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Abstract

Background: Spatial analysis is increasingly important for identifying modifiable geographic risk factors for disease.
However, spatial health data from surveys are often incomplete, ranging from missing data for only a few variables,
to missing data for many variables. For spatial analyses of health outcomes, selection of an appropriate imputation
method is critical in order to produce the most accurate inferences.

Methods: We present a cross-validation approach to select between three imputation methods for health survey
data with correlated lifestyle covariates, using as a case study, type II diabetes mellitus (DM II) risk across 71
Queensland Local Government Areas (LGAs). We compare the accuracy of mean imputation to imputation using
multivariate normal and conditional autoregressive prior distributions.

Results: Choice of imputation method depends upon the application and is not necessarily the most complex
method. Mean imputation was selected as the most accurate method in this application.

Conclusions: Selecting an appropriate imputation method for health survey data, after accounting for spatial
correlation and correlation between covariates, allows more complete analysis of geographic risk factors for disease
with more confidence in the results to inform public policy decision-making.
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Background
Spatial analysis is being used increasingly to identify geo-
graphic risk factors associated with disease and areas at
high excess risk of disease beyond what would be expected
given the prevalence of these risk factors. Many geographic
risk factors are modifiable and amenable to health promo-
tion programmes, thus spatial analysis can provide useful
information to inform resource allocation and public policy
decisions. Maps of spatial models have been useful for
highlighting differential risk across regions. They are par-
ticularly useful for small area estimation, since the accuracy
and precision of estimates based on small counts in a
region can be improved by “borrowing strength” from
estimates in neighbouring regions [1]. Bayesian models
are particularly well suited to spatial modelling since the
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information provided by neighbouring regions can be
naturally represented as priors [2].
Routinely collected survey data can provide useful

information about the distribution of covariates at a
regional level, but frequently a problem with such data is
the presence of missing covariate information. Often the
data are spatially correlated and/or there are correlations
between covariates. In these cases, imputation of missing
data with plausible values allows inferences to be made
about outcomes and covariates using statistical methods
suited to complete data. Several methods of imputation
are available and it is important to select the one best
suited to a particular dataset.
In this paper, we address this challenge by considering

a case study of geographic risk factors associated with
type II diabetes (DM II).
The prevalence of DM II is increasing worldwide, with

a report from Diabetes UK reporting a “state of crisis” in
diabetes care [3]. Diabetes is reported to affect 11.3% of
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the US and 4.45% of the UK adult population, of which
DM II accounts for 90-95% of cases [3,4]. Diabetes is
reported to be the leading cause of renal failure, non-
traumatic lower-limb amputation, and new cases of
blindness, the major cause of heart disease and stroke,
and the seventh leading cause of death in the US [4].
Despite the rising shortage of service provision for

DM II, there is evidence that DM II is preventable in
60% cases with lifestyle change and/or medications [5].
Thus long-term consequences of DM II can be pre-
vented through early detection and management of
glycaemic control and cardiovascular risk factors [6].
Evidence shows that DM II is associated with both en-
vironmental and individual factors [7]. Therefore, ana-
lysis of geographic differences in DM II incidence may
provide important information for more targeted inter-
vention and management, and hence may be useful for
informing resource allocation decisions.
Demographic and lifestyle factors associated with in-

creased risk of developing DM II include male gender,
increasing age, increasing BMI, increasing waist:hip ra-
tio, indicators of low socio-economic status, sedentary
lifestyle, physical inactivity, smoking history, and low
levels of fruit and vegetable consumption [8-12]. In
addition, spatial studies of DM II that aim to describe
changes in DM II outcomes over a set of neighbouring
regions have shown DM II to be associated with
deprivation [12], socioeconomic status [9,11,13,14] and
smoking prevalence [11] at a regional level. However,
these studies have only been conducted in a very lim-
ited number of countries to date. Moreover, there is a
lack of spatial studies examining the association of DM
II relative risk (RR) with the distribution of other can-
didate lifestyle factors such as overweight/obesity,
physical activity levels and fruit and vegetable con-
sumption at a regional level.
Spatial studies examining DM II outcomes over regions

have been developed in the US, England and Europe
[7,9,11-18]. Spatial models estimated by Bayesian methods
have successfully been used to model several diseases in-
cluding DM II (Liese, Chaix, Congdon, Bayesian GLMMs),
anaemia [19], dental caries [20], leprosy [21], multiple
sclerosis [22], cancer incidence and mortality risk [23-25],
malaria [26-28], and childhood leukaemia and lymphoma
[29]. In our case study, we fit Bayesian spatial models to
DM II prevalence data across Queensland regions,
accounting for significant missing data.
This study has four objectives: a) to trial and select an

appropriate imputation method to account for missing
survey data from a number of relevant choices, b) to exam-
ine geographic disparities in DM II RR in Queensland, b)
to identify areas with high DM II RR in this region, and d)
to identify environmental risk factors for DM II RR at a
regional level.
Methods
For clarity, we first introduce the case study, then consider
imputation methods, and finally evaluate these alternative
methods in the context of the case study.

Case study
This case study examines disparities in the RR and relative
excess risk (RER) of DM II across 71 Queensland LGAs,
accounting for seven geographic lifestyle factors, after
selection of the most appropriate imputation method out
of three alternative methods. RR is defined as the ratio of
the estimated risk in a particular LGA to the mean esti-
mated risk across all LGAs; thus LGAs with a larger RR
are estimated to be more at risk for DM II prevalence than
LGAs with smaller RRs. RER is defined as the estimated
excess risk for DM II prevalence in a particular LGA after
taking into account the effect of lifestyle covariates in that
region. Thus LGAs with a larger RER have unexplained
higher risk for DM II prevalence than would be expected
and may benefit more from programmes for early detec-
tion and management of DM II.

Sources of data
Our analysis of the region-level determinants of DM II
relative risk relied on three databases, briefly described
below.

(1) The National Diabetes Services Scheme (NDSS)
database for 2011 diabetic notification data [30]. The
NDSS delivers diabetes-related products, information
and support services to almost 1.1 million Australian
with diabetes and monitors the prevalence of diabetes
including DM II across regions in Australia. This
database also contains 2011 data originally from the
Australian Bureau of Statistics (ABS) for a)
socioeconomic status (SES) measured by average
income scored 1–10 (1 indicating lowest and 10
indicating highest income decile across Australia)
and b) proportion over the age of 45 years for the
general population in each LGA in Queensland,
which were used as covariates in this case study.

(2) The 2011 census information from the ABS for
estimated resident population (ERP) per LGA [31].
The ABS collects and publishes census data and
monitors population counts across regions in Australia.

(3) The Queensland self-reported health status
2009–2010: Local Government Area summary report
weighted by age and gender distribution [32]. This
survey estimates the prevalence of key population
health indicators for those aged 18 years and older
for each Queensland LGA based on self-report,
including body mass index (BMI) from self-reported
height and weight, proportion of daily smokers,
proportion with insufficient physical activity for
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health benefit, adequate fruit intake (2+ serves/day),
and adequate vegetable intake (5+ serves/day). The
proportion overweight or obese in each LGA, defined
as BMI ≥ 25kg/m2, was estimated from self-reported
height and weight.
The survey provides a total of 16,530 completed
computer-assisted telephone interviews across
Queensland, with a response rate of 56.7% in 2009 and
64.5% in 2010. The telephone numbers selected for this
survey were reportedly sourced by random digit
dialling (RDD) using a specific sample frame from the
Association of Market and Social Research Organisations
RDD sample database. Data are reported for LGAs
that had a sample of 60 or more completed interviews
(Brisbane LGA had the largest number of interviews
at 2,561). Data are not reported from this survey for
28 LGAs with a sample size smaller than 60 due to
potential inaccuracy of estimates.

The reported overall prevalence of DM II across all
Queensland LGAs from NDSS data were combined with
ERP data to compute estimated counts for each LGA.
Three island LGAs (Mornington, Palm Island and Torres
Strait Island) were excluded, leaving 71 Queensland LGAs
included in this spatial analysis.

Ethical Statement
The QUT University Human Research Ethics Committee
assessed this research as meeting the conditions for ex-
emption from HREC review and approval in accordance
with section 5.1.22 of the National Statement on Ethical
Conduct in Human Research (2007). Exemption number:
1400000354 QV reference no.: 44305.

Spatial model
Multivariable models including all seven lifestyle covariates
were fitted to the DM II prevalence data.
Bayesian generalised linear mixed models (GLMMs)

using Markov chain Monte Carlo (MCMC) were used to
model RR and prevalence across regions. Two general
models were considered: a Binomial model and a Poisson
model. The Binomial GLMMs took the form:

Y ieBin pi; nið Þ
logit pið Þ ¼ αþ xiβþ Ui þ Si ð1Þ

where for region i, Yi is the observed number of DM II
cases, pi is the estimated prevalence of DM II, and ni is
the estimated resident population. α is a fixed intercept,
β is a vector of coefficients, and xi is the i th row of the
design matrix X, containing covariate data for region i.
The uncorrelated error for region i is denoted Ui, and Si
is the correlated spatial error based on neighbourhood
information; this is described in more detail below.
Separating the residual error into spatial (Si) and non-
spatial (Ui) components provides an indication of how
much variation in DM II prevalence can be attributed to
the effect of geographical region, after accounting for
the effect of the covariates.
The Poisson GLMMS took the general form:

Y iePo λið Þ
log λið Þ ¼ log Eið Þ þ αþ xiβþUi þ Si ð2Þ

where for region i, Yi is the reported number of DM II
cases, λi is the estimated RR of DM II, Ei is the expected
count and the other terms are as defined above. The
expected DM II count in each region was computed as a
product of the average DM II prevalence across Queensland
(internal to the dataset) and the ERP for each LGA.
The intrinsic conditional autoregressive (CAR) prior, first

described by Besag in 1974, were fit to the spatially corre-
lated residual terms in equations (1) and (2) [33]. This prior
assumes that the value of Si is normally distributed around
the values of Si in the neighbouring regions, ie:

Si Sk ¼ sk ; k≠i eN μ skð Þ; σ
2
S

mi

� ����� ð3Þ

where μ(sk) is average correlated random effect for the
neighbours of region i, mi is the number of such neigh-
bours, and σ2S is the conditional variance of S [34]. A
neighbour is defined as any region adjacent in space to
region i. It can be seen that this type of prior induces a
form of local smoothing across regions, where the degree
of smoothing is controlled by the spatial correlation
between regions [1]. An advantage of the CAR model is
that the conditional dependencies can be modelled as part
of the usual Bayesian MCMC analysis [34].
Results are reported from a baseline model, to which

models with other choices of priors were compared in
sensitivity analysis. The baseline model has CAR priors fit
to both correlated random effects,Vi, and to covariate data
X, and Gamma(1,0.01) priors for the precisions of Ui.
For both Binomial and Poisson models, RER was

computed for each LGA based on residual error after
accounting for the variation attributed to the effects of
covariates as follows:

RER ¼ exp Ui þ Sið Þ
The RER provides an indication of regions where the es-

timated risk is greater or smaller than would be expected
after accounting for the influence of lifestyle risk factors in
that region.
Estimation of model parameters and mapping of results

was performed using R 2.15.0 and WinBUGS 14 [35,36].
Results presented for each model are based on 100,000
iterations, following a burn-in of 50,000 iterations. The
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number of iterations and burn-in used in each model
were selected based on the appearance of trace plots
for parameters. Covariates representing proportion
over 45 years of age, proportion overweight or obese,
proportion of daily smokers, proportion with insuffi-
cient physical activity, proportion with adequate fruit
intake and proportion with adequate vegetable intake
were centred around their mean to improve model
convergence. Correlations between covariates were
assessed using Pearson’s R. Model fit was compared
between models using deviance information criteria
(DIC) [37]. DIC consists of two components, a term
that measures goodness of fit ( �D ) and a term that
penalises models for the number of parameters (pD),
thus favouring simpler models.

DIC ¼ �D þ pD

�D ¼ 1
T

XT
t¼1

D y; θ tð Þ
� �

D y; θð Þ ¼ −2 log p y θÞÞ þ Cjðð

where �D is expected deviance over the course of
MCMC, T is the total number of iterations, D(y, θ) is the
deviance of the unknown parameters of the model θ, y
are the data, p(y|θ) is the likelihood function of observ-
ing the data given the model, and C is a constant that
cancels out in calculations comparing different models.
The expectation, �D is a measure of how well the model
θ fits the data – the smaller the value of �D , the better
the fit. Smaller values of DIC are indicative of an
improved model.
In addition to multivariable models, the effect of

each covariate individually on DM II RR was evaluated
with univariate models. It was also considered that SES
may potentially be a more distal factor influencing
levels of the other lifestyle covariates: thus, potential
mediation between SES and DM II RR by the other co-
variates was explored through mediation analysis. The
mediation analysis took results from the univariate
model for SES as a baseline, and examined the percent-
age change to the estimated coefficient for SES when
each of the other covariates was added to the model to
form a bivariate model. A change of more than 10%
was considered indicative of potential mediation.

Dealing with missing data
Three imputation methods that may be appropriate for
spatial analysis of health survey data and are considered
in this study include:
a) Mean imputation. This method substitutes each
missing observation with the mean of the non-missing
observations for each particular covariate.

b) Imputation using a multivariate normal (MVN)
prior distribution for covariate data. This method
estimates the correlations between covariates in the
model and uses these covariate relationships to
predict missing observations based on the
non-missing observations for each region.

c) Imputation using a CAR prior distribution for each
covariate. This method estimates the spatial
correlation for each covariate individually, and uses
these spatial relationships to estimate missing
observations for each covariate based on non-missing
observations in neighbouring regions.

The appropriateness of each of these methods depends
on the particular application. Here we evaluate these
alternative methods in the context of the case study.

Imputation methods
A cross-validation approach was used to compare the
accuracy of three imputation methods in producing esti-
mates close to observed values. Results from mean imput-
ation were compared to results from imputation using
multivariate normal and conditional autoregressive prior
distributions. The aim of imputation was to improve the
model in terms of a) estimating unobserved covariate
information based on known covariate information, and b)
estimating associations between DM II RR and covariates
included in the model.
Six of the seven covariates included in models had

missing data and for five of these this was substantial.
Of the 71 Queensland LGAs included in this analysis,
data were missing for three LGAs (4%) for proportion
aged 45 years and older. Data were missing for 28 LGAs
(39%) for four covariates: proportion overweight/obese,
proportion daily smokers, proportion with insufficient
physical activity, and proportion with adequate fruit in-
take. For proportion with adequate vegetable intake, data
were missing for 32 LGAs (45%), including the 28 LGAs
with missing data for other covariates.
The common practice of removal of cases with missing

values would have resulted in an unacceptable reduction
of the data (45%) of cases removed) and potential bias in
the results. Imputation of the missing data was considered
instead.
Methods for each of the three imputation approaches

are detailed below:
(1) Mean imputation. For covariates j = 1 to 6 for the

six covariates requiring imputation for missing values
and regions i = 1 to wj where i are the regions with miss-
ing values and wj are the total number of regions with
values to be imputed for covariate j, each missing
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observation for each covariate was replaced with the mean
of the non-missing observations for that covariate. This
preserves the mean of the observed data but does not ac-
count for correlations among variables and underesti-
mates standard deviation of data after imputation.
(2) Imputation using a MVN prior distribution for

covariates. A variance-covariance matrix was fit to
account for variance of and correlations between each of
the seven explanatory variables. An inverse Wishart distri-
bution with inverse variances of 0.01 for all covariates,
and inverse covariances of 0.001 between covariates was
fit as a prior to the variance-covariance matrix. Posterior
estimates of the missing data were then obtained based on
the observed data. The form of the multivariate normal
prior for the design matrix X, containing covariate data
was:

XeN M;Σð Þ
ΣeIW ψ; νð Þ

where M is a vector of mean values and Σ is a variance-
covariance matrix with an inverse Wishart distribution; ie.
the inverse of Σ has a Wishart distribution with parame-
ters ψ, ν. The Wishart distribution is a generalisation to
multiple dimensions of the chi-squared distribution.
(3) Imputation using CAR prior distributions for covari-

ate data for each covariate j. The expected value of a miss-
ing datum for region i was estimated using a Normal prior
distribution around the average of the observed values for
that covariate in neighbouring regions. This approach bor-
rows strength from neighbouring regions and accounts for
spatial correlation between neighbours in covariate values.
The form of CAR priors fit separately for each covariate

was:

V i V k ¼ vk ; k≠i eN μ vkð Þ; σ
2
V

mi

� �����
σVeUniform 0:01; 5:0ð Þ

where for region i, Vi|Vk is the correlated random
effect given the correlated random effect in neighbour-
ing region k, μ(vk) is average correlated random effect
for all adjacent neighbours, mi is the number of such
neighbours, and σ2

V is the conditional variance of V. The
same neighbours are defined as for equation (3).
Multiple rounds of cross-validation were used to assess

how accurately the imputation models performed on an
independent dataset. Cross-validation was performed using
only the 39 Queensland LGAs with full information for all
seven covariates. For each of ten rounds of cross-validation,
the data were split into two complementary subsets: 90% of
data (35 LGAs) were randomly selected to form the train-
ing dataset, and the remaining 10% (4 LGAs) formed the
test dataset. A conundrum with cross-validation approaches
for spatial data is that estimation is improved by including
as much data as possible in the training dataset, thus our
decision to include 90% of data in the training dataset.
However, the consequence is that a small sample remains
for testing the results of imputation against the observed
values. Due to this difficulty, imputation results for this
case study should be treated with caution – however, the
methodology is applicable to other datasets with larger
sample sizes.
For each round of cross-validation, the observed covariate

information in the test dataset were assigned missing values
for the purpose of imputation. Each of the three imputation
models were fit to the training dataset and used to impute
values for the test dataset. The imputed values were then
compared to observed values for each covariate in the test
dataset by computing the root mean squared error (RMSE)
for each covariate. For covariates j = 1 to 6 for the six covar-
iates requiring imputation for missing values and i = 1 to wj

where i are the regions with missing values and wj are the
total number of regions with values to be imputed for
covariate j, the RMSE for each covariate j is computed as
follows for an estimated parameter x:

RMSE x̂j
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXwj

i¼1
x̂ij−xij

 �2
wj

vuut
;

RMSE x̂½ � ¼
X6

j¼1
RMSE x̂j

� �
6

where x̂ij is the imputed value for region i and covari-
ate j, and xij is the observed value of the parameter for
region i and covariate j. The overall RMSE was com-
puted giving each covariate equal weighting; however an
alternative possibility would be to give each missing
value equal weighting.
Imputation using MVN and CAR priors were compared

to each other with respect to bias, defined as the average
difference between predicted values and the mean
observed value for a covariate, adjusted by the size of that
mean observed value. By definition, mean imputation
assigns the mean observed value for each covariate to
missing values, resulting in a bias of zero. For each value
imputed by MVN or CAR prior for covariates, bias was
computed as follows:

Bias x̂ij
� � ¼ x̂ij−�xj

�xj
; Bias x̂j

� � ¼
Xnj

i¼1
Bias x̂ij

� ��� ��
wj

where x̂ij is the predicted value for region i and covariate
j, and x̂j is the mean observed value across all observations
for covariate j.
The overall bias was computed as an average of biases

for each covariate as follows:
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Bias x̂½ � ¼
X6

j¼1
Bias x̂j

� �
6

For imputed missing values, the following information
was collected and compared between MVN and CAR
prior imputation methods:

1. RMSE – this measures how close imputed values are
to the observed values for each covariate and
overall;

2. Mean bias – averaged over imputed observations for
each covariate and overall. This measures whether
or not a particular imputation method tends to
overestimate or underestimate values overall for a
particular dataset;

3. Mean width of 95% credible intervals for
bias – averaged over imputed observations for each
covariate and overall. In Bayesian statistics, a 95%
credible interval (CI) is a two-tailed interval contain-
ing 95% of the posterior probability distribution. A
wider interval for a particular imputation method
indicates that estimated values fluctuated from the
expected value of zero bias to a greater degree than an
imputation method with a narrower interval.

4. Proportion of 95% CIs including zero bias for each
covariate and overall. A smaller proportion for a
particular imputation method indicates that more of
the intervals missed the expected value of zero for bias.

The imputation method providing the smallest overall
RMSE and bias was selected for further analyses.

Sensitivity analysis
Sensitivity analysis was used to evaluate the impact of dif-
ferent priors on the posterior estimates of the model. The
models were compared in terms of posterior estimates of
the coefficients, and posterior inferences. The following
priors were considered for both Binomial and Poisson
models:

1. CAR priors fit to both covariate data X and
correlated random effects, Si; Gamma(1,0.01) priors
for precisions of components of Ui (Baseline model)

2. Gamma(1,0.01) priors for precisions of all components
of the vectors β and Ui; CAR priors for Si

3. Uni(0.01,5) priors for standard deviations of all
components of the vectors β and Ui; CAR priors for Si

4. Half normal priors, N(0,0.0625)I(0,) for standard
deviation of components of Ui; gamma(1,0.01) priors
for precisions of components of β; CAR priors for Si

5. Log normal priors, N(0,4) for standard deviation of
components of log(Ui); gamma(1,0.01) priors for
precisions of components of β, CAR priors for Si
More detailed information on priors included in the
sensitivity analyses is provided in Table 1.
Results of sensitivity analysis were compared across

models in terms of posterior means and 95% credible
intervals of coefficient values, size of residual errors and
DIC and significance of included covariates. Covariates
were defined to be significantly associated with outcomes
if the 95% credible interval of their coefficient did not
include zero.

Results
The results of our evaluation of the described imputation
methods in the context of the case study are presented in
this section.

Descriptive analysis
Of the 71 Queensland LGAs included in this analysis,
SES data were available for all LGAs. DM II prevalence
data were missing for four smaller LGAs, three of which
were also missing data for proportion over 45 years of
age. These four LGAs also had missing data for other
covariates apart from SES. Overall, data were missing for
28 LGAs (39%) for four covariates: proportion over-
weight/obese, proportion daily smokers, proportion with
insufficient physical activity, and proportion with adequate
fruit intake. For proportion with adequate vegetable
intake, data were missing for 32 LGAs (45%), including
the 28 LGAs with missing data for other covariates. The
reason for missing lifestyle data for these 28 LGAs is that
they had a sample size smaller than 60 in the Queensland
self-reported health status survey and were not reported
due to potential inaccuracy of results.
SES ranged from 1 to 7 across Queensland LGAs with

mean 3.8 (standard deviation (SD) 1.8). Of observed
values, the mean proportion over 45 years of age was 35%
(SD 8%), mean proportion overweight or obese was 62%
(SD 6%), mean proportion of daily smokers was 19% (SD
5%), mean proportion with insufficient physical activity
was 49% (SD 7%), mean proportion with adequate fruit
intake was 54% (SD 5%) and mean proportion with
adequate vegetable intake was 12% (SD 4%).
Of the 71 LGAs, 22 (31%) had missing covariate in-

formation for 50% or more of their immediate neigh-
bours. Of the 28 LGAs with missing information for all
self-reported lifestyle covariates, 14 (50%) also had
missing covariate information for 50% or more of their
immediate neighbours.
Pearson’s correlation estimates returned an absolute

value greater than 0.2 among 52% (11/21) of covariate
pairs among the seven explanatory variables, indicating
reasonably highly correlated covariate data. This motivates
the investigation of a multivariate imputation approach,
but the presence of substantial structured missing data
supports the possible preference for mean imputation.



Table 1 Prior distributions used for parameters in Sensitivity analysis

Parameter Model 1 Parameter Model 2 Parameter Model 3 Parameter Model 4 Parameter Model 5

α N(0,0.01) α N(0,0.01) α N(0,0.01) α N(0,0.01) α N(0,0.01)

βj;j = 1,…,7 CAR(1/Ƭβj,R) βj;j = 1,…,7 N(0,1/ Ƭβj) βj;j = 1,…,7 N(0,σ2βj) βj;j = 1,…,7 N(0,1/ Ƭβj) βj;j = 1,…,7 N(0,1/ Ƭβj)

Ui;i = 1,…,N N(α,1/ƬU) Ui;i = 1,…,N N(α,1/ ƬU) Ui;i = 1,…,N N(α,σ2U) Ui;i = 1,…,N N(α,1/ ƬU) Ui;i = 1,…,N N(α,1/ ƬU)

Si;i = 1,…,N CAR(1/ƬS,R) Si;i = 1,…,N CAR(1/ƬS,R) Si;i = 1,…,N CAR((σ2S,R) Si;i = 1,…,N CAR(1/ƬS,R) Si;i = 1,…,N CAR(1/ƬS,R)

Ƭβj Ga(1,0.01) Ƭβj Ga(1,0.01) σβj U(0.01,5) Ƭβj Ga(1,0.01) Ƭβj Ga(1,0.01)

ƬU Ga(1,0.01) ƬU Ga(1,0.01) σU U(0.01,5) σU N(0,0.0625)I(0,) log(σU) N(0,4)

ƬS Ga(1,0.01) ƬS Ga(1,0.01) σS U(0.01,5) ƬS Ga(1,0.01) ƬS Ga(1,0.01)

α = intercept, j = covariates 1 to 7, βj = vector of coefficients for covariates 1 to 7, i = Local Government Areas (LGAs) 1 to 71, Ui = uncorrelated residual error for
LGAs 1 to 71, Si = correlated residual error for LGAs 1 to 71, Ƭβj = vector of precisions for covariate coefficients, ƬU = vector of precisions for uncorrelated residual
error, ƬS = vector of precisions for correlated residual error, σβj = vector of standard deviations for covariate coefficients, σU = vector of standard deviations for
uncorrelated residual error, σS = vector of standard deviations for correlated residual error, Ga = Gamma distribution, U = Uniform distribution, CAR = CAR normal
prior centred around zero, denoted CAR(variance, adjacency neighbourhood weight matrix), R = adjacency neighbourhood weight matrix with diagonal entries
equal to number of neighbours; ie. Rii =mi.
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Imputation
Mean imputation was found to have the lowest overall
RMSE (32.5) for this dataset. The RMSE values for each co-
variate separately and overall, for each of the three imput-
ation methods, are summarised in Table 2. Imputation using
CAR priors for the covariates had the second lowest overall
RMSE, of 46.1 from both Poisson and Binomial GLMMs.
Imputation using MVN produced the overall highest RMSE,
71.1 from Poisson and 72.7 from Binomial GLMM.
Bias statistics for each covariate separately and overall are

summarised in Table 2. The overall average bias from the
imputation methods was largest for imputation using CAR
priors (0.11) and smallest for MVN and mean imputation
(estimated 0.08 for MVN and zero for mean imputation by
definition). MVN imputation produced greater uncertainty
of bias compared with imputation using CAR priors (aver-
age width of 95% credible interval (CI) was 0.75 and 0.44
respectively overall). Imputation using MVN consistently
produced 95% CIs that included a bias value of zero,
whereas only 87% of 95% CIs from imputation using CAR
Table 2 Comparison of imputation methods by root mean sq

Covariate N
missing

RMSE, mean (sd)

Mean
imputation

MVN

Poisson Binomial

% over 45yrs of age 3 49.7 108.7 (21.2) 109.6 (19.5) 4

% Overweight/obese 28 26.3 73.7 (22.3) 73.1 (20.6) 4

% Daily smokers 28 25.8 53.2 (18.1) 54.4 (19.3) 4

% Insufficient physical
activity

28 36.7 90.7 (37.5) 91.4 (37.1) 6

% Adequate fruit intake 28 34.4 67.4 (14.3) 68.6 (14.7) 3

% Adequate vegetable
intake

32 21.9 39.1 (18.5) 39.2 (18.4) 3

Overall - 32.5 71.1 (11.4) 72.7 (11.1) 4

RMSE = root mean squared error, sd = standard deviation, MVN =Multivariate norma
credible interval.
priors included a bias value of zero. A graphical comparison
of estimate bias distribution between MVN and CAR prior
imputation methods for one covariate, the proportion over
45 years of age, is provided in Figure 1. Bias plots for other
covariates are available in the Additional file 1.
As the imputation method providing both the smallest

RMSE and bias for this dataset, mean imputation was
selected and was adopted for further analyses, including
sensitivity analysis. Although there is some built-in circular-
ity favouring mean imputation as an unbiased method of
imputation by definition, overall it appears an appropriate
choice for this dataset given a) it produced estimates that
were closest to observed estimates, and b) the other two
methods produced significant bias for two covariates in par-
ticular: proportion of daily smokers and proportion with
adequate vegetable intake.

Sensitivity analysis
Mean estimates of selected parameters resulting from
Binomial and Poisson GLMMs with different priors are
uared error (RMSE) and bias from cross-validation

Average
bias

Average
width of CI

% of CIs
including zero

bias
CAR prior

Poisson Binomial MVN CAR
prior

MVN CAR
prior

MVN CAR
prior

6.3 (17.8) 46.2 (17.9) 0.012 0.041 0.897 0.345 100% 100%

5.4 (18.5) 45.4 (18.4) 0.016 0.081 0.413 0.200 100% 75%

9.8 (21.1) 49.8 (21.0) 0.153 0.271 1.144 0.640 100% 68%

7.0 (41.3) 67.1 (41.3) 0.048 0.047 0.535 0.246 100% 93%

7.5 (22.7) 37.6 (22.7) 0.069 0.052 0.382 0.221 100% 91%

0.4 (19.6) 30.6 (19.9) 0.157 0.185 1.144 0.973 100% 94%

6.1 (11.7) 46.1 (11.7) 0.076 0.113 0.752 0.438 100% 87%

l imputation, CAR prior = conditional autoregressive prior imputation; CI = 95%



Figure 1 Bias for estimated % over 45 years for Local Government Areas (LGAs) with missing data, by 1. Multivariate normal
imputation, and 2. Conditional autoregressive (CAR) priors for covariates; e.g. LGA 23–1 indicates multivariate normal imputation for
LGA number 23 and LGA 23–2 indicates imputation with CAR priors for covariates for LGA number 23. LGA = Local Government Area).
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displayed in Table 3. Each of the GLMMs included in
sensitivity analysis produced similar coefficient estimates
and resulted in the same conclusions.

Results
SES was found to be the only variable associated with DM
II RR based on the Poisson models and prevalence based
on the Binomial models, from both univariate and multi-
variate models. Of the other covariates included in the
models, none were found to be significantly associated
with DM II outcomes. From the baseline Poisson model
(model 1), each one unit increase in SES was estimated to
decrease the log(relative risk) of DM II by 0.18 (95% cred-
ible interval 0.13 to 0.23).
Mediation analysis did not find a significant mediating

effect (defined by a change of 10% or more to the SES
coefficient) between SES and DM II RR by any of the
other covariates included in this study.

Geographic variation
Spatially smoothed relative risks (RR) and relative excess
risks (RER) and corresponding standard deviations and
95% credible intervals were obtained from the Poisson
GLMMs with mean imputation and CAR priors fit to
covariate data. The estimated RR of DM II varied be-
tween study regions from 0.48 (Isaac Regional) to 3.07
(Cherbourg Aboriginal Shire), indicating a six-fold vari-
ation (3.07/0.48 = 6.4) across regions. RER varied from
0.96 for Napranum Aboriginal Shire to 4.44 for Burke
Shire. The distribution of RR and RER by quintiles from
highest to lowest are displayed in Figure 2 along with their
standard deviation. The size of estimated RR and RER for
each region does not appear to be associated with the size
of uncertainty for those regions.
The LGAs with the five smallest and five highest RR,

RER and standard deviation for RR and RER are ranked in
Table 4. 80% of the regions in the top five for large RR also
were in the top five for large RER, indicating that they are
most at risk for DM II occurrence even after accounting
for the influence of regional risk factors.
Figure 3 ranks regions in order of low to high RR (A)

and RER (B) respectively with 95% CIs. As may be ex-
pected, regions with missing covariate data tended to have
wider 95% CIs compared with regions with observed data.

Discussion
Our study describes an evaluation of three different im-
putation methods that are applicable to missing health
survey data for spatial analysis. Choice of imputation
method depends upon the particular application and is not
necessarily the most complex method. In the application
for this case study, simple imputation with the mean value
of each missing covariate value was found to provide the
most accurate prediction of missing values in this dataset,
based on the statistical measures described.
In this application, mean imputation was found to be

more appropriate than imputation with CAR priors
using spatial correlation of covariate data to impute
missing values. For this dataset, this could be due to the
large proportion of missingness for some covariates



Table 3 Estimates for selected parameters from models included in sensitivity analysis: mean (95% credible intervals)

Binomial α β1 β2 β3 β4 β5 β6 β7 σ S
2 σ U

2 DIC

1 −2.158 −0.194 0.009 −0.004 0.008 −0.008 −0.013 −0.005 0.013 0.073 667

(−2.368,-1.963) (−0.240,-0.143) (−0.001,0.020) (−0.019,0.012) (−0.010,0.027) (−0.022,0.006) (−0.036,0.011) (−0.033,0.022)

2 −2.147 −0.197 0.009 −0.005 0.008 −0.007 −0.015 −0.004 0.013 0.074 667

(−2.415,-1.911) (−0.253,-0.129) (−0..002,0.021) (−0.024, 0.013) (−0.013, 0.027) (−0.023, 0.008) (−0.040,0.008) (−0.031,0.025)

3 −2.158 −0.194 0.01 −0.005 0.008 −0.007 −0.014 −0.005 0.012 0.079 666

(−2.374,-1.939) (−0.248,-0.1416) (−0.002,0.021) (−0.022,0.011) (−0.010,0.026) (−0.022,0.006) (−0.038,0.007) (−0.032,0.022)

4 −2.155 −0.194 0.009 −0.003 0.008 −0.007 −0.014 −0.004 0.012 0.076 668

(−2.384,-1.951) (−0.242,-0.138) (−0.002,0.0196) (−0.020,0.016) (−0.010,0.026) (−0.022,0.008) (−0.038,0.009) (−0.030,0.023)

5 −2.203 −0.183 0.008 −0.004 0.008 −0.006 −0.013 −0.003 0.012 0.080 666

(−2.451,-1.953) (−0.242,-0.122) (−0.004,0.020) (−0.026,0.015) (−0.013,0.029) (−0.024,0.011) (−0.037,0.009) (−0.032,0.027)

Poisson

1 0.641 −0.181 0.009 −0.005 0.007 −0.006 −0.014 −0.005 0.012 0.062 671

(0.440,0.854) (−0.232,-0.134) (−0.001,0.020) (−0.022,0.011) (−0.009,0.024) (−0.020,0.008) (−0.035,0.008) (−0.030,0.022)

2 0.615 −0.174 0.008 −0.004 0.008 −0.005 −0.011 −0.004 0.012 0.061 671

(0.434,0.816) (−0.223,-0.133) (−0.002,0.018) (−0.020,0.012) (−0.008,0.026) (−0.018,0.007) (−0.031,0.009) (−0.028,0.022)

3 0.649 −0.183 0.009 −0.004 0.008 −0.006 −0.013 −0.003 0.012 0.067 670

(0.413,0.864) (−0.236,-0.125) (−0.002,0.020) (−0.025,0.014) (−0.010,0.025) (−0.021,0.008) (−0.036,0.011) (−0.029,0.025)

4 0.651 −0.184 0.009 −0.004 0.007 −0.007 −0.013 −0.005 0.012 0.065 672

(0.422,0.883) (−0.240,-0.129) (−0.002,0.020) (−0.023,0.014) (−0.012,0.025) (−0.021,0.007) (−0.036,0.010) (−0.031,0.022)

5 0.646 −0.182 0.009 −0.003 0.008 −0.007 −0.012 −0.006 0.011 0.066 670

(0.441,0.888) (−0.244,-0.134) (−0.002,0.020) (−0.021,0.016) (−0.012,0.025) (−0.022,0.008) (−0.034,0.009) (−0.030,0.022)

α = intercept, β1 = coefficient for socio-economic status, β2 = coefficient for % over 45 years of age, β3 = coefficient for % overweight/obese, β4 = coefficient for % daily smokers, β5 = coefficient for % insufficient physical
activity, β6 = coefficient for % adequate fruit intake, β7 = coefficient for % adequate vegetable intake, σS

2 = variance of correlated residual error, σU
2 = variance of uncorrelated residual error, DIC = Deviance

Information Criteria.
Prior distributions used in models 1–5 are summarised in Table 1.
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Figure 2 Estimated Relative Risk (RR) and Relative Excess Risk (RER) of type 2 diabetes for Queensland Local Government Areas.
RR = relative risk, sd = standard deviation, RER = relative excess risk).
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relative to a small number of neighbours for certain re-
gions, providing insufficient observed data from neigh-
bouring regions. These different imputation methods
may perform comparatively differently in datasets with
smaller proportions of missing data.
Simple mean imputation was also found to be far

more accurate in this case study than fitting a multivari-
ate normal distribution to covariates to impute missing
data in this dataset, despite empirical evidence of high
correlation between many covariate pairs. This is likely
due to the pattern of missingness, as LGAs tended to
have either complete data for all covariates, or missing
data for six covariates (proportion overweight/obese,
daily smokers, aged over 45 years, proportion with insuf-
ficient physical activity, and sufficient fruit and vegetable
intake). Moreover, missingness was related to population
size of LGAs, as less-populated LGAs did not have
covariate data from the Queensland self-reported health



Table 4 Top 5 LGAs for Relative Risk (RR), Relative Excess Risk (RER) and uncertainty for Relative Risk and Excess
Relative Risk

Smallest estimated RR Smallest sd(RR) Smallest estimated RER Smallest sd (RER)

LGA Estimated RR LGA sd(RR) LGA Estimated ERR LGA sd(RER)

34 0.480 8 0.003 47 0.962 67 0.125

16 0.573 28 0.005 32 1.021 10 0.150

8 0.580 44 0.006 67 1.255 30 0.152

24 0.611 60 0.006 34 1.442 32 0.161

28 0.624 38 0.007 24 1.452 57 0.168

Largest estimated RR Largest sd(RR) Largest estimated RER Largest sd(RER)

LGA LGA sd(RR) LGA Estimated RER LGA sd(RER)

63 1.857 12 0.269 51 2.535 68 0.566

35 1.933 41 0.445 35 2.627 70 0.575

51 1.966 65 0.452 68 2.645 41 0.580

12 2.450 70 0.465 18 3.738 23 0.587

18 3.073 23 0.474 12 4.442 12 0.647

RR = Relative Risk, RER = Relative Excess Risk, sd = standard deviation.
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status survey. Thus data were not missing at random in
this dataset. Multivariate normal imputation may provide
more accurate prediction of missing values in datasets
with missingness at random as well as high correlations
between covariate pairs.
Figure 3 Ranked Relative Risk (A) and Relative Excess Risk (B) for Loc
Risk, RER = Relative Excess Risk).
Our sensitivity analysis provides evidence that choice of
priors, from non-informative to more informative choices,
did not affect results from the spatial analysis of this case
study. Fitting of Binomial and Poisson models produced
similar findings with similar goodness of fit as measured by
al Government Areas with 95% credible intervals. RR = Relative
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DIC. This supports the estimates of DM II RR for each
LGA and evidence that SES is strongly associated with DM
II risk in this region. The sensitivity analysis described in
this paper is readily applicable to spatial analysis of other
health datasets.
Several studies have examined geographic variation in

DM II in the US, UK and Europe, however, less is known
about regional variation and associated regional risk factors
in Australia. Similar to other studies, our analysis shows
marked geographic variation in DM II relative risk
[7,9,11-18]. Just within Queensland, our study estimates a
six-fold difference in DM II relative risk. Similar to findings
from other spatial studies, we found lower socioeconomic
status to be strongly associated with increased risk of DM
II [9,11,13,14].
Contrary to findings from Green et al., we did not find

the proportion of daily smokers to be associated with DM
II risk [11]. In comparison with risk models reporting BMI
to be associated with DM II risk at an individual-level, we
did not find the proportion of residents overweight or
obese to be associated with DM II risk at a regional level in
this dataset [8]. We examined the association of obesity
(BMI≥ 30kg/m2) and overweight (25kg/m2 ≤ BMI< 30kg/m2)
with DM II RR separately in univariate models and neither
were found to be significant within this geographic region.
However, our study categorised BMI into broad overweight
and obese categories whereas the risk models considered
raw BMI scores. Findings may differ for spatial analyses of
DM II risk in other regions.
Strengths of our study include that we were able to

evaluate the performance of three different imputation
approaches using methodology which is immediately
applicable to other regions and health datasets outside the
application of the case study reported. Within our case
study, we were able to evaluate the geographical vari-
ation in DM II RR across Queensland and identify re-
gions of high risk, and regional factors associated with
DM II risk, accounting for missing data. We used
Bayesian methods to fit hierarchical models accounting
for different sources of uncertainty, to evaluate the as-
sociation of geographical covariates with DM II RR.
Spatial smoothing was performed, accounting for cor-
relation between neighbouring regions and mitigating
the effects of random measurement error. In addition,
we were able to select the most accurate imputation
method for this dataset and check the accuracy of
results through sensitivity analysis.
Limitations of our study include the presence of sig-

nificant missing data, small sample sizes for test datasets
in cross-validation, that diabetic counts were based on
notification data with unknown measurement bias, and
that region-level lifestyle data was based on self-report
that is not objectively measured. Thus results should be
interpreted with caution.
Although spatial modelling of DM II relative risk at a
smaller region level such as Statistical Local Area (SLA)
may have resulted in relative risk information at a finer
level, the difficulty is that lifestyle information is not avail-
able at this level and cannot be assessed for contribution to
DM II risk. Furthermore, we expect less uncertainty from
variation in notification rates when data is aggregated to a
larger regional level.

Conclusions
In conclusion, we present a method for selection of an ap-
propriate imputation method among alternative choices
suited to spatial health survey data with varying patterns
and amounts of missingness. Missing data is a common
problem with spatial health data, and appropriate choice
of imputation method depends upon the particular appli-
cation. As discovered for the case study considered here,
choice of imputation method may not always be the most
complex one. However in some cases, utilising other
information such as spatial correlation in data or correl-
ation between covariates may be appropriate for the pur-
poses of imputation. Selection of an appropriate imputation
method allows a more complete analysis of geographic risk
factors for disease at a regional level, with the potential to
inform resource allocation and public policy, and reduce
the burden of disease to the community.
This case study provides evidence of a six-fold differ-

ence in geographical variation in DM II RR across
Queensland LGAs, and indicates that socio-economic
status is strongly associated with DM II risk. Our
results indicate that a geographically targeted approach to
managing DM II may be effective, and highlight regions
most in need of additional services to manage DM II. The
methodology used in this study is applicable to spatial
analyses of diabetes in other regions, as well as other
diseases, and has the potential to provide useful informa-
tion for management and resource allocation decisions.
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