 7 163 6 0 3 2 181
Short shrubs 7 6 141 1 2 2 159
Medium shrubs 9 2 3 154 12 0 180
Tall shrubs 6 3 2 7 105 0 123
Bare land 4 3 3 1 1 41 53

Total 276 183 155 166 124 47 951
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habitats were occupied by larvae in the wet season com-
pared to the dry season as well (Figure 2). Assuming a ran-
dom association, the number of the potential habitats
located on each land cover type should be proportional to
the total area covered by each land cover type. The
expected number of potential habitats by land cover type
was calculated within the study area using the method of
proportions and using total area of each type as the
denominator. It was compared with the observed number
of each habitat type with a χ2 test. Overall, there were sig-
nificant differences between the numbers of the observed
and expected potential habitats (χ2 = 324.2, df = 6, P <
0.0001). Approximately 68% of all potential habitats
were associated with three of the land cover types, namely

mature maize, newly cultivated fields, and grassland. The
three land covers had a higher number of the habitats
than the expected by chance alone (Table 3). If the habi-
tats had been randomly distributed, 46% of them would
be expected to be found in these land cover types. For the
remaining four land covers, i.e., short shrubs, medium
shrubs, tall shrubs and bare land, there were fewer larval
habitats than expected by chance (Table 3).

Land cover, distance to stream channels, and habitat 
location
Larval habitat location varied with distance from stream
channels in both wet and dry seasons (Figure 3). In the
wet season, 82% of all potential habitats and 72% of
Anopheles-positive larval habitats were located within 200
meters of stream channels. In the dry season, 94% of all
potential habitats and 93% of Anopheles-positive larval
habitats were located within 200 meters of stream chan-
nels. Nonlinear regression showed that the number of
habitats y per 100 m distance from streams x fit well the
exponential equation: y = 1580e-0.0084x (R2 = 0.97). For the
wet season, χ2 analysis for categorical variables showed
that there were significant differences in the proportions
of Anopheles-positive larval habitats among the distance
categories (χ2 = 25, df = 6, P = 0.0003). χ2 analysis for cat-
egorical variables was not done for the dry season data
because most of the distance categories had fewer than 5
potential habitats.

The relationship between the proportion of the various
land cover classes and the distance categories from stream
channels was examined to determine whether the associ-
ation of particular land cover types with habitat locations
might also be explained by distribution of land cover
types relative to streams. Regression analysis showed that
area of land covered by grassland, newly cultivated fields,
and mature maize were all higher nearer streams and
decreased away from streams (Figure 4). By contrast, the
area of land covered by bare land, short shrubs, and
medium shrubs increased with increasing distance from
streams (Figure 4). There was no relationship between
area of land covered by tall shrubs and distance from
stream channels (r = 0.45, df = 5, P > 0.05).

Table 2: Producer's and user's accuracy levels of the IKONOS imagery of supervised classification of land cover types in a rural lowland 
in western Kenya.

Land cover Producer's accuracy (%) Omission errors (%) User's accuracy (%) Commission errors (%)

Maize 88 12 95 5
Grassland 89 11 90 10
Short shrubs 91 9 89 11
Medium shrubs 93 7 86 14
Tall shrubs 85 15 85 15

Bare land 87 13 77 23

Frequency of larval Anopheles aquatic habitats by land cover type (supervised classification) in a rural landscape in western Kenya, wet season and dry seasonFigure 2
Frequency of larval Anopheles aquatic habitats by 
land cover type (supervised classification) in a rural 
landscape in western Kenya, wet season and dry sea-
son. Relative proportion of habitats positive for Anopheles 
larvae is indicated.
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Identifying location of water bodies using IKONOS 
imagery
Within the Asembo study area (area = 10.34 km2), super-
vised classification of the multispectral 4-meter IKONOS
image identified water on only 128 pixels. These pixels
were extracted from the classified image and converted
into polygons using ArcGIS 9.1 (ESRI, Redlands, Califor-
nia), a process that resulted in 27 water bodies (Table 4).
To confirm that the IKONOS image truly identified water

bodies that were potential larval habitats, a verification
procedure was carried out in the field. Maps of the water
bodies were prepared and loaded in a personal digital
assistant (PDA), which was then used as a navigation
guide to each of them. The verification process revealed
that 44% (12/27) of the water bodies were rain pools,
30% (8/27) were burrow pits, 22% (6/27) were stream
courses, and 1/27 (4%) was a puddle in an automobile
tire track.

Discussion
Inspection of the results of the supervised classification of
land cover types here (Figure 1B) reveals a highly frag-
mented and anthropogenically-altered landscape with
intensive agricultural land use. In nearby Nyando district,
on the south side of the Winam Gulf, a similar landscape
has experienced substantial edaphic degradation due to
intensive agricultural land use with poor soil conservation
practices [33,34]. That bare soil forms a major land cover
type in our study would suggest similar degradation.
Given the consolidation of the unsupervised classification
into a relatively simple supervised classification of 7 gen-
eralized land cover types here, it is highly unlikely that any
major land cover type was missed or that a significant pro-
portion of land cover under study was left unclassified.
Indeed, Figure 1B reveals virtually complete coverage with
little ambiguity in classification. Further, the botanical
characterization reported here, although qualitative,
shows that each of the 7 land covers had distinctly domi-
nant plant communities, independently supporting the
results of the classification. Generally speaking, the super-
vised classification process proceeded well in that errors of
omission and commission were low and resultant classifi-
cation accuracy was high. The accuracy of the supervised
classification is overestimated because the ground truth
points used for the training signatures were also used for
verification. However, the proportion correctly classified
(or PCC) value was 89% and the Kappa statistic was 0.86,
indicating very likely that the classification contained lit-

Table 3: Number of observed and expected larval Anopheles habitats by land cover type in a rural lowland in western Kenya.

Land cover Observed habitat counts (%) Expected habitat counts (%) χ2 P

Mature Maize 336 (28) 172 (14) 156.37 ***
Grassland 294 (25) 255 (21) 5.96 NS
Newly cultivated fields 187 (15) 129 (11) 24.31 **
Short shrubs 90 (7) 174 (15) 40.55 ***
Medium shrubs 152 (13) 194 (16) 9.09 NS
Tall shrubs 103 (9) 156 (13) 18.01 **
Bare land 38 (3) 118 (10) 54.24 ***

Total 1198 (100) 1198 (100)

*** indicates differences of chi squared test at significance level of P < 0.001.
** At significance level of P < 0.01.
* At significance level of P < 0.05.
NS-not significant

Frequency of larval Anopheles aquatic habitats as a function of distance (meters) from streams in a rural landscape in west-ern Kenya, wet season and dry seasonFigure 3
Frequency of larval Anopheles aquatic habitats as a 
function of distance (meters) from streams in a rural 
landscape in western Kenya, wet season and dry sea-
son. Relative proportion of habitats positive for Anopheles 
larvae is indicated.
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tle inflation due to random assignments in the classifica-
tion process. So, although the accuracy assessment is not
optimum, the likelihood that it is significantly worse is
low. Further, the supervised classification was supported
by an unsupervised classification separately from the
ground truth data points, as well as from visual interpre-
tation of the pan-sharpened image. Similar supervised

classification studies elsewhere in Kenya are few; a land
cover assessment in the River Njoro watershed of the Mau
Forest Complex in central Kenya had relatively poorer
producer's (50.50%) and user's (66.50%) accuracies com-
pared to our study, perhaps because a 30 m resolution
LandSat image was used, but the results were still useful in
a land cover change analysis [35].

Percentage of land area occupied by 6 different land cover types (supervised classification) as a function of distance (meters) from streams in a rural landscape in western KenyaFigure 4
Percentage of land area occupied by 6 different land cover types (supervised classification) as a function of dis-
tance (meters) from streams in a rural landscape in western Kenya. Tall shrubs land cover not shown (slope from 
regression not different from 0).
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Table 4: Distribution of habitats as identified by ground survey, IKONOS data and by both ground survey and IKONOS in different 
area categories

Habitat surface area size (m2) Ground survey IKONOS Ground survey + IKONOS

<1 119 0 0
1 – 3 385 0 0
3 – 10 491 0 0
10 – 20 134 18 10
20 – 40 49 2 0
≥ 40 20 1 1

Total 1,198 21 11
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There were marked influences of land cover type on the
location of Anopheles larval habitats in the study area. Cer-
tain land cover types representing agricultural land uses
(including mature maize, grazed grasslands and newly cul-
tivated fields) were positively associated with presence of
potential habitats and with Anopheles positive habitats,
whilst other land covers of mainly non-agricultural uses
(including short shrubs, tall shrubs, medium shrubs, and
bare land) were negatively associated with the presence of
potential habitats. Such a clustered (i.e., overdispersed) dis-
tribution of A. gambiae larval habitats (see Figure 1A) is
often extreme with a high index of aggregation and with
spatially-confined pupal production [8,9]. Agricultural
lands in the study area represented 46% of the total area but
accounted for 68% of the potential habitats and 71% of all
larval-positive samples. Potential larval habitats were also
located nearer streams, where agricultural land covers were
most common, in particular maize, a distribution
described well by a convex, monotonically decreasing
exponential curve. Maize plantings were likely close to
streams with ready access to water for irrigation, were typi-
cally flatter and therefore easier to cultivate, and likely had
rich alluvial soils amenable to maize plantings. This type of
"bottomland" planting is a characteristic of subsistence
agriculture in western Kenya, where water flows down
slope, eroding soil and forming alluvial deposits [36,37].

The proliferation of A. gambiae s.l. larval habitats in the
study area was previously shown to be highly associated
with human activities, especially agricultural ones [8].
Agricultural activities likely influence availability and suit-
ability of the larval habitats in several ways. First, A. gam-
biae s.l larval habitats elsewhere have been characterized
as newly or continuously disturbed, small water bodies
[38] such as those created by digging irrigation/drainage
channels around cultivated fields [8,9]. Second, larvae of
A. gambiae have been shown to flourish in these types of
larval habitats when they are exposed to direct sun
[13,14,39]. Thus, potential habitats located on agricul-
tural lands provided a more suitable environment for
breeding because hand dug channels alongside the plant-
ings were present, often held water, and were sun-
exposed. The small and shallow water bodies preferred by
An. gambiae s.l are unshaded and thus receive direct sun-
light radiation, which results in optimal temperatures for
growth and development of the larvae [12-14] and facili-
tates proliferation of algae which are an important larval
food source [23,40]. Thomas and Lindsay [41] observed
that 'pooled sediment' which consisted of exposed beds of
alluvial sediment saturated with water, with frequent
pooling and supporting sparse vegetation, was an impor-
tant breeding site for A. gambiae larvae in The Gambia,
similar to observations we have made here.

The proportion of different land cover classes varied with
distance to streams. Higher proportions of land cover

classes positively associated with location of potential
habitats (agricultural lands) were observed in areas close
to the streams, and these decreased with increasing dis-
tance from streams (Figure 4). Conversely, higher propor-
tions of land cover classes negatively associated with the
location of potential habitats (non-agricultural lands)
were observed further away from stream and the propor-
tions decreased towards the streams (Figure 4). This land
cover composition structure seemed to be a consequence
of combination of land use and topographical factors. The
tall and medium shrubs close to streams were likely
cleared to give way to mainly maize cultivation. The
results of our study in a lowland area were remarkably
similar to those in western Kenya highlands of higher alti-
tude and greater relief, where most productive A. gambiae
larval habitats were located at the valley bottoms near
streams on areas predominantly covered by agricultural
crops [10,13,14]. Although larvae do not dwell in flowing
waters, the association of habitats of streams suggests a
hydrological relationship that interacts with land use
practices and natural drainage patterns, resulting in pool-
ing of water and establishment of the kinds of productive
habitats we observed.

Several studies have shown that larval habitats may not be
readily detectable using remote sensing, but that satellite
imagery can be used to localize land covers where habitats
are likely to occur [1,19,42,43]. The most important
malaria vector in our study region, A. gambiae, has been
observed to breed in small, still and temporary pools of
water that rarely are larger than 40 m [8,9,22], ones likely
too small to detect using remote sensing. However, land
cover associations can be used as a proxy for larval habi-
tats [44]. Earlier applications of remote sensing in malaria
control emphasized suitability of very high resolution
remote sensing data for mapping vegetation and land
cover [15,45]. Zeilhofer and others [46] found savannah
scrub and woodlands were more suitable habitats than
pastures or cropland for A. darlingi in central Brazil. Other
studies have associated elevated adult vector densities
with specific land cover types [15,47]. The findings of this
study and other recent studies that utilized high resolu-
tion imagery and land cover analysis confirmed the use-
fulness of these tools in locating areas with high
probabilities of larval habitat location in western Kenya
[10,13], Korea [48], Thailand [49], Indonesia [50], and
Belize [51].

Whether potential larval habitats of An. gambiae could be
directly detected using the very high resolution spectral
data such as IKONOS or Quickbird was the second goal of
this study. The IKONOS satellite image (spatial resolu-
tion, 3.2 m) could be used to identify landscape features
on the ground as small as 16 m2 was used to determine
how effective multispectral data is in directly detecting
potential larval habitats. The performance of the IKONOS
Page 10 of 13
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data in directly detecting the habitats was evaluated
through a verification process. The reasons for the verifi-
cation process included: (1) to confirm whether the water
body existed or not, and (2) to determine habitat type and
larval presence. The verification procedure indicated that
the IKONOS imagery could be used to identify water in
those parts of the stream that were more than 4 meters
(pixel size for multispectral IKONOS image) wide. The six
stream courses (polygons) were not considered as poten-
tial larval habitats because water in the streams flows too
fast, particularly during the rainy season when this study
was done, for Anopheles larvae to breed. The IKONOS
imagery was therefore only useful in localization of 21 of
the 1,198 (1.75%) water bodies that were potential larval
habitats. The poor performance of IKONOS imagery in
directly detecting i.e. it only detected about 1% of the lar-
val habitats identified by ground surveys, is to a large
degree, due to the spatial resolution of the satellite
imagery, which failed to delineate any potential larval
habitats less than 10 m2 in size. Ground larval habitats
survey showed that 83% of the potential habitats were less
than 10 m2 in size. Potential larval habitats that were
small and had aquatic vegetation and an overhanging can-
opy were not captured during IKONOS image classifica-
tion. Also, about 66% of the potential larval habitats
located by ground larval habitats survey may have been
missed by the IKONOS data because they were turbid and
were classified as bare land.

One way to improve the accuracy of IKONOS data in
detecting potential larval habitats is by utilizing multi-
temporal IKONOS data to detect the potential habitats
over time because the target mosquito larval habitats are
very transient and some disappear completely in the dry
season [9,22]. However, the cost of very high spatial reso-
lution imagery may preclude the use of multi-temporal
IKONOS data in detecting potential larval habitats espe-
cially in sub-Saharan Africa where vector control resources
are scarce. Use of the IKONOS image was limiting in that
it was only able to detect directly a few of the habitats
larger than 3.2 × 3.2 m (IKONOS spatial resolution). It
overlooked the smaller habitats, which are the majority
and the most productive [9]. Achee et al. [42] also showed
that IKONOS data was not sufficient in predicting the spe-
cific locations of A. darlingi larval habitats within the
Sibun River in Belize. Jacob et al. [52] used Quickbird
(spatial resolution, 2.4 m) to locate large A. arabiensis hab-
itats (0.3–1.0 ha) in rice fields of the Mwea irrigation
scheme in central Kenya, but did provide information on
whether this very high resolution spectral data could be
used to locate the typically smaller A. gambiae s.l habitats.

Overall, the results of this study exemplify the close asso-
ciations that exist between An. gambiae s.l larval habitats
and the agricultural lands in the study area. Agricultural

lands offer biologically meaningful associations that are
critical for the survival of A. gambiae. It was clearly demon-
strated that very high resolution satellite images could be
utilized in identifying high probability sites for location of
potential larval habitats such areas covered by maize
fields and pasturelands, thus, an important role of very
high resolution satellite images in malaria vector control
is established [10,44]. The generality of the associations
reported here should be confirmed with similar studies in
nearby areas. The associations explored between land
cover and larval habitats in this study can best be utilized
in vector control programs in the wet season [53]. A single
well timed wet season IKONOS satellite image, the only
season in which an image was obtained in this study, may
suffice in directing control efforts to areas with high prob-
abilities of having potential larval habitats. The wet sea-
son is characterized by numerous suitable larval habitats
relatively wide spread across the landscape unlike the dry
season when the few larval habitats available are known
and confined in or along the streams (Mutuku et al. in
preparation). The link between larval habitats and land
cover can be exploited by control programs to gather
information on potential larval habitats more efficiently
than by field survey and over vast areas.
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