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Abstract
Background: Ecologic studies have shown a relationship between alcohol outlet densities, illicit
drug use and violence. The present study examined this relationship in the City of Houston, Texas,
using a sample of 439 census tracts. Neighborhood sociostructural covariates, alcohol outlet
density, drug crime density and violent crime data were collected for the year 2000, and analyzed
using hierarchical Bayesian models. Model selection was accomplished by applying the Deviance
Information Criterion.

Results: The counts of violent crime in each census tract were modelled as having a conditional
Poisson distribution. Four neighbourhood explanatory variables were identified using principal
component analysis. The best fitted model was selected as the one considering both unstructured
and spatial dependence random effects. The results showed that drug-law violation explained a
greater amount of variance in violent crime rates than alcohol outlet densities. The relative risk for
drug-law violation was 2.49 and that for alcohol outlet density was 1.16. Of the neighbourhood
sociostructural covariates, males of age 15 to 24 showed an effect on violence, with a 16% decrease
in relative risk for each increase the size of its standard deviation. Both unstructured heterogeneity
random effect and spatial dependence need to be included in the model.

Conclusion: The analysis presented suggests that activity around illicit drug markets is more
strongly associated with violent crime than is alcohol outlet density. Unique among the ecological
studies in this field, the present study not only shows the direction and magnitude of impact of
neighbourhood sociostructural covariates as well as alcohol and illicit drug activities in a
neighbourhood, it also reveals the importance of applying hierarchical Bayesian models in this
research field as both spatial dependence and heterogeneity random effects need to be considered
simultaneously.

Background
With the ability to properly account for high variance of
estimates in small geographic areas and clarify overall
geographic trends and patterns, Bayesian methods are
becoming popular tools for disease mapping. Besag et al.

[1] described a Bayesian approach which separated spatial
effects from heterogeneity. Waller et al. [2] developed a
Bayesian hierarchical model that accommodated covari-
ates and spatial structure which evolved over time. The
widespread use of geographic information systems (GIS)
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and links to statistical packages have further encouraged
spatial data analysis [3-5]. With the development of
Markov Chain Monte Carlo (MCMC) methods and soft-
ware such as WinBUGS [6,7], Bayesian approaches are
being applied to the analysis of many social and health
problems in addition to disease mapping and modelling.
In particular, Berry et al. [8], Cohen et al. [9] and Law and
Haining [10] used Bayesian statistics for analyzing crime
data. Random effects modeling is often used to deal with
the problem of overdispersion in modeling count data
[11,12]. Poisson models require that mean and variance
are equal, while in real data, overdispersion often results
in larger variance than mean.

This paper reports the results of fitting random effect
models to census tract-level high violence areas for the
City of Houston, Texas, using WinBUGS and its spatial
analysis extension GeoBUGS[13] for model fitting. Model
fit comparison is accomplished using the deviance infor-
mation criterion [14]. These analyses will inform the
growing literature within public health and criminology
that is focused on the geospatial relationship between
aspects of the physical and social environment and the
commission of violent crime [15-18].

The remainder of this paper is organized as follows. The
Method section describes the datasets pertaining to alco-
hol availability, drug hot spots, violent crime and sociode-
mographic characteristics at the census-tract level in
Houston, Texas. It also undertakes an analysis of these
datasets in which the alcohol and the drug covariates are
included with neighborhood sociostructural variables
using four random effect models, and the models are
compared based on Deviance Information Criterion. The
Result section reports the results of the chosen Bayesian
model. Map decomposition is applied to interpret the dis-
tribution of high-violence areas in Houston. The Discus-
sion section provides a comparison of the findings to
previous studies and presents some possible avenues for
future research. The Conclusion section summarizes the
major findings in this research.

Methods
Data
The sample for this study comprised of 439 census tracts
from Houston for which violent crime data were reported
by the city police department. Houston is the largest city
in Texas and the fourth largest in the USA. The boundaries
for the tracts were those established for the 2000 US Cen-
sus. Census tracts are not necessarily corresponding to
neighborhoods in a socially meaningful sense, but they
are considered to be the most appropriate boundary to
use in assessing the relationship between neighborhood
structure and violent crime [19,20], because they are rela-
tively homogeneous with regard to population and are

the best local areas where the required data are available.
Three archival datasets were employed in the present
study. The first one included monthly police reports of
four violent crime categories of murder, rape, robbery and
aggravated assault in 2000, extracted from the City of
Houston Police Department website [21]. The violent
crime data are based on first reports of offenses (that is,
before investigation and final classification of crimes).
The website also contained monthly reports of narcotic
drug-law violations. Like the violent crime data, the drug-
law violation data were also based on first reports of
offenses. Available evidence suggests that police data rep-
resent a valid indicator of actual drug activity in a commu-
nity [22]. Such "call for assistance" data have been used in
previous studies of alcohol availability and violent crime,
and have strengths as well as limitations relative to official
crime records [23-25]. Close to 98% of the data were suc-
cessfully geocoded and aggregated to census tract level in
the analysis. The second dataset pertained to alcohol out-
lets. A list of all alcohol outlets active in the year 2000 in
Houston was obtained from the website of the Texas Alco-
holic Beverage Commission (TABC) [26]. There were a
total of 6,609 alcohol outlets in the dataset, each of which
included the name, geographic location, and type of per-
mit or license of the outlet. Almost all of the outlets
(99.5%) were successfully geocoded by street address
using Centrus Desktop [27]. TABC classified the outlets by
type of consumption allowed, specifically, off-premise
versus on-premise. 1,480 (22.4%) of all outlets were on-
premise, 3,094 (46.8%) off- premise, and 2,035 (30.8%)
combined on-/off- premise. Outlet density was defined as
number of outlets per 100 persons in a census tract. Prin-
cipal component analysis identified total alcohol outlet
(including on-, off-, and on-/off- premise) density to be
the major factor in this group of covariates.

The third dataset used in the study pertained to 12 neigh-
borhood sociostructural factors. These variables, which
were grouped under three broad categories, were selected
as they had been used in previous ecologic studies of alco-
hol availability and crime [16,25,28]. We use these varia-
bles as potential covariates in our analysis to keep in line
with the existing literature and for possible comparisons
between different studies. We realized that there might be
collinearity issue and our study area might have a unique
set of covariates which may not be exactly the same as pre-
vious studies, so we conducted a variable reduction using
principal component analysis described below. The data
were extracted from Summary File 1 and Summary File 3
of the 2000 US Census [29]. Of these variables, six were
measures of concentrated disadvantage (% families below
poverty line, % families receiving public assistance, %
unemployed individuals in civilian workforce, % female-
headed households with children, % Black, and % Lat-
ino), three were measures of residential instability (% of
Page 2 of 12
(page number not for citation purposes)



International Journal of Health Geographics 2006, 5:54 http://www.ij-healthgeographics.com/content/5/1/54
residents over age 5 who have lived in the same house for
5 or more years, % homes that are owner-occupied, and %
vacant housing units), and three were sociodemographic
measures of the resident population (adult to child ratio,
population density, and % population that is male and
aged 15–24). Since these variables were highly correlated
with each other [30], principal component analysis was
conducted to reduce the number of covariates. To retain
the basic component structure of these neighbourhood
sociostructural factors, principal component analysis was
done separately for a) the six variables of concentrated dis-
advantage, b) the 3 measures of residential instability, and
c) the three sociodemographic measures. In each of the
three groups, components with eigenvalues greater than 1
were extracted and the variable with the highest factor
loading for each extracted components was selected. Four
variables were selected from the three groups, which were
a) % of families below poverty, and % of Latino from the
concentrated disadvantage measures, b) % owner-occu-
pied housing units from the measure of residential insta-
bility, and c) % population that is male and aged 15–24
from the socidemographic measures.

Bayesian hierarchical modelling
The Bayesian approach has become standard in the epide-
miology and environmental health literature, but has
only recently been used in sociological applications. It is
called "hierarchical" because it uses multiple levels of
analysis in an iterative way. Unlike the conventional sta-
tistical inference which derives the average estimates of
parameters, hierarchical Bayesian modelling produces
parameter estimates for each individual analysis unit by
borrowing information from all analysis units, the cus-
tomary Bayesian "borrow of strength" effect. In a standard
Poisson model, the variance is required to be equal to the
mean. But in reality many Poisson models have more var-
iances and these are called over-dispersed Poisson mod-
els. Hierarchical Bayesian modelling identifies these
"extra variances". In the case of spatial statistics in non-
Bayesian approach, if there is high uncertainty in the
regression model, a regression that explains only a small
amount of variance is obtained. In a hierarchical Bayesian
model, on the other hand, the "unexplained variance" is
usually identified as either spatially-correlated effects or
heterogeneity effects. The ability to incorporate prior
knowledge without the restriction of classical distribu-
tional assumptions makes Bayesian inference a potent
forecasting tool in a wide variety of fields.

In the first stage of the Bayesian hierarchical model, we
specified a likelihood model for the vector of observed
crime counts given the vector of relative risks of crimes,
and then specified a prior model over the space of possi-
ble relative risks at the second stage. Using software pack-
ages such as WinBUGS/GeoBUGS [31,13] or

sophisticated computation algorithms could yield a set of
posterior means for the relative risks given the observed
crime counts. The set of posterior means or medians of the
relative risks was then used to create a map to visualize the
high- or low-risk census tracts. Crude maps were devel-
oped from the likelihood model (the first stage) only, and
often feature large outlying relative risks in small areas
(where the population is small). Hence, crude maps usu-
ally show high uncertainty. They also fail to catch similar-
ity of relative risks in nearby or adjacent regions. An
appropriately-tailored Bayesian approach will incorporate
spatial assumptions and achieve spatial smoothing by
borrowing information from all individuals.

The violent crime counts could be modelled as a condi-
tional Binomial(n, p) variable with the population sizes to
be n and a unknown rate p. An initial check into the data
reveals that the population sizes in the majority of the
census tracts are large (in thousands) and the violent
crimes are rare, with an average rate of around 5%. So we
use the Poisson approximation to binomial distribution
at the first stage of likelihood specification. The model
assumes that the number of crime counts in region i, Yi,
has a conditional independent Poisson distribution with
mean Ei exp(µi). Here Ei is the expected number of events,
which is fixed and proportional to the corresponding
known population ni. Specifically, we set Ei = Rni, where
the proportional constant R is the grand rate (i.e., the total
number of events divided by the total population). Hence
exp(µi) is the relative risk: regions with exp(µi) > 1 gener-
ally have greater numbers of observed incidence than
expected, and vice versa for regions with exp(µi) < 1. Thus
µi is log-relative risk, modelled linearly as

µi = x'iβ + θi + φi, i = 1, ..., I  (1)

Here x'i are region-specific covariates, and β is a vector of

fixed effects. θi and φi are the region-specific random

effects capturing heterogeneity and spatial dependence,
respectively. The typical way to impose this structure is to

assume that θi's are i.i.d. Gaussian variables with mean 0

and variance 1/τ and φi|φj≠i ~ N( , ), i = 1,...,I, where

Weights wij are fixed constants. With this structure, θi's
capture heterogeneity among regions and φi's capture spa-
tial dependence or autocorrelation. In practice, a common
choice is to let wij = 0 unless areas i and j are adjacent, in
which case wij = 1. Other forms of wij (often using distance
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between centroids of regions i and j) are possible [32,33].
This distribution for ϕ = (φ1,..., φI) is called an intrinsic
conditionally autoregressive specification [2,10,13],
which for brevity we typically write in vector notation as ϕ
~ ICAR(λ). A fully Bayesian model specification is com-
pleted by adding prior distributions on β, τ and λ. With-
out prior expectations about direction and magnitude of
the covariate effects, a vague but proper prior distribution
is put on the regression coefficients β. Prior distribution
for τ and λ is Gamma(a, b) with mean a/b and variance a/
b2. With no prior estimation for precisions of the random
effects, small values of a and b are chosen to assume large
variance. Here we have chosen Gamma(0.001,0.001), a
vague prior for precision parameters of both effects.

Principal component analysis was conducted to obtain a
subset of four neighborhood variables. The main effects of
interest in this study are those of alcohol outlet densities
and drug-law violation densities on violence. So the cov-
ariate matrix includes six explanatory variables, and the
dependant variable is the occurrence of violence in each
census tract which follows a Poisson distribution as spec-
ified earlier. We fitted four models with or without ran-
dom effects, and assessed the performance of them using
Bayesian approaches. Model I contained the fixed effects
only. It assumes that the parameters were fixed for each
region i and all relevant covariates had been correctly
specified. An extension was to specify random effects
which included either one or both of unstructured (θ) and
spatial dependence effects (ϕ). These were called Model II
(fixed effects and θ), Model III (fixed effects and ϕ), and
Model IV (full model), respectively.

Statisticians have long paid attention to the model selec-
tion problem. For years, Bayesian statisticians were
advised to use only Bayes factors [34] for this purpose.
However, Bayes factor becomes quite difficult both to
compute and interpret for high-dimensional hierarchical
models, and is not well-defined for models having
improper prior distributions. The difficulties with Bayes
factor have led to a host of alternative model choice crite-
ria. Most recently, Spiegelhater et al. [14] proposed a gen-
eralization of the Akaike Information Criterion [35] that
was based on the posterior distribution of the deviance
statistic

D(ϑ) = -2log p(y|θ) + 2log f(y).

Here p(y|θ) is the likelihood function for the observed

data vector y given the parameter vector θ, and f(y) is a
standardizing function of the data alone. In this approach
the model fit is summarized by the posterior expectation

of the deviance,  = Eθ|y(D), while model complexity is

captured by the number of effective parameters pD, which

is defined as expected deviance minus deviance evaluated
at the posterior expectations, i.e.

pD = Eθ|y(D) - D(Eθ|y(θ)) =  - D ( )

Deviance information criterion (DIC) is then defined as the
summation of fit and complexity, i.e.

DIC =  + pD = 2  - D( )

Smaller values of DIC indicate a better-fitting model.
Table 1 lists deviance summaries for the four models. A
comparison of DIC shows that the mixed effect models
(Models II, III, and IV) are much better than the fixed
effect model (Model I). The number of effective parame-
ters in Model I is the number of covariates, while adding
random effects for each of the 439 census tracts in Models
II through IV makes the number of effective parameters far
less than the total number of model parameters due to
"borrowing of strength" across individual-level parame-
ters in hierarchical models. Model II contributes 357 extra
parameters, and Model III (with stronger restriction of
spatial dependence) contributes 351 extra parameters to
Model I. Model IV has a slightly smaller DIC value than
Models II and III, and a fraction of extra effective parame-
ter compared with Model III. The comparison of the three
random effects models suggests that Model IV may be
regarded as more parsimonious, yet the significance to the
apparent difference of 10 between Models III and IV is
hard to assess [36]. Here we consider another criterion

where sd(.) is empirical marginal standard deviation.
Hence α is the proportion of variability in the random
effects that is due to spatial dependence. Larger values
(near 1) suggest a dominating spatial dependence, while
smaller values (near 0) suggest a negligible one. Recall
that we specified the same gamma prior distribution for τ
and λ, i.e., α = 1/2. Fitting data with the full model obtains
the posterior distribution of α with mean 0.584, median
0.582, and a 95% credible interval (0.450, 0.733). This
indicates that approximately 60% of excess variability is
due to spatial dependence, while 40% is due to unstruc-
tured random noise. This confirms that Model IV (full
model with both spatial dependence and spatial heteroge-
neity) is the best among the candidate models.

Two parallel sampling chains were run with overdispersed
initial values. Convergence was assessed by checking the
trace plots of the samples, autocorrelation functions, the
Gelman-Rubin convergence statistic [37], and Monte
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Carlo standard errors [31]. The four models described
above had different "burn-in" (pre-convergence) periods,
with slower convergence for the more complex models.
Convergence was detected at 20,000 iterations in the full
model. For each model, the first 20,000 pre-convergence
samples were discarded and each chain was run for a fur-
ther 25,000 iterations, giving 50,000 samples with accept-
able Monte Carlo errors (<5% of the posterior standard
deviation).

Sensitivity analysis was conducted to investigate whether
results in the analysis remained essentially unchanged in
the presence of different prior information. Vague but
proper prior distributions Normal(0, .000001) and
Gamma (0.001,0.001) [31] were first specified for the cov-
ariate coefficients and precision parameters, respectively.
Then we made modifications to the prior distributions,
recomputed the posterior quantities of interest and
checked whether they imposed a practical impact on
interpretations or decisions. We adapted an informative
prior distribution Gamma (0.1, 0.1) and another com-
monly used Gamma (0.5, 0.0005) [38] for this purpose.
The three distributions gave almost identical results for all
the parameters, indicating the results are robust to
changes in prior information.

Results
The covariate values were first transformed by natural log-
arithm and then standardized (centered around mean and
divided by standard deviation) to speed convergence [5].
Table 2 reports the results of Model IV from the 50,000
samples after burn-in period. Summarized are posterior
statistics for the covariate regression coefficients (β 's),

and the precision parameters for spatial (φ 's) and unstruc-
tured (θ 's) random effects. Listed in the table are posterior
mean, standard deviation, Monte Carlo error, median,
2.5th percentile, 97.5th percentile (with the last two items
being simply the 95% credible interval), and relative risk
(corresponding to one standard deviation change in the
covariate) which is computed as the exponential of poste-
rior median. For the regression coefficients, the sign (pos-
itive or negative) and the size of the parameters indicate
the direction and magnitude of the fixed effects. Intercept
can be interpreted as the log risk of crime over the entire
city when all the covariates are taken to be zero (i.e. equal
to their means). This value could not be assessed without
this analysis. In this study, Houston shows a risk of exp(-
0.314) = 0.73. Of the four neighborhood covariates, only
males of age 15 to 24 show an effect on violence, and this
is the only neighbourhood covariate included in the final
model. The neighbourhood covariate shows a 16%
decrease in relative risk for each increase the size of its
standard deviation. The main effects of interest are both
significant, with coefficients of 0.151 and 0.914, respec-
tively.

While data transformation makes interpretation some-
what difficult, it is instructive to examine in detail a typical
(and real) inner-city census tract with a population the
size of 1191, 12 alcohol outlets, and 116 drug-law viola-
tion reports in the year 2000. Assuming all other covari-
ates remain the same, if the number of alcohol outlets
increases to 48 (with a standard deviation of 36), then, on
average, the relative risk of violence will increase 16%; if
the number of drug-law violation reports increases to 168
(with a standard deviation of 52), then the relative risk of

Table 2: Posterior summaries for regression and precision coefficients

Parameter Mean Standard Deviation Monte Carlo error 2.5% Median 97.5% Relative Risk

intercept -0.314 0.018 0.0003 -0.351 -0.314 -0.279 ----
% Population of male aged 15–24 -0.174 0.034 0.0013 -0.242 -0.173 -0.108 0.841

Alcohol outlet density 0.152 0.032 0.0009 0.091 0.151 0.214 1.163
Drug-law violation density 0.913 0.038 0.0023 0.832 0.914 0.986 2.494

Unstructured random effect 10.63 5.387 0.258 5.489 9.181 24.89 ----
Spatial dependence 2.067 0.867 0.041 1.046 1.870 4.246 ----

Table 1: Deviance summaries for the four hierarchical models

Model D( ) pD DIC

I Fixed effects only 6081.78 6072.78 9.004 6090.78
II Fixed and heterogeneity 2784.25 2417.84 366.41 3150.66
III Fixed and dependence 2786.43 2425.65 360.78 3147.21

IV Full model 2776.66 2415.75 360.91 3137.57

D ϑ
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violence increases 1.5 times. It is apparent that the effects
of alcohol outlets are quite modest compared to the
effects of drug-law violations. It is hard to imagine any
real-word community would increase the alcohol outlets
such dramatically, but increase of drug-law violations
from 116 to 168 would be possible. Precision for spatial
random effects is lower than the unstructured heterogene-
ity. Later analysis of the maps shows the same tendency.

Figure 1 plots the standard incidence ratio (SIR) of vio-
lence in the study area. Standard incidence ratio is the
crude ratio of observed violence counts to expected
counts. As described in the Method section, expected
counts are thought of as fixed and proportional to the
known population. No covariate or random effect is con-
sidered in their calculation. The pivotal value 1 means
that observed and expected counts are the same. Areas

with SIR>1 have larger observed violence counts than
expected. The map includes blank areas with missing data,
as those areas belong to other cities (Bellarie, Jacinto City,
etc.). Generally, the northern and outskirt areas of the city
have lower violence incidence, and the inner city has
higher violence risk. The numbers in parenthesis are
counts of census tracts in each level. About 55% (240 of
439) of all the census tracts have SIR lower than 1, while
extreme values do exist. Four of the small census tracts
have observed violence counts 10 times higher than the
expected, while four very small areas have SIR = 0.

Figure 2 presents the map of the fitted incidence ratio of
violence in the study area. Fitted incidence ratio is SIR
multiplied by exponential of µi, which is modelled in (1).
This index accounts for information on all three aspects of
the fixed effects, the unstructured heterogeneity random

Standardized Incidence Ratio of Violence in Houston, TexasFigure 1
Standardized Incidence Ratio of Violence in Houston, Texas.
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effect, and the spatial dependence effect. The figure clearly
shows characteristic Bayesian shrinkage of the crude rate
toward the local average rate. In particular, no census tract
is now assigned a value of exactly zero, and the extremely
high rate in one of the small areas (east of the city) has
been substantially reduced. The high values in the inner
city remain high. There also appears to be some tendency
for local clustering of similar values, the probable out-
come of the ICAR(λ) portion in the model.

Law and Haining [10] developed a map decomposition
strategy that provided some interesting insights into dif-
ferent factors in Bayesian spatial modelling. Here we
adapt the method and pay special attention to the visual-
ization of the results in our model. The log relative risk µi
is a random variable which consists of three parts: the
deterministic fixed effect x'iβ, the spatial dependence ran-

dom effect φi, and the unstructured heterogeneity effect θi.
Figure 3 shows the maps of the posterior means of x'iβ for
all covariates, the neighborhood covariates, the alcohol
factor, and the drug covariate, respectively. It reveals that
illicit drug-law violation is the major contributing factor,
with highly spatially varied values dominating the distri-
bution pattern of the fixed effects from all covariates. The
distributions of the neighborhood sociostructural factors
and of alcohol density are more or less more uniform. Fig-
ure 4 shows the maps of the random effects in log-relative
risk, calculated using the posterior means of the unstruc-
tured heterogeneity effect θi, and the spatial dependence
random effect. Neither of the random effects is dominat-
ing over the other, though the spatial dependence effect is
slightly higher than the unstructured effect. The variability
observed in the spatial dependence effects is higher, and
this confirms the result about α, the proportion of the var-

Fitted Incidence Ratio of Violence in Houston, TexasFigure 2
Fitted Incidence Ratio of Violence in Houston, Texas.
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iability in the random effects that is due to spatial depend-
ence. The posterior mean of α = 58% indicates that
neither of the random effects plays a more important role
than the other. The map of the spatial effects shows a clear
pattern of local clustering of similar values, while it is dif-
ficult to detect a distributional pattern in the unstructured
heterogeneity effect.

Finally, the map of the posterior means of residuals (Fig-
ure 5) is used to assess the overall model goodness-of-fit.
Residual is the difference between observed and fitted val-
ues of the dependent variable, the counts of violence in
this case. If the model fits well and all relevant covariates
are included, spatially independent residuals are expected.
A visual check on the map suggests that there is no spatial

distributional pattern in the residuals. There could still be
important independent variables that are missing in the
model, but they probably do not have significant spatial
structure and hence do not have an impact on the residual
map.

Discussion
The analysis presented suggests that activity around illicit
drug markets is more strongly associated with violent
crime than is alcohol outlet density. This supports previ-
ous studies that have shown a spatial link between drug
"hot spots" and violence [39]. However, it is possible that
some of the association between drug crime density and
violent crime rates found in the present study is due to the
fact that the data used to assess each of these came from a

Map Decomposition of the log Relative Risks for a) Fixed Effect, b) Neighborhood Sociostructural Covariates, c) Alcohol Out-let Densities, and d) Illicit Drug-Law ViolationsFigure 3
Map Decomposition of the log Relative Risks for a) Fixed Effect, b) Neighborhood Sociostructural Covariates, c) Alcohol Out-
let Densities, and d) Illicit Drug-Law Violations. Four levels (from the lightest to the darkest) shown in the maps are <= -0.3, -
0.3 – 0, 0 – 0.3, and >0.3.
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Map Decomposition of the log Relative Risks for the Random Effect Part into a) Unstructured, and b) Spatially Dependence Random EffectsFigure 4
Map Decomposition of the log Relative Risks for the Random Effect Part into a) Unstructured, and b) Spatially Dependence 
Random Effects. Four levels (from the lightest to the darkest) shown in the maps are <= -0.3, -0.3 – 0, 0 – 0.3, and >0.3.
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common source, namely the Houston police department.
So, while available evidence suggests that police data pro-
vide a meaningful indicator of drug activity in a commu-
nity [22], it would have been preferable to have some
additional measure of this variable that was independent
of law enforcement records (e.g., neighborhood surveys).
It also needs to be noted here that an association has been
identified between violent crimes and neighborhood cov-
ariates as well as alcohol and drug activity, it requires fur-
ther investigation as to whether the exposure (alcohol and
drug activity) and the outcome (violence) are both conse-
quences of the same unmeasured phenomenon. There is
not necessarily a causal relation between the exposure and
the outcome.

A major contribution of the current study is to reveal the
importance of spatial analysis in the research into the
interaction of alcohol availability, illicit drug market, and
violent crime. The Bayesian hierarchical modelling

approach provides the methodology that incorporates
complex data and model levels, with spatial dependence
structure. Freely available software such as WinBUGS/
GeoBUGS enables wider use of the developed methods. A
useful extension to the methods described here would be
to assess spatially heterogeneous interactions between dis-
parate data sources [40]. In the current study, the impact
of alcohol availability and illicit drug activity on violent
crime is assumed to be constant over the whole study area.
There are theoretical reasons to believe that the associa-
tions may be different in different geographic locations.
The challenge for ecological research programs is to
develop models of the spatial interactions of people and
places to predict violence across community areas.

Conclusion
In this paper we have presented a three-level Bayesian
hierarchical modelling approach to model the occurrence
of violence in Houston, Texas. The first level was the like-

Residuals for the Bayesian Hierarchical ModelFigure 5
Residuals for the Bayesian Hierarchical Model.
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lihood of the occurrence of violence that follows a Pois-
son distribution. Level 2 modelled the log relative risk as
a linear combination of three components which
accounted for fixed effects of possible covariates, random
effects of unstructured heterogeneity and spatial depend-
ence. At level 3, non-informative hyperprior distributions
were assigned to the precision parameters for the random
effects. Eight explanatory variables were identified via
principal component analysis. Four models that
included/excluded the two random terms were compared
based on Deviance Information Criterion and proportion
of the variability in the random effects that is due to spa-
tial autocorrelation. The full model which considered
both unstructured and spatial dependence random effects
was selected as the best fitted model. Sensitivity analysis
was performed to check whether the prior assumptions on
the precision parameters had an undue effect on the
results. Of the three fixed effects that contributed to the
relative risk of violent crime, drug-law violation explained
a greater amount of variance in violent crime rates than
alcohol outlet densities and neighbourhood sociostruc-
tural variables. The census tract level random effects
included both a spatial dependence and an unstructured
heterogeneity effect, suggesting that it is necessary to carry
out this research in a Bayesian hierarchical framework
where different formats of random effects and fixed effects
are considered. The residual map indicated that the qual-
ity of model fit was satisfactory.
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