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Abstract

Background: Mapping spatial distributions of disease occurrence and risk can serve as a useful
tool for identifying exposures of public health concern. Disease registry data are often mapped by
town or county of diagnosis and contain limited data on covariates. These maps often possess poor
spatial resolution, the potential for spatial confounding, and the inability to consider latency.
Population-based case-control studies can provide detailed information on residential history and

covariates.

Results: Generalized additive models (GAMs) provide a useful framework for mapping point-
based epidemiologic data. Smoothing on location while controlling for covariates produces
adjusted maps. We generate maps of odds ratios using the entire study area as a reference. We
smooth using a locally weighted regression smoother (loess), a method that combines the
advantages of nearest neighbor and kernel methods. We choose an optimal degree of smoothing
by minimizing Akaike's Information Criterion. We use a deviance-based test to assess the overall
importance of location in the model and pointwise permutation tests to locate regions of
significantly increased or decreased risk. The method is illustrated with synthetic data and data

from a population-based case-control study, using S-Plus and ArcView software.

Conclusion: Our goal is to develop practical methods for mapping population-based case-control
and cohort studies. The method described here performs well for our synthetic data, reproducing
important features of the data and adequately controlling the covariate. When applied to the
population-based case-control data set, the method suggests spatial confounding and identifies

statistically significant areas of increased and decreased odds ratios.

Background sus data, plotting mortality, incidence or prevalence by
Mapping spatial distributions of disease occurrence can  town, census tract, or other geographical division. While
serve as a useful tool for identifying exposures of public ~ such maps can provide etiologic clues, they have impor-
health concern, e.g., [1]. Epidemiologists often produce  tant limitations. Registries usually collect information on
disease maps by combining registry information with cen-  only a few common covariates such as age and gender,

Page 1 of 10

(page number not for citation purposes)


http://www.ij-healthgeographics.com/content/5/1/26
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16764727
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

International Journal of Health Geographics 2006, 5:26

Figure |

Point map of synthetic data. Locations of cases (red) and
controls (blue) are shown stratified by a dichotomous varia-
ble (age). Disease odds are constant within strata, but four
times higher in the old. Young are uniformly distributed; old
are clustered in the northeast quadrant.

potentially causing spatial confounding. For example, a
local increase in lung cancer incidence could be due to
spatial clustering of smokers. Smoking is an important
risk factor for lung cancer that cannot be controlled in
standard maps because the data are often not routinely
collected. Registries typically record residence at time of
diagnosis. For outcomes with long latencies, important
exposures may have occurred many years before at differ-
ent locations. Maps that ignore latency may tend to be
flatter if population movement is random with respect to
disease status [2]. Census data are typically aggregated
within arbitrary geographic units (e.g., towns), producing
poor spatial resolution, and large between-area differ-
ences in precision. The choice of areal units employed for
mapping can significantly affect the resulting map [3].
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Figure 2

Effect of span size on crude odds ratio map. We use a
generalized additive model to estimate smoothed log odds as
a function of space and converted to odds ratios using the
whole population as a reference. An optimal span of 0.55,
chosen by minimizing the AIC, shows the correct underlying
pattern, a single area of elevated disease in the northeast
quadrant. Under-smoothing (left) or over-smoothing (right)
distorts the pattern.
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These mapping issues can be addressed using the much
richer data obtainable from population-based case-con-
trol and cohort studies. Using a disease registry, cases in a
given geographic area can be identified. The population
giving rise to the cases must also be enumerated or sam-
pled. When controls are appropriately sampled from the
population giving rise to the cases, the case-control ratio
(disease odds) in a subset of the area should be propor-
tional to the disease incidence rate [4]. While expensive
and time-consuming, population-based case-control and
cohort studies can collect detailed information on resi-
dential history and a large number of potential risk fac-
tors. The covariate information collectable from such
studies permits much better control of confounding than
data routinely collected by registries. Considering resi-
dence as a proxy for exposure, epidemiologists can
account for latency by mapping where people lived for
specified lengths of time before they were diagnosed
(With only residence at diagnosis, one can at best analyze
rates at various time points in the past, a quite different
kind of map). Geocoding the residential locations of cases
and controls produces point-based data, avoiding aggre-
gation by arbitrary geographical units.

Our goal is to develop practical methods for epidemiolo-
gists using readily available software. This paper will
describe the statistical, mapping, and epidemiological
methods we employ to map case-control data. We provide
examples using both synthetic data and real data from a
population-based case-control study of breast cancer on
Upper Cape Cod, Massachusetts, USA.

Results

Synthetic data

Figure 1 shows the distribution of the synthetic data by
age and case-control status. Using the Akaike's Informa-
tion Criterion (AIC), the optimal neighborhood size (i.e.
percentage of the data) or span for the smooth term was
45 % of the synthetic data for the crude GAM model
(omitting the age covariate). The resulting map shows an
area of elevated odds ratios (OR) in the correct location,
caused by the grouping of older subjects (Figure 2, center).
An odds ratio of unity denotes areas with odds equal to
the overall case-control ratio of 0.44. Crude odds ratios
for the synthetic data ranged from 0.57 to 1.65, somewhat
narrower from the expected range of 0.45 to 1.8.

To demonstrate the importance of span size, we also cre-
ated crude maps using span sizes of 5% and 95% of the
data. A span of only 5% produced a rough surface with
one large cluster and various smaller clusters (Figure 2,
left). The smaller clusters are due to random noise in the
synthetic data, not an increase in disease risk, illustrating
the danger of choosing too small a span size. Conversely,
a span of 95% produced an over-smoothed surface (Fig-
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Figure 3

Global test of location using deviance. We test the glo-
bal nullhypothesis of no association between location and
disease status using the difference in deviance of models with
and without the location term. We estimate the distribution
of the statistic under the null hypothesis by permutation. The
approximate chi-square distribution is also shown. The
observed value of the deviance statistic is highly significant
for the crude model (p < .0001) indicating that location is
important, i.e., the crude map is not flat.

ure 2, right). While the large span size identified only one
area of increased risk, it was located further northeast.

Returning to the crude map with the optimal span size,
the two global permutation tests and the approximate chi-
square test provided by S-Plus, testing the null hypothesis
that case status does not depend on location (i.e. a flat sur-
face), all resulted in very small p-values (p < 0.0001), indi-
cating a highly significant association between location
and disease status. As shown in Figure 3, the distribution
of the deviance statistic estimated by permutations is
shifted to the left compared with the chi-square distribu-
tion assumed by S-Plus. As the observed value of the sta-
tistic lies far to the right, both p-values are very small.
However, if the observed statistic had been less extreme,
the chi-square approximation would not have worked as
well.

With the global deviance test indicating that the map is
unlikely to be flat, we next located areas of the map that
exhibit unusually high or low disease odds. Figure 4
shows the results of the pointwise permutation tests. The
2.5% and 97.5% contours of the pointwise permutation
distributions are drawn on the map of odds ratios. The
region of significantly increased risk coincides with the
area of elevated odds ratios. As the null hypothesis is a flat
map with odds equal to the overall case-control ratio,
there is also an area of significantly decreased risk.

http://www.ij-healthgeographics.com/content/5/1/26
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Pointwise p-values. We permuted the locations of sub-
jects and reran the GAM model 999 times to estimate the
distribution of log odds under the null hypothesis at each
point. We define areas of significantly decreased odds ("cold
spots") to include all points that rank in the lower 2.5% of the
pointwise permutation distribution and areas of elevated
odds ("hot spots”) to include all points that rank in the upper
2.5% of the pointwise permutation distribution. We superim-
pose the 2.5% and 97.5% contour lines on the point estimate
map. The slightly elevated, but non-significant, region in the
lower right corner occurred due to chance.

The map adjusted for age shows a flat surface compared
with the crude map, demonstrating the presence of spatial
confounding in the latter (Figure 5). A flat adjusted map
is expected since the data were created assuming uniform
disease odds within strata. The optimal span size chosen
by the AIC was 95% of the data. There was no significant
association between location and disease status in the
adjusted map. The p-values for the global tests were 0.49
for the deviance statistic, 0.57 for the Kelsall and Diggle
statistic, and 0.35 for the approximate chi-square statistic.
The estimated odds ratio for the effect of age was 4.2 (95%
CI = 3.2, 5.2), slightly higher than the value of 4 used to
construct the simulated data.

GAMs may exhibit edge effects, biased behavior at the
edges of the data [5]. Loess, a locally-weighted regression
smoother (see chapters 7 and 8 of [6]), uses a tri-cube
weight function that down-weights points far from the

Page 3 of 10

(page number not for citation purposes)



International Journal of Health Geographics 2006, 5:26

Crude Odds Ratios Adjusted Odds Ratios

Odds Ratios

| | T
023 1.0 1.80

Figure 5

The GAM model properly adjusts for a covariate. The
crude map ofthe synthetic data is elevated in the northeast
quadrant due to spatial confounding, i.e., spatial clustering of
the risk factor age. Adjustment for age produced a quite flat
map, an expected result since we constructed the data
assuming uniform disease odds within each stratum.

target point, suggesting smaller edge effects than for near-
est neighbor smoothers with the same span. To examine
possible edge effects, we cut our data set diagonally in half
and re-predicted the crude odds ratios with the optimal
span of 45%. Figure 6 compares results from half the grid
to that of the original grid. The self-imposed edge did not
appear to affect the GAM's performance.

Cape Cod data
The real data have two features quite different from the
synthetic data. The population is concentrated mainly

Crude Odds Ratios Adjusted Odds Ratios
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Figure 6

Testing for edge effects. GAMs can produce biased esti-
mates near edges. We cut our data set in half diagonally and
reran the model with the same span. The results are quite
similar.

http://www.ij-healthgeographics.com/content/5/1/26

along the coast of the study area. In addition, the north-
east interior of the study area has sparse population due to
the presence of a military base.

Using the AIC curve, the optimal span for both the crude
(omitting the race covariate) and adjusted GAM model in
the 20-year latency analysis was35 % of the data. The two
global permutation tests and the approximate chi-square
test provided by S-Plus all resulted in very small p-values
(deviance statistic = 0.002, Kelsall and Diggle statistic =
0.003, approximate chi-square statistic = 0.0008) for both
the crude and adjusted maps, indicating a highly signifi-
cant association between location and disease status.
Adjusting for race slightly increased the odds ratios in the
center of the study area as indicated by the subtle shift
from green to yellow-green when comparing Figures 7a
and 7b. The 2.5% and 97.5% contours of the pointwise
permutation distributions are drawn on the maps of odds
ratios.

The AIC curve identified a second local minimum at a
span of 15% (Figure 8). Using the smaller span size
reveals various areas of elevated risk, or "hot spots", in the
crude map that were not apparent using the larger span of
35% (Figures 7a, 7c). The global statistics resulted in very
small p-values, once again indicating a highly significant
association between location and disease status: 0.001 for
the deviance statistic, 0.001 for the Kelsall and Diggle sta-
tistic, and 0.0001 for the approximate chi-square statistic.
After adjusting for the covariate race, the hot spot in the
center of the study region grows larger in geographic size
and intensity and is now statistically significant as
denoted by the contours of the pointwise permutation
distributions (Figure 7c, 7d).

The effect of race is due to a large concentration of non-
whites that were living in this area of upper Cape Cod
(overall only 31 of 589 participants were non-white).
Because non-white women have a lower risk of breast can-
cer, spatial confounding by race was partially masking the
significance of location in the crude analysis. In the maps
produced with the larger span size, it was necessary for the
smoothing window to span across the sparsely populated
northeast interior to the opposite coast in order to include
the optimal number of residences, thus obscuring the
effect of race.

Discussion

Our goal is to develop practical methods for mapping
population-based case-control and cohort studies. The
method described here performs well for our synthetic
data, reproducing important features of the data and ade-
quately controlling the covariate. When applied to the
Cape Cod data set, the method suggests spatial confound-
ing and identifies statistically significant areas of increased
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Figure 7

Cape Cod Breast Cancer Data. Twenty years oflatency.
Odds ratios are relative to the whole study area. a) Crude,
optimal span of 35%. b) Adjusted, optimal span of 35%.
Adjusting for race makes little difference in the map at a span
of 35%. c) Crude, span of 15%. A smaller span reveals hot
spots not apparent at the larger span. d) Adjusted, span of
I5%. Difference from the crude map indicates spatial con-
founding by race using the smaller span size.

and decreased odds ratios (For a more in-depth analysis of
the Cape Cod data, see [7]).

Comparison with other methods

In earlier papers, we constructed maps of case-control
data using a nearest-neighbor smoother [8,9]. The span
was based on the number of controls in a window rather
than the number of subjects, so that every window calcu-
lated odds using the same denominator. While potentially
useful, this non-standard smoother required special soft-
ware and used ad hoc methods for span selection and
hypothesis testing.

GAMs provide a unified statistical framework for smooth-
ing binary and other kinds of outcome data, span selec-
tion, covariate adjustment, and hypothesis testing. Our
current method differs in several ways from the earlier
work of Kelsall and Diggle [10]. While both methods use
generalized additive models, Kelsall and Diggle employed
a kernel smoother, used cross-validation (CV) to select an
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Choosing an optimal span size. Care must be used with
automatic span selection procedures. Since the Cape Cod
data showed both local and global minima for the AIC,
searching from the left to find the first minimum underesti-
mated the true optimum. More importantly, the AlIC and
other similar methods balance bias with variance, a goal not
necessarily equivalent to locating important data features.

optimal span size and tested the overall flatness of the
map with a mean squared difference statistic. They used
permutation to construct pointwise p-value surfaces and
evaluate global statistics, but the permutations were based
on reassigning case/control status based on fitted proba-
bilities from a logistic regression based only on the covari-
ates. They mapped log odds on a continuous scale. As
kernel smoothers fix the size of neighborhoods based on
distance, kernels may perform worse than loess when data
density varies greatly [5], as population often does (for
example, the population of Upper Cape Cod). While the
mean squared difference and deviance statistics produced
qualitatively similar p-values for our synthetic data, their
relative power remains unknown. All differences between
the two methods require further investigation.

Limitations and future work

Despite the advances in mapping case-control data of the
last decade, a number of issues remain. When evaluating
the precision of a point estimate, many epidemiologists
prefer confidence intervals to p-values [4]. Variability
bands [11], a non-parametric counterpart to confidence
intervals, may provide a useful technique. We are cur-
rently investigating this approach using bootstrapping.

We identified areas with significantly increased or
decreased risk using pointwise hypothesis tests. By mak-
ing these multiple comparisons we increase the likelihood
of finding significant hot or cold spots by chance alone.

Page 5 of 10

(page number not for citation purposes)



International Journal of Health Geographics 2006, 5:26

Although we make no adjustment for multiplicity, we
only conducted pointwise tests if the global deviance test
indicated that the map was unlikely to be flat. The loca-
tion of significant hot and cold spots should be consid-
ered as exploratory.

Both local and global minima of the AIC can exist. Start-
ing at a small span size, the first minima in our Cape Cod
data - and the one reported by S-Plus - occurs at 0.15, but
the AIC is actually minimized at a span size of 0.35 (Fig-
ure 8). Should we use a single "optimal" span size? Auto-
matic span selection methods such as the CV or AIC may
be preferable to ad hoc procedures, but they should not be
used blindly. Spans can be chosen to examine features at
a particular scale if desired. Automatic span selection
methods aim to balance the tradeoff between bias and
variance, a goal not necessarily equivalent to detecting
important features. We are currently exploring the appli-
cation of "scale space" methods to our problem [12].

In the Cape Cod study, people live near coasts, increasing
concern about edge effects. While we found little evidence
for edge effects when applying our methods to synthetic
data, additional work is clearly required.

Semiparametric studies of air pollution commonly
employ GAMs: the effect of interest is modeled parametri-
cally and several covariates are modeled with smooths.
Dominici et al. [13,14] reported that S-Plus may produce
a biased parametric regression coefficient with inflated
standard error. Ramsay et al. [15,16] warned that stricter
convergence criteria are not sufficient for eliminating
these problems: concurvity, a nonparametric counterpart
to multicollinearity, plays a role. We use our semipara-
metric model (1) differently: the effect of "exposure"
(location) is modeled with a smooth while covariates are
modeled parametrically. We assess the precision of the
smooth with permutation tests, so inflation of software-
provided standard errors is not an issue. As our parametric
covariates are nuisance variables, bias of their coefficients
or inflation of their standard errors is not a problem, pro-
vided that confounding is adequately controlled. Covari-
ate control was adequate in our synthetic data, but
additional work is needed, including more complicated
covariates and multiple realizations of stochastic proc-
esses. As an additional check, we modeled the synthetic
data using both default and more stringent convergence
parameters; results were very similar (data not shown).

Conclusion

In contrast to the well-developed methods for mapping
area-based epidemiologic data, point data have received
much less attention; adequate means of controlling cov-
ariates has been an important issue. GAMs provide a fairly
simple solution to this problem. They provide a unified

http://www.ij-healthgeographics.com/content/5/1/26

statistical framework for smoothing binary outcome data,
controlling covariates, and testing hypotheses. They are a
conceptually straightforward extension of familiar logistic
regression and analyses can be performed with standard
software packages. Although principally a tool for map-
ping, they provide both global and local tests of disease
clustering [17]. When applied to population-based case-
control and cohort studies with residential histories, a
number of important questions may be addressed. Are
apparent disease clusters due to (or masked by) spatial
confounding? Does failure to take latency into account
partially hide spatial patterns for diseases like cancer? GIS
technology allows the overlaying of this next generation
of disease maps with geographically-coded environmen-
tal and social information. Such comparisons may yield
new exposure hypotheses.

Methods

Spatial analysis of area-based vs. point-based data
Methods for constructing maps of area-based disease data
are well advanced [18,19]. In one of the simplest and
most common applications, counts of cases in towns or
other geographic units are linked to census data. Rates are
then standardized directly or indirectly and mapped by
area. Many of the statistical issues with such maps are well
known. Multiple comparisons occur when many areas are
tested for statistical significance using conventional crite-
ria. The statistical stability of the rates depends on popu-
lation sizes that typically vary greatly between areas.
Numerous smoothing methods, such as empirical and
fully Bayesian approaches have been developed in
response [18,19]. Because of the limited number of indi-
vidual-level covariates available from disease registries
spatial confounding can occur. Poisson regression is one
method for adjusting for additional covariates such as
area-based measures of socioeconomic status, e.g., [20].
However, use of group-level covariates as proxies for indi-
vidual-level variables may not control confounding, caus-
ing cross-level (ecologic) bias [21]. Other methods take
into account residual spatial autocorrelation between
areas, reviewed in [19].

Mapping of individual, point-based data presents differ-
ent challenges. Point maps of cases alone are deceptive
unless the underlying population is uniform. Mapping
the locations of both cases and non-cases does not pro-
vide quantitative estimates of rates or adjust for covariates.
Unless these data are aggregated back into areas, simple
stratification and standardization methods are unappeal-
ing. A more fruitful approach models cases as an inhomo-
geneous Poisson process with intensity A,(x) and controls
with an inhomogeneous Poisson process with intensity
Ao(x), where x is a vector describing location within the
study area [20,22]. The density ratio method estimates the
density of cases and the density of the controls using
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smoothing methods such as kernels. The ratio of the two
densities estimates the spatial odds function. Alterna-
tively, if locations of the complete population are availa-
ble, the ratio of case density to control density estimates
the spatial risk function. Unfortunately, the density ratio
method provides no simple way to adjust for covariates
[20]. However, we can consider the problem as a single
Poisson process with intensity A(x) = A;(X) + Ay(x),
labeled as to the case or control status of each person.
Conditional on location, the odds of being a case equals
the spatial odds function, which we can model via logistic
regression

logit[p(x)] =a +y'z + S(x) (1)

where the left-hand side is the log of the disease odds at
location x, o is an intercept, z is a vector of covariates
(individual and/or group-level), vy is a vector of usual
regression parameters, and S(x) is spatial variation unex-
plained by the covariates [10,20].

Two statistical approaches have been proposed for mode-
ling equation (1): a generalized linear mixed model for-
mulation of kriging [23,24] and generalized additive
models [10,25]. Both are promising but relatively untried
methods in spatial epidemiology. For example, kernel-
based GAMs have been used to map risks of lung cancer
[10], biliary cirrhosis [26], and infant mortality [27].

Generalized additive models

Generalized additive models (GAMs) describe the rela-
tionship between outcome and predictors without impos-
ing specific parametric forms on the relationship [5].
GAMs provide a unified framework for mapping case-con-
trol data, allowing spatial smoothing of binary outcomes
using a logit link while adjusting for covariates, selection
of optimal degree of smoothing, and hypothesis testing.

To estimate maps of case-control data, we treat S(x) in
equation (1) as a bivariate smoothing function S(x;,x,).
Without the smooth function, S(x,,x,), the model reduces
to an ordinary logistic regression on the covariates.
Although one could in principle also model the covariates
with smooths, we use the parametric form in order to
decrease data requirements. Holding the covariates con-
stant, a plot of the surface S(x,x,) over all x;, x, in the
study area reveals the relationship between location and
outcome, logit(p), adjusted for covariates. Omitting the
covariates produces a crude (unadjusted) map. The S-Plus
statistical package provides a GAM function to fit general-
ized additive models.

Smoothing
Estimating the smooth S(x,,x,) requires two decisions: the
type of smoother and the size of the neighborhood. As

http://www.ij-healthgeographics.com/content/5/1/26

population densities often vary dramatically, we use loess,
a locally-weighted regression smoother. Loess adapts the
size of the neighborhood to the local density while main-
taining the smoothness features of a kernel. This method
defines neighborhoods based on the k-nearest subjects,
weighting points within the neighborhood using a tricube
distance function centered at a target point and decreasing
to zero at the furthest neighbor [5]. S-Plus currently allows
the use of loess or smoothing splines in GAM models, but
only loess allows for bivariate smoothing, permitting
simultaneous smoothing in two dimensions.

The amount of smoothing performed by loess depends on
the size of the neighborhood of points. In general, small
neighborhoods reduce bias but increase variance. Con-
versely, larger neighborhoods produce smoother surfaces
resulting in increased bias and reduced variability. As the
neighborhood increases in size, more data points receive
non-zero weights and the loess smoother approaches a
linear regression. Theoretical considerations use the bias
and variance to provide several methods for choosing an
optimal neighborhood size, also called bandwidth or
span [5].

Kelsall and Diggle [10] used kernel smoothing to map dis-
ease, selecting an optimal degree of smoothing using
weighted least squares cross-validation (CV). The CV min-
imizes an average squared predictive error criterion at
every point i in the data set using the fitted value obtained
by leaving the point i out of the sample. Minimizing this
criterion over many possible spans is very computation-
ally intensive because the model is fitted n times for each
span choice, where n is the number of points in the data
set. Wood [28] uses a less computationally intensive func-
tion to estimate smoothing parameters in generalized
ridge regression with multiple penalties using generalized
cross validation (mgcv). Krause and Tutz [29] provide a
recent discussion of smoothing parameter selection in
additive models. We choose an optimal span by minimiz-
ing the Akaike's Information Criterion or AIC [5]. Due to
the lengthy computational time involved with CV and the
availability of the AIC in S-Plus, AIC is commonly used as
a method for automated selection of the optimal span size
[30]. It approximates the deviance-based cross validation
using the average deviance of a model penalized by the
number of degrees of freedom. Both local and global
minima of the AIC can exist. Depending on the starting
point and breadth of the search, the S-Plus automatic span
selection function, step.gam, may choose a local minimum
as optimal rather than the global minimum. To find a glo-
bal minimum, we plot the AIC curve for a large range of
span sizes.

We estimate the crude and adjusted log odds at each loca-

tion on the grid using the S-Plus function predict.gam. As
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this function defines neighborhoods based on a combina-
tion of the data points and the grid, it can produce dis-
crepancies from predictions based on the original data
alone [6,31]. We therefore check all maps to look for
potential discrepancies, but these have always been
minor.

Significance testing

We first test the null hypothesis that case status does not
depend on location, i.e., S(x;,x,) is a flat surface. The GAM
approach provides a straightforward statistic: the differ-
ence of the deviances of model (1) with and without the
smoothing term S(x,,x,). S-Plus provides an approximate
p-value for this test based on the assumption of a chi-
square distribution for the difference in deviances.
Because the chi-square assumption is only approximate
for GAMs and may be biased [5], we estimate the distribu-
tion of the statistic under the null hypothesis using a per-
mutation test. We condition on the number of cases and
controls, preserving the relationship between case/control
status and covariates, and randomly assign individuals to
locations. We carry out 999 permutations of location in
addition to the original. For each permutation, we run the
GAM using the optimal span of the original data and com-
pute the deviance statistic. We divide the rank of the
observed value by 1000 to obtain a p-value.

We also compute the global statistic used by Kelsall and
Diggle [10]

S |-

(T(xlrxz) _7)2
i=1

where r(x,,x,) is the estimated log odds at each location

and 7 is the average taken over all observed points. P-val-
ues are computed via a permutation test as described ear-
lier. Recent work by Fan [32] also addresses testing
additive components of a GAM.

If the global deviance test indicates that the map is
unlikely to be flat, we next want to locate areas of the map
that exhibit unusually high or low disease odds. We exam-
ine pointwise departures from the null hypothesis of a flat
surface using permutation tests. We obtain a distribution
of the log odds at every point using the same set of permu-
tations we use for calculating the global statistics. We
define areas of significantly decreased odds ("cold spots")
to include all points that rank in the lower 2.5% of the
pointwise permutation distributions and areas of elevated
odds ("hot spots") to include all points that rank in the
upper 2.5% of the pointwise permutation distributions.

http://www.ij-healthgeographics.com/content/5/1/26

Calculating odds ratios

The GAM model yields two-dimensional arrays of
smoothed, adjusted log odds. When controls are appro-
priately sampled from the population giving rise to the
cases, the disease odds are proportional to the rate of dis-
ease. The proportionality constant - related to the sam-
pling fraction - is generally not known. Assuming that the
sampling fraction does not depend on location, differ-
ences of log odds between areas of the map are meaning-
ful, as are the global tests of location and the pointwise p-
value surface. But the absolute magnitudes of the log odds
are not readily interpretable. Case-control studies usually
remedy this situation by designating one group - typically
the unexposed - as a reference group. Dividing the case-
control ratio in an exposed group by the case-control ratio
in the reference group yields an odds ratio (OR), an esti-
mate of the ratio of the rates [4].

To simplify interpretation of the maps, we compute the
odds ratio at every point using the whole study popula-
tion as a reference. We divide the odds at each point by the
"null" (aspatial) odds produced by equation (1) omitting
the smoothing term. For crude models, this is equivalent
to dividing by the ratio of the total number of cases to the
total number of controls [8]. Thus, an OR of 1.5 at a loca-
tion means that the rate of disease there is elevated 50%
above the whole study population. We perform these cal-
culations as a last step after all GAM estimation and statis-
tical evaluation has been performed; one can therefore
consider this step as a kind of normalization.

Mapping

To obtain a map, we first create a rectangular grid based
on the minimum and maximum latitude and longitude of
the data set; the S-Plus GAM function does not predict
outside of this range for a bivariate smooth. We map the
grid of estimated odds ratios using ArcView. We clip grid
points lying outside the outline map of the study area as
well as areas where people cannot live, e.g., wildlife ref-
uges. We use a continuous color scale to indicate the mag-
nitude of the odds ratio [8], avoiding the need to assign
the category breakpoints needed by a categorized chorop-
leth map. After choosing a range of odds ratios to map, we
assign dark blue to the minimum and dark red to the max-
imum. We display the odds ratios using a linear scale;
although a log scale is a good option, it may be more dif-
ficult for many people to interpret. We map results using
a divergent dark blue to dark red continuous (unclassi-
fied) color scale. Divergent scales are an effective way to
communicate deviations of a map from flatness both
higher and lower than unity (For a useful discussion of
color schemes, see [33]). Blue and red are commonly
associated with cold and hot, aiding interpretability of
areas with decreased or increased disease odds. We denote
areas of significantly decreased or increased disease odds
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by superimposing the 2.5% and 97.5% contours of the p-
value surface on the map of point-estimates.

Synthetic data

We generated synthetic data (n = 2000) to illustrate the
method. Each datum had several elements: location on a
unit square centered at zero, a dichotomous outcome, and
a dichotomous covariate denoting "young" or "old". We
generated 1000 locations for the young subjects using two
uniform random variables centered at zero. For old sub-
jects, we generated 500 locations using two uniform ran-
dom variables centered at zero and 500 locations using
two normal random variables each with mean 0.25 and
variance 1/10t that of the uniform distribution. We ran-
domly assigned disease status assuming 1:5 odds of being
a case for the young and four times this value for the old.
These synthetic data were generated so that young are uni-
formly distributed, old are clustered, and the odds of dis-
ease are constant within each strata. The age covariate is
thus both a risk factor and spatially clustered, i.e., a crude
map should show spatial confounding, but a properly
adjusted map should be flat.

In judging whether a variable is a confounder, epidemiol-
ogists typically compare the magnitude of adjusted and
crude point estimates [4]. We analyzed the synthetic data
using the model

logit[p(x;,x,)] = o + vz + S(x1.x,)  (2)

with and without the covariate term z, an indicator varia-
ble for young or old. We then visually compared the
adjusted and crude maps of the synthetic data. To distin-
guish between changes due to adjustment and changes
due to span, we created adjusted maps with two different
spans: one optimal for the adjusted map, the other opti-
mal for the crude map.

Cape Cod data

To illustrate these methods using real data, we investi-
gated the association between residence and breast cancer
on Upper Cape Cod, Massachusetts (USA) using data
from population-based case-control studies [34,35]. The
Massachusetts Cancer Registry was used to identify inci-
dent breast cancer cases diagnosed from 1983-1993. Par-
ticipants were restricted to permanent residents of the
upper Cape region with complete residential histories.
Controls were chosen to represent the underlying popula-
tion that gave rise to the cases, i.e., permanent residents of
the same towns during the same time period. Controls
were frequency matched to cases on age, gender, and vital
status.

Participants or their next-of-kin completed an extensive
interview, providing information on demographics (age,

http://www.ij-healthgeographics.com/content/5/1/26

sex, marital status, and education), a forty-year residential
history, and potential confounders. "Index years" were
randomly assigned to controls in a distribution similar to
that of diagnosis years for cases. We used index years to
estimate length and time of environmental exposure for
controls in a fashion comparable to that of cases. See ear-
lier papers [34,35] for a detailed description of the meth-
ods used to define the study population. The Institutional
Review Board of Boston University Medical Center
approved the research.

All residential addresses reported by participants in the
upper Cape Cod area over the forty-year period prior to
the diagnosis or index year were eligible for spatial analy-
sis. Some participants lived at more than one location on
Cape Cod or lived more than once at a single location if
they moved away and later returned. We excluded all
addresses where residency time began after diagnosis date
for cases or index date for controls. Cancers initiated by
exposure to environmental carcinogens typically take
more than a decade to develop. We therefore performed a
twenty-year latency analysis by restricting inclusion to the
residences occupied by participants at least twenty years
prior to the diagnosis or index year (Residences within the
twenty year window were excluded because geographical
location within that window was assumed not relevant to
outcome). The breast cancer 20-yr latency data set
included 248 cases representing 391 residential locations
and 341 controls representing 509 residential locations.

For the purpose of illustrating our methods with real data,
weanalyzedthe breast cancerdata usingonly one covariate
term, an indicatorvariable for race, and one latency
assumption (20 years). We assessed confounding by visu-
ally comparing the adjusted and crude mapsof the breast
data. We used the AIC curve to identify the optimal span.
In order to make maps visually comparable, we mapped
all results using the same dark blue to dark red continuous
color scale representing odds ratios ranging from 0.25 to
2.50, where odds ratios near unity appear as a light green.
See Vieira et al. [7] for a thorough analysis and discussion
of the complete data.

Computation

We used S-Plus http://www.insightful.com for GAM esti-
mation and significance testing, although R may provide
a useful alternative [36]. We generated maps with ArcView
[37]. Computations were performed on a Dell Dimension
8100 computer with a Pentium 4 processor. The time
required for running a GAM was on the order of seconds.
Program code and synthetic data are available on request.
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