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Abstract
Background: Co-morbidity with conditions such as fever, diarrhoea and pneumonia is a common
phenomenon in tropical Africa. However, little is known about geographical overlaps in these
illnesses. Spatial modelling may improve our understanding of the epidemiology of the diseases for
efficient and cost-effective control.

Methods: This study assessed subdistrict-specific spatial associations of the three conditions
(fever, diarrhoea and pneumonia) in relation to malaria endemicity. We used data from the 2000
Malawi demographic and health survey which captured the history of childhood morbidities 2
weeks prior to the survey date. The disease status of each child in each area was the outcome of
interest and was modelled using a trivariate logistic regression model, and incorporated random
effects to measure spatial correlation.

Results: The risk of fever was positively associated with high and medium malaria endemicity levels
relative to low endemicity level, while for diarrhoea and pneumonia we observed marginal positive
association at high endemicity level relative to low endemicity level, controlling for confounding
covariates and heterogeneity. A positive spatial correlation was found between fever and diarrhoea
(r = 0.29); while weak associations were estimated between fever and pneumonia (r = 0.01); and
between diarrhoea and pneumonia (r = 0.05). The proportion of structured spatial variation
compared to unstructured variation was 0.67 (95% credible interval (CI): 0.31–0.91) for fever, 0.67
(95 % CI: 0.27–0.93) for diarrhoea, and 0.87 (95% CI: 0.62–0.96) for pneumonia.

Conclusion: The analysis suggests some similarities in subdistrict-specific spatial variation of
childhood morbidities of fever, diarrhoea and pneumonia, and might be a result of shared and
overlapping risk factors, one of which is malaria endemicity.
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Background
Children in sub-Saharan Africa experience a dispropor-
tionately large burden of morbidity and mortality. About
180 deaths per 1000 live births occur in the region [1],
mostly from a relatively small number of infectious dis-
eases [2]. Often these illnesses occur simultaneously
because of common risk factors and probably due to over-
laps between multiple risk factors, or because one disor-
der creates an increased risk for the other [3].

One of the common childhood co-morbidities is of diar-
rhoea, malaria, HIV and acute respiratory illnesses such as
pneumonia [4,5]. Each disease has its own aetiology and
environmental or behavioural covariates synergistically
expedite severe disease or death [6,7]. In settings where
malaria risk is perennial, the many febrile conditions chil-
dren experience have been attributed to malaria risk. For
example, most feverish conditions reported are a direct
cause of malaria infections [8]. At the same time,
immuno-suppression as a consequence of malaria infec-
tion tend to increase the risk of other illnesses including
diarrhoea and pneumonia [2,5-7]. In Malawi, malaria
remains highly endemic because of lack of sustainable
control programmes, with an estimated one million chil-
dren between ages of between 1 and 10 years living in
medium to high risk areas [9].

The HIV epidemic in sub-Saharan Africa exacerbates the
risk of morbidity and mortality to which children are
exposed. The HIV prevalence among adults aged 15–49
years in Malawi is estimated at 14.1% (range: 6.9–21.4%),
91,000 children (range: 28,000–190,000) are living with
HIV [10]. HIV infection doubles the risk of malaria para-
sitemia and clinical malaria [4]. Symptoms of HIV include
fever and diarrhoea, and pneumonia is a common oppor-
tunistic infection associated with HIV. The World Health
Organisation (WHO) has proposed an Integrated Man-
agement of Childhood Illnesses programme that takes
account of the prevalence of HIV. However, lack of HIV
prevalence data among children means that the effect of
this infection cannot be directly quantified.

This study applied a spatial model to investigate the effect
of malaria endemicity on childhood co-morbidity of
fever, diarrhoea and pneumonia. This relationship was
investigated using the 2000 Malawi Demographic and
Health Survey (DHS) databases and data from the Map-
ping Malaria Risk in Africa (MARA). The DHS survey con-
tains data on childhood health, and included questions
on childhood fever, diarrhoea and pneumonia. Malaria
risk was based on prevalence predicted at precise DHS sur-
vey sampling locations, by applying a geostatistical model
developed and described in Kazembe et al [9].

Since high malaria risk is likely to affect other diseases, it
was important to examine its effect on the spatial patterns
of childhood fever, diarrhoea and pneumonia. Moreover,
as fever, diarrhoea and pneumonia share risk factors
[3,11], spatial association across areas would be expected.
The analysis of geographical variation in these morbidities
is important for identifying areas of excessive inequalities
in health outcomes. Explaining variation of more than
one disease can give clues about common risk factors. An
appropriate health delivery response would be an inte-
grated management strategy of the diseases, including ini-
tiating unified home and community management of
malaria, pneumonia and diarrhoea [12,13].

Spatial models have been applied in previous studies
[11,14], in which district-specific geographical variation
in childhood fever and diarrhoea were analysed, fitting
separate models for each disease. In this study a multivar-
iate spatial model [15], was applied to analyse more than
one disease simultaneously. The advantage of this is that
one can quantify the correlation between relative risks for
each disease as well as enable disease-specific residuals to
be mapped, while at the same time, examining the influ-
ence of covariates on each disease. Specifically, the objec-
tives of this paper were to 1) describe the spatial variation
of malarial fever, diarrhoea and pneumonia at subdistrict
level in Malawi, 2) assess the influence of malaria ende-
micity, adjusting for confounding individual-level covari-
ates; 3) estimate the correlation between diseases at
subdistrict level.

Methods
Data
The analysis used self-reported data from the 2000
Malawi Demographic and Health Survey (MDHS) [16].
The MDHS employed a multi-stage sampling design, strat-
ified by region and urban/rural status, with sampling
probability proportional to the population of selected
enumeration areas (EAs). A total of 13,220 women aged
15–49 years, sampled from 560 EAs, were interviewed on
various health issues. Women were asked about children
under 5 in their households who had recent episodes of
fever, diarrhoea and pneumonia. Questions used to deter-
mine recent episodes of fever, diarrhoea and pneumonia
respectively were: "Does the child have fever now/Did the
child have fever during the last 2 weeks", "Did the child
have diarrhoea in the last 2 weeks", "Did the child have an
illness with coughing, did he/she breathe faster than usual
with short, fast breaths".

The self-reported sickness status (0/1) of each child for
each disease was the outcome of interest. The data set con-
tained 4,778 cases where responses to all three illnesses
were available. The following individual covariates were
included in the analysis: (1) age of the child; (2) owner-
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ship of bednets (1 = yes, 0 = no); (3) received vitamin A
within 6 months prior to the survey date (1 = yes, 0 = no);
(4) weight-for-age as a general indicator of nutritional sta-
tus, measured as Z-scores; (5) type of place of residence (1
= rural, 0 = urban); (6) crowding indicator based on
whether household size exceeded 6 members (1 = yes, 0 =
no).

At community level (i.e. at all 560 EAs), malaria endemic-
ity (measured using prevalence of infection) was
included, assuming that each child at each site was equally
exposed to the underlying risk. Malaria prevalence was
predicted for MDHS precise sampling locations using a
geostatistical model developed and described elsewhere
[9]. The malaria data were from children of age ≤ 10 years
at 73 different sites, across the country, where malario-
metric surveys were conducted. Predicted prevalence val-
ues were categorized into three groups: low (0–35%:
reference category), medium (36–60%) and high ende-
micity (61–100%). Table 1 gives summary statistics of all
variables used in the analysis. The map (Figure 1), shows
the observed percentages of childhood fever, diarrhoea
and pneumonia across sub-districts.

Statistical modelling
Assume yijk is the status (0/1) of disease k, k = 1 (fever), 2
(diarrhoea), 3 (pneumonia) for child j in subdistrict i, i =
1, . . .,364. Suppose that the observed outcomes arise from
a trivariate Bernoulli distribution, with pijk as the probabil-
ity of disease k occurring in child j in area i, then the out-
come is modelled using a logistic regression model with
predictor given by,

where αk is the intercept for disease k, the terms β = (β1, β2,
β3)T are vectors of regression parameters corresponding to
the set of covariates (Xijk) (Table 1). The components uik
and sik are the unstructured heterogeneity and spatially
structured variation terms, respectively, at subdistrict
level. Because of dependent binary outcomes, the random
effects are correlated and are modelled using multivariate
normal distributions as explained below.

Model estimation was carried out using the Bayesian
approach and the following prior distributions were spec-
ified for all parameters of the model (1). Without empiri-
cal evidence about the magnitude and direction of
covariate effects, non-informative priors were assigned to
the regression coefficients. For the intercept, diffuse priors
were assumed, that is, p(αk) ∝ 1, while for the other fixed

effects, β, highly dispersed normal distribution priors
were chosen, that is, p(β) ~ N(0, 10000). The unstructured
spatial effects uik were assumed to follow a multivariate
normal distribution, i.e., (ui1, ui2, ui3)T ~ MVN(0, Ω), with
covariance matrix Ω. The spatial structured effects sik were
assigned a multivariate conditional autoregressive
(MCAR) prior, i.e.,(si1, si2, si3)T ~ MCAR(1, Σ), again Σ is a
covariance matrix [15].

The covariance matrices of the spatiall effects have their
diagonal elements equal to the variances and the off-diag-
onals are correlation components between the diseases.

Thus, for example Σ11, Σ22, Σ33 are variance components

corresponding to fever, diarrhoea and pneumonia respec-

tively, while Σ12, Σ13, Σ23 are correlation components

between fever and diarrhoea, fever and pneumonia and
diarrhoea and pneumonia respectively. Correspondingly,

r12 = , for example, gives a measure of spa-

tial correlation between fever and diarrhoea. The variance
components, at a further stage, were assigned inverse

Wishart priors, i.e., Ω ~ IW (q, Q), Σ ~ IW (r, R) where q,r
are scalars, while Q, R are symmetric and positive defini-
tive matrices. The hyperpriors were assigned q = r = 3, Q =
R = 0.01I where I is an identity matrix.

Model fitting used Markov Chain Monte Carlo simulation
techniques to draw samples from the posterior distribu-
tion and was implemented in WinBugs 1.4 [17]. Three
parallel chains were run to help assess convergence, start-
ing from different initial dispersed values for all the
parameters. Each model quantity was monitored from the
first iteration. Convergence was evaluated by inspecting
trace and autocorrelation plots of samples for each chain,

as well as through numerical summaries such as the 
diagnostic statistic of Brooks et al. [18]. After 5,000 itera-
tions, all parameters showed signs of convergence in the

trace plots. The values of  also quickly approached 1
and were all below the value of 1.12, which indicated con-
vergence of both the pooled and within interval widths to
stability. The first 10,000 pre-convergence samples were
then discarded as "burn-in" and each chain was run for a
further 20,000 iterations for parameter estimation, with
Monte Carlo errors <5% of the posterior standard devia-
tion.

Because of the known concerns about the Wishart prior's
possible informativity, a sensitivity analysis was carried
out. Three specifications, i.e., Q = R = 0.005, 0.01,0.05
with q = r = 3, were carried out and the MCMC simulations
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were re-run for each choice. Using these priors gave satis-
factory results, and although the prior can give problems
on convergence, we did not have any problem on conver-
gence or mixing of the chains in this application. The esti-
mates of fixed and random effects, obtained from the
posterior distributions, were similar indicating that the
results were not sensitive to changes in prior distributions.

Results
Table 1 gives summary statistics for the areal and individ-
ual characteristics. The mean number of children reported
sick per subdistrict was 11 (range: 1–60) for fever, 5
(range: 1–26) for diarrhoea, and 12 (range: 1–63) for
pneumonia in the sample of n = 4,778 children. The cor-
responding proportions were 50% (range: 0–100), 21%
(range: 0–75) and 53% (range: 0–100) for fever, diar-
rhoea and pneumonia respectively. Very young infants
(age 0 to 5 months) and older children (36 to 59 months)
were less likely to be sick compared to the other age
groups across all the three diseases. The proportions sick
were more at higher malaria endemicity levels for all ill-
nesses. Diarrhoea occurred mostly in underweight chil-
dren. Rural children were disproportionately more sick
than their urban counterparts. Those with bednets were
less sick than those without.

Fixed effects of childhood morbidities
Table 2 provides estimates for the fixed effects. The risk of
fever was found to be associated with malaria endemicity
at both medium (Odds ratio (OR) = 1.26, 95% Credible
Interval (CI): 1.03–1.61) and high endemic levels (OR =
1.48, 95% CI: 1.08–2.06) relative to low levels. The asso-
ciation with diarrhoea was marginal at high endemicity
level (OR = 1.35, 95% CI:0.97–1.88) relative to low ende-
micity level. At medium level we observed positive associ-
ation, though, not significant (OR = 1.12, 95% CI: 0.87–
1.44). The risk of pneumonia was marginally associated
with high malaria endemicity level relative to low ende-
micity level (OR = 1.47, 95% CI: 0.95–2.08), and similar
at medium level relative to low endemicity level (OR =
1.02, 95% CI: 0.82–1.30).

The risk of childhood fever increased with rural residence
relative to urban residence (OR = 1.20, 95% CI: 1.01–
1.45). Children aged 0–5, 6–11, 12–23, 24–35 months
relative to 36–59 months were at higher risk of fever
(Table 2). Those who received Vitamin A relative to those
who did not were at increased risk of fever. Net ownership
and weight for age were associated with lower risk of fever.
Risk factors positively associated with diarrhoea were
rural place of residence and all children aged below three
years. Lower risk of diarrhoea was associated with bed nets
ownership and weight for age (Table 2). Pneumonia was

Table 1: Areal and individual characteristics for children who had fever, diarrhoea or pneumonia during the two weeks preceding the 
survey, Malawi DHS 2000.

Variable Fever† Diarrhoea Pneumonia n = 4778

Areal characteristics
Mean number (n) sick per sub-district (range) 11 (1–60) 5 (1–26) 12 (1–63) 20 (1–88)
‡Proportion sick per sub-district (range), % 50 (0–100) 21 (0–75) 53 (0–100)
Individual characteristics
Age of child 0–5 months 47.2 16 57.1 616

6–11 months 66.5 39.7 59.7 668
12–23 months 62.1 36.7 58.5 1068
24–35 months 54.5 16.8 54.9 930
36–59 months 42.6 9.5 52.3 1468

Malaria prevalence Low (0–35%) 48.3 19.4 55.5 1005
Medium (36–60%) 53.5 21.9 54.3 2940
High (>60%) 57.4 25.6 61.5 933

Bednet ownership No 53.9 22.7 57.3 3998
Yes 49.5 19.0 49.4 780

Vitamin A supplement No 48.7 20.1 54.0 1656
Yes 55.5 23.2 57.0 3122

Residence Urban 47.2 18.6 46.5 779
Rural 54.3 22.8 57.8 3999

Crowded household No 53.7 21.6 56.3 1480
Yes 52.9 22.3 55.8 3298

Weight-for-Age (Z scores) Mean -0.06 -0.19 -0.008
St.dev 0.98 0.91 1.01

‡Proportion sick during preceding 2 weeks
†Numbers under each disease column are percentage unless stated otherwise
Page 4 of 10
(page number not for citation purposes)



International Journal of Health Geographics 2007, 6:33 http://www.ij-healthgeographics.com/content/6/1/33
positively associated with children younger than three
years of age, rural place of residence, weight for age, and
Vitamin A uptake (Table 2).

Spatial effects of childhood morbidities
The degree of spatial heterogeneity is given by Σ and Ω in
Table 3. The spatially structured variation was estimated
as Σ11 = 0.62 (95% CI: 0.41–1.01) for fever, Σ22 = 0.27
(95% CI: 0.16–0.51) for diarrhoea, and Σ33 = 0.88 (95%
CI: 0.59–1.31) for pneumonia. For the unstructured het-
erogeneity, we estimated Ω11 = 0.43 (95% CI: 0.25–0.94)
for fever, Ω22 = 0.19 (95% CI: 0.10–0.36) for diarrhoea,
and Σ33 = 0.34 (95% CI: 0.21–0.59) for pneumonia. The
proportion of variation due to the spatially structured var-
iation was estimated as p11 = 0.67 (95% CI: 0.29–0.91) for
fever, p22 = 0.67 (95% CI: 0.28–0.93) for diarrhoea, and
p33 = 0.87 (95% CI: 0.63–0.96) for pneumonia.

The correlations between diseases at subdistrict level are
also presented in Table 3. The correlations associated with

spatially structured variation, Σ, were r12 = 0.18 (95% CI:
-0.48–0.72) for fever and diarrhoea; r13 = 0.02 (95% CI: -
0.56–0.56) for fever and pneumonia; and q23 = 0.04 (95%
CI: -0.56–0.63) for diarrhoea and pneumonia. For the
unstructured heterogeneity, the correlations were q12 =
0.47 (95% CI: -0.32–0.87) for fever and diarrhoea, q13 = -
0.01 (95% CI: -0.64–0.68) for fever and pneumonia,
while q23 = 0.09 (95% CI: -0.62–0.73) for diarrhoea and
pneumonia. The total spatial correlations (q + r) were 0.29
(95% CI: -0.26–0.69), 0.01 (95% interval: -0.45–0.46),
and 0.05 (95% CI: -0.43–0.51) for fever and diarrhoea,
fever and pneumonia; and diarrhoea and pneumonia
respectively.

Figures 2, 3, 4 show the spatial residual effects for fever,
diarrhoea and pneumonia. The accompanying right map
highlights areas where OR>1 is above 80% or below 20%,
in other words, the map shows areas where spatial clusters
of risk occur based on Richardson's criterion [19]. This cri-
terion recommends that probabilities over 80% be

Relative frequency of: (a) childhood fever (b) childhood diarrhoea (c) childhood pneumonia by sub-districtsFigure 1
Relative frequency of: (a) childhood fever (b) childhood diarrhoea (c) childhood pneumonia by sub-districts.
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deemed positively significant, those below 20% be judged
negatively significant, while those between 20 and 80%
be considered not significant. In Figure 2, increased risk of
fever appeared in the central and southern region, while
decreased risk was mainly in the northern region. Areas of
high probability (red colour) were concentrated in the
central region, while those of low probability (green col-
our) were in urban areas and the northern region. How-
ever, in most areas the probability was between 0.2–0.8
(not significant). For diarrhoea, we again observed
increased risk in the central and parts of the southern
region, while decreased risk was observed in the southern
region (Figure 3-left panel), and the corresponding poste-
rior probability map highlights areas of excess risk
(OR>1). Similarly for pneumonia, the central region dis-
played increased risk, while the northern region and iso-
lated parts of the southern region depicted lower risk
(Figure 4). For all three diseases, areas of excess risk hap-
pened to be concentrated in the central region, but over-
all, the residual spatial association between the three
illnesses was weak.

Discussion
Recent studies have shown significant district-specific spa-
tial variation in childhood fever and diarrhoea in Malawi
[11,14], and have attributed this clustering to perennial
malaria risk. In addition, others have confirmed a com-
mon occurrence of childhood morbidities of fever, diar-
rhoea and pneumonia and have proposed that malarial
infection is a contributing risk factor [1-3,5]. Despite these
observations, little research has been carried out to inves-
tigate the spatial correlation between the diseases, and the

effect of malaria endemicity. In this study, the aim was to
investigate these by applying multivariate spatial models
to assess subdistrict-specific geographical correlation of
childhood fever, diarrhoea and pneumonia, in relation to
malaria endemicity.

We observed that the risk of the three illnesses varied with
different risk factors, including age of the child, under-
weight, use of bednet, Vitamin A, and place of residence
(urban or rural). The effect of age on the three illnesses is
interesting. Generally, all children under the age of 5 years
were at increased risk, however, those of an age where they
were likely to be weaned (6–23 months) appeared to be at
the greatest risk. Very young infants (0–5 months) may
have been breastfed, and therefore protected by maternal
immunity, and children older than 3 years were less at risk
of disease, probably because of acquired immunity. Chil-
dren who were underweight were at greater risk of diar-
rhoea. The prevalence of diarrhoea appears to have
increased amongst children reported to have had a Vita-
min A supplement. This has not been confirmed by other
studies and a decrease in morbidity and mortality is the
rationale for the provision of Vitamin A supplement. This
finding may be a question of reverse causality [20], i.e.,
children with fever or diarrhoea are more likely to present
for health care and thereby receive Vitamin A. This obser-
vation, however, warrants further research to see whether
treatment seeking behaviour plays an important role.

In this analysis, the risk of all three illnesses, i.e., fever,
diarrhoea and pneumonia was found to be associated
with malaria endemicity, although this relationship was

Table 2: Fixed effects estimates from the joint spatial model of childhood fever, diarrhoea and pneumonia morbidity in Malawi, 2000.

Fever Diarrhoea Pneumonia
OR 95%CI OR 95%CI OR 95%CI

Fixed Effects
Malaria prevalence Low: 0–35% 1.00 1.00 1.00

Medium: 36–60% 1.26 (1.03, 1.61) 1.12 (0.87, 1.44) 1.02 (0.82, 1.30)
High:>60% 1.48 (1.08, 2.06) 1.35 (0.97, 1.88) 1.47 (0.95, 2.08)

Residence Rural 1.20 (1.01, 1.45) 1.16 (0.92, 1.46) 1.48 (1.24, 1.76)
Urban 1.00 1.00 1.00

Age of child 0–5 months 1.47 (1.20, 1.83) 2.35 (1.76, 3.19) 1.23 (0.98, 1.50)
6–11 months 2.84 (2.39, 3.47) 6.98 (5.49, 9.02) 1.35 (1.12, 1.64)
12–23 months 2.24 (1.90, 2.64) 5.72 (4.55, 7.18) 1.33 (1.12, 1.57)
24–35 months 1.65 (1.40, 1.96) 1.92 (1.50, 2.47) 1.10 (0.92, 1.29)
36–59 months 1.00 1.00 1.00

Vitamin A supplement No 1.00 1.00 1.00
Yes 1.21 (1.06, 1.38) 0.96 (0.81, 1.13) 1.12 (0.99, 1.28)

Bednet ownership No 1.00 1.00 1.00
Yes 0.85 (0.72, 1.02) 0.84 (0.67, 1.04) 1.02 (0.86, 1.22)

Crowded household No 1.00 1.00 1.00
Yes 0.95 (0.83, 1.08) 1.04 (0.88, 1.22) 0.98 (0.85, 1.11)

Weight-for-Age 0.90 (0.84, 0.95) 0.77 (0.71, 0.83) 1.01 (0.95, 1.08)

OR-Odds ratio; CI-Credible interval
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stronger with fever. It is also evident that malaria ende-
micity acts as a shared risk factor that increases the risk of
other diseases, such as diarrhoea and pneumonia [2,3].
This is especially true at higher levels of endemicity. A
recent review [1], indicates that in sub-Saharan Africa
where malaria is endemic, the impact of other illnesses
including pneumonia and diarrhoea is exacerbated and
accordingly co-morbidity of opportunistic diseases is also
high [6,7].

The relationship between fever and malaria endemicity is
particularly interesting. In malaria-endemic countries,
fever is often equated to malarial morbidity for prompt
treatment due to non-availability of definitive diagnosis
in most places. Although fever as an indicator of malaria
infection generates many false positives [21], our findings

seem to vindicate the appropriateness of treating children
reporting fever with antimalarials [5,22].

As shown in other studies [11], moderate to small subdis-
trict-specific geographical variation of childhood morbid-
ity of fever, diarrhoea and pneumonia were observed. In
the central region the risk patterns were quite similar,
indeed, fever and diarrhoea were modestly correlated with
high uncertainty and this persisted after adjusting for cov-
ariates. This is not surprising as the two are influenced by
sanitation-related risk factors [6,11]. Since this correlation
persisted after controlling for covariates, the findings sug-
gest common unmeasured covariates influencing both
diseases. The correlation between fever and pneumonia,
and between diarrhoea and pneumonia was non-signifi-
cant. Nevertheless, the spatial effects in Figures 2 and 4 do
indicate isolated similarities in residual risk between these
diseases in some districts. This factor can be explained by

Spatial residual effects of childhood diarrhoea, MDHS 2000Figure 3
Spatial residual effects of childhood diarrhoea, MDHS 2000. 
Left map shows odds ratios (OR) per subdistrict compared 
to the overall mean. Right map shows the corresponding 
posterior probabilities for OR>1: <20 percent deep green, 
20–80 percent light green, >80 percent red.

Spatial residual effects of childhood fever, MDHS 2000Figure 2
Spatial residual effects of childhood fever, MDHS 2000. Left 
map shows odds ratios (OR) per subdistrict compared to the 
overall mean. Right map shows the corresponding posterior 
probabilities for OR>1: <20 percent deep green, 20–80 per-
cent light green, >80 percent red.
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severity and/or depth of poverty in these districts, result-
ing in children exposed to multiple opportunistic illnesses
such as diarrhoea and pneumonia [5,7,23]. Overall, the
residual spatial associations between the three illnesses
was weak because much of the heterogeneity has been
explained by covariates included in the model, and to a
greater extent the unmeasured or unknown areal covari-
ates may be different for each disease, hence contrasting
residual spatial variations.

Excluding malaria endemicity as a risk factor, childhood
morbidities are a combined result of several determinants,
including the socio-demographic covariates as observed
in Table 2. In addition, unobserved covariates as meas-
ured by the spatial residuals (Figures 2, 3, 4), may also
influence the etiology of childhood morbidities. These
could be HIV/AIDS, malnutrition, population density,

socio-economic determinants, socio-cultural differences,
or indoor air pollution. Kandala et al. [11] argued that
high population density in the central region affects the
child's environment, which in turn influences exposure to
diseases, despite overcrowding not being significant in
our analysis. Food insecurity associated with drought and
flooding in the Shire Valley are among possible explana-
tions for spatial heterogeneity in childhood diseases [14].
Undernutrition, Vitamin A, zinc and other deficiencies
also increase susceptibility to common illnesses like
malaria, diarrhoea and pneumonia [6]. The residual spa-
tial variation may also represent agricultural and indoor
air pollution from biomass combustion, which synergeti-
cally contribute to child ailments in particular respiratory
illnesses [25]. Further research, though, is definitely
needed to verify these assertions. The maps provide a
strong foundation for further analysis. The use of inter-
ventions such as insecticide treated bednets has a protec-
tive effect against malaria, and therefore indirectly for the
other two illnesses. Scaling-up of these and related inter-
ventions is essential for improved childhood health [26].

Use of DHS data has limitations. Concerns have been
raised about potential bias of relying on the ability of
mothers to identify and separate symptoms of fever,
pneumonia or diarrhoea [21].

Nevertheless, ethnographic studies generally agree that
mothers consistently distinguish symptoms of various
diseases- the easiest to diagnose being diarrhoea and
pneumonia [22]. Secondly, diagnoses of illnesses
depended on mother's report (recall) as is common in ret-
rospective surveys. Accuracy and completeness of
mother's recall in 19 national DHS surveys found that
highly educated women were more accurate in reporting
and identification [27]. To provide a consistent sample,
recalls were restricted to 14 days prior to the survey. This
has been found to provide reliable results in related stud-
ies in the country [24]. In addition, the survey was carried
out during the summer months (August-October) of
2000. During such time, there is increased likelihood of
diarrhoea and malaria, but reduced likelihood of pneu-
monia. The high prevalence of pneumonia in our results
(Table 1), seems to suggest failure in identifying pneumo-
nia which may overlap with malarial fever [5].

HIV is an important confounder in this study and the lack
of HIV data in the 2000 survey is a major limitation, thus
our results need to be interpreted bearing in mind the co-
existence of malaria and HIV. The relationship observed
between fever, diarrhoea and pneumonia may be due to
the fact that symptoms of HIV include fever, diarrhoea
and pneumonia [4]. This is an important research ques-
tion, which needs thorough investigation when such data
become available.

Spatial residual effects of childhood pneumonia, MDHS 2000Figure 4
Spatial residual effects of childhood pneumonia, MDHS 2000. 
Left map shows odds ratios (OR) per subdistrict compared 
to the overall mean. Right map shows the corresponding 
posterior probabilities for OR>1: <20 percent deep green, 
20–80 percent light green, >80 percent red.
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The use of modelled values of malaria prevalence might
be prone to errors in the malaria endemicity covariate,
resulting in a possible overestimation of standard errors.
The use of predicted prevalence values is justified by
highly endemic malaria risk in Malawi which has changed
little over the years due to lack of sustainable malaria con-
trol programmes in the country. As such, modelled esti-
mates provide a realistic pattern of malaria risk, which
also agrees with expert opinion [28]. This approach is said
to give conservative estimates [29].

In conclusion, the results have depicted similarities in the
spatial pattern of fever, diarrhoea and pneumonia. The co-

occurrence of fever and diarrhoea was the strongest
mainly due to shared risk factor such as malaria endemic-
ity. Although overlaps between fever and pneumonia or
between diarrhoea and pneumonia were weak, malaria
still played an important role. The magnitude of overlap
in symptoms strongly suggest the need to strengthen strat-
egies for the integrated management of childhood ill-
nesses through home and community case management
innovations that jointly address such illnesses. Since
malaria home and community management are widely
accepted in the country, it is possible to include treat-
ments for diarrhoea and pneumonia in the existing
malaria dispensing strategies.

Table 3: Random effects estimates from the joint spatial model of childhood fever, diarrhoea and pneumo nia morbidity in Malawi, 
2000.

Fever
Post. Mean‡

(95% CI)

Diarrhoea
Post. Mean
(95% CI)

Pneumonia
Post. Mean
(95% CI)

Random effects
Spatial structured (Σ11, Σ22, Σ33) 0.62 0.27 0.88

(0.41, 1.01) (0.16, 0.51) (0.59, 1.31)
Spatial unstructured (Ω11, Ω22, Ω33) 0.43 0.19 0.34

(0.25, 0.94) (0.10, 0.36) (0.21, 0.59)
Proportion of structured
spatial variation (p11, p22, p33) 0.67 0.67 0.87

(0.29, 0.91) (0.28, 0.93) (0.63, 0.96)
Correlation structured
Fever 1.00 0.18 0.02

(-0.48, 0.72) (-0.56, 0.56)
Diarrhoea 1.00 0.04

(-0.56, 0.63)
Pneumonia 1.00
Correlation unstructured
Fever 1.00 0.47 -0.01

(-0.32, 0.87) (-0.64, 0.68)
Diarrhoea 1.00 0.09

(-0.62, 0.73)
Pneumonia 1.00
Total correlation (q + r)
Fever 1.00 0.29 0.01

(-0.26, 0.69) (-0.45, 0.46)
Diarrhoea 1.00 0.05

(-0.43, 0.51)
Pneumonia 1.00

‡Pos. Mean = posterior mean; CI = Credible interval

r r12
12

11 22
13

13

11 33
= =Σ

Σ Σ
Σ

Σ Σ
,

r23
23

22 33
=

Σ
Σ Σ

q q12
12

11 22
13

13

11 33
= =Ω

Ω Ω
Ω

Ω Ω
,

q23
23

2 33
=

Ω
Ω Ω
Page 9 of 10
(page number not for citation purposes)



International Journal of Health Geographics 2007, 6:33 http://www.ij-healthgeographics.com/content/6/1/33
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions
LNK conceptualised, collected data, analysed and drafted
the manuscript. ASM, CCA and IK participated in the con-
ception and critical review of the manuscript. The authors
read and approved the final manuscript.

Acknowledgements
LNK would like to acknowledge the research training grant received from 
WHO/TDR and support from Medical Research Council, Durban, South 
Africa during his PhD training. We also acknowledge permission granted by 
MEASURE DHS to use the 2000 Malawi DHS data under the project-Spatial 
analysis of malariometric indicators in Malawi.

References
1. Black RE, Morris SS, Bryce J: Where and why are 10 million chil-

dren dying every year?  Lancet 2003, 361:2226-34.
2. Mulholland K: Commentary: Comorbidity as a factor in child

health and child survival in developing countries.  Int J Epide-
miol 2005, 34:375-377.

3. Fenn B, Morris S, Black RE: Comorbidity in childhood in Ghana:
magnitude, associated factors and impact on mortality.  Int J
Epidemiol 2005, 34:368-375.

4. Abu-Raddad LJ, Patnail P, Kublin JG: Dual infection with HIV and
malaria fuels the spread of both diseases in sub-Saharan
Africa.  Science 2006, 314:1603-1606.

5. Källander K, Nsungwa-Sabiiti J, Peterson S: Symptom overlap for
malaria and pneumonia–policy implications for home man-
agement strategies.  Acta Trop 2004, 90:211-214.

6. Caulfield LE, de Onis M, Lössner M, Black RE: Undernutrition as an
underlying cause of child deaths associated with diarrhea,
pneumonia, malaria, and measles.  Am J Clin Nutr 2004,
80:193-198.

7. Pelletier DL, Frongillo EA, Habicht JP: Epidemiologic evidence for
a potentiating effect of malnutrition on child mortality.  Am J
Public Health 1993, 83:1130-1133.

8. Breman JG: The ears of the hippopotamus: Manifestations,
determinants, and estimates of the malaria burden.  Am J Trop
Med Hyg 2001, 64S:1-11.

9. Kazembe LN, Kleinschmidt I, Holtz TH, Sharp BL: Spatial analysis
and mapping of malaria risk in Malawi using point referenced
prevalence of infection data.  Int J Health Geogr 2006, 5:41.

10. Joint United Nations Programme on HIV/AIDS (UNAIDS): Report on
the global AIDS epidemic. A UNAIDS 10th anniversary special edition 2006
[http://www.unaids.org/en/HIVdata/2006GlobalReport/default.asp].

11. Kandala N-B, Magadi MA, Madise NJ: An investigation of district
spatial variations of childhood diarrhoea and fever morbidity
in Malawi.  Soc Sci Med 2006, 62:1138-1152.

12. Kolstad PR, Burnham G, Kalter HD, Kenya-Mugisha N, Black RE: The
integrated management of childhood illness in western
Uganda.  Bull World Health Organ 1997, 75S1:77-85.

13. Perkins BA, Zucker JR, Otieno J, Jafari HS, Paxton L, Redd SC, Nahlen
BL, Schwartz B, Oloo AJ, Olango C, Gove S, Campbell CC: Evalua-
tion of an algorithm for integrated management of child-
hood illness in an area of Kenya with high malaria
transmission.  Bull World Health Organ 1997, 75S1:33-42.

14. Kandala N-B: Bayesian geoadditive modelling of childhood
morbidity in Malawi.  Appl Stoch Models Busin Industr 2006,
22:139-154.

15. Gelfand AE, Vounatsou P: Proper multivariate conditional
autoregressive models for spatial data analysis.  Biostat 2003,
4:11-25.

16. National Statistical Office ORC Macro: Malawi Demographic and
Health Survey 2000 Zomba, Malawi: NSO; 2002. 

17. Spiegelhalter DJ, Thomas A, Best NG: WinBUGS Version 1.2 User Man-
ual MRC Biostatistics Unit. University of London; 1999. 

18. Brooks SP, Gelman A: General methods for monitoring conver-
gence of iterative simulations.  J Comp Graph Statist 1998,
7:434-455.

19. Richardson S, Thomson A, Best N, Elliott P: Interpreting posterior
relative risk estimates in disease-mapping studies.  Environ
Health Perspect 2004, 112:1016-25.

20. MacLure M, Schneeweiss S: Causation of bias: the episcope.  Epi-
demiol 2001, 12:114-122.

21. Einterz EM, Bates ME: Fever in Africa: do patients know when
they are hot.  Lancet 1997, 350:781.

22. Dunyo SK, Koram KA, Nkrumah FK: Fever in Africa and WHO
recommendation.  Lancet 1997, 350:1549-1550.

23. Benson T, Chamberlin J, Rhinehart I: An investigation of the spa-
tial determinants of the local prevalence of poverty in rural
Malawi.  Food Policy 2005, 30:532-550.

24. Vaahtera M, Kulmala T, Maleta K, Cullinan T, Salin M, Ashorn P: Epi-
demiology and predictors of infant morbidity in rural
Malawi.  Paediatr Perinat Epidemiol 2000, 14:363-371.

25. Mishra V: Indoor air pollution from biomass combustion and
acute respiratory illness in preschool age children in Zimba-
bwe.  Int J Epidemiol 2003, 32:847-853.

26. Lengeler C: Insecticide-treated bed nets and curtains for pre-
venting malaria.  Cochrane Database Syst Rev 2004, 2:CD000363.

27. Boerma JT, Black RE, Sommerfelt AE, Rustein SO, Bicego GT: Accu-
racy and completeness of mother's recall of diarrhoea
occurence in pre-school children in demographic and health
surveys.  Int J Epidemiol 1991, 20:1073-1080.

28. Government of Malawi: Malaria policy Lilongwe: National Malaria
Control Programme. Community Health Sciences Unit. Government
of Malawi; 2002. 

29. Gemperli A, Vounatsou P, Kleinschmidt I, Bagayoko M, Lengeler C,
Smith T: Spatial patterns of infant mortality: effects of malaria
endemicity.  Am J Epidemiol 2004, 159:64-72.
Page 10 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12842379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12842379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15764692
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15764692
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15764695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15764695
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17158329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17158329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17158329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15177148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15177148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15177148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15213048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15213048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15213048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8342721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8342721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16987415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16987415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16987415
http://www.unaids.org/en/HIVdata/2006GlobalReport/default.asp
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16139938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16139938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16139938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15198922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15198922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9298000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9298000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11101024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11101024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11101024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14559763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14559763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14559763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15106149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15106149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1800406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1800406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1800406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14693661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14693661
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Data
	Statistical modelling

	Results
	Fixed effects of childhood morbidities
	Spatial effects of childhood morbidities

	Discussion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

