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Abstract

Background: Chagas disease is caused by the protozoan Trypanosoma cruzi, which is transmitted to mammal hosts
by triatomine insect vectors. The goal of this study was to model the spatial distribution of triatomine species in an
endemic area.

Methods: Vector's locations were obtained with a rural householders' survey. This information was combined with
environmental data obtained from remote sensors, land use maps and topographic SRTM data, using the machine

three scales: 10 km, 5 km and 2.5 km cell size grids.

control of vectorial diseases.

learning algorithm Random Forests to model species distribution. We analysed the combination of variables on

Results: The best estimation, explaining 46.2% of the triatomines spatial distribution, was obtained for 5 km of
spatial resolution. Presence probability distribution increases from central Chile towards the north, tending to cover
the central-coastal region and avoiding areas of the Andes range.

Conclusions: The methodology presented here was useful to model the distribution of triatomines in an endemic
area; it is best explained using 5 km of spatial resolution, and their presence increases in the northern part of the
study area. This study’s methodology can be replicated in other countries with Chagas disease or other vectorial
transmitted diseases, and be used to locate high risk areas and to optimize resource allocation, for prevention and
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Background

American trypanosomiasis, Chagas disease, is caused by
the hemoflagellate Trypanosoma cruzi, and is primarily
transmitted to mammal vertebrate hosts through the faeces
of hematophagous insects of the subfamily Triatominae
[1]. The geographic distribution of triatomine species ex-
tends mainly through the Neotropical and Neoartic regions
[2]. Triatomine bug species such as Microtriatoma
trinidadensis, Eratyrus mucronatus, Belminus herreri,
Panstrongylus lignarius, and Triatoma tibiamaculata are
excellently adapted to specialist niches [3]. However, intru-
sion of human dwellings into sylvan areas has allowed
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some triatomine species to adapt to the domestic habitat,
putting people at greater risk of contracting the disease.
This suggests a long evolutionary history, as well as
the recent dramatic spread of a few eclectic, domiciled
triatomine species. In fact, in Southern Cone countries,
the main human Chagas vector, Triatoma infestans, is
almost exclusively domestic, meaning all stages of life
are completed in close proximity to humans in rural or
peri-urban environments, increasing the likelihood of
human-vector interaction. Peri-domestic populations
(those living in surrounding outbuildings, including
animal pens and fences) provide a ready re-infesting
population following pesticide treatment of houses.
Some sylvan populations are interbreeding with do-
mestic populations [4], whereas others seasonally move
between houses and the extra-domicile [5], and still
others remain in the wild [6]. It is clear that as the
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development of human settlements continues into pre-
viously uninhabited areas, the risk of human infection
increases [7]. In addition, migration of people from
highly endemic rural areas has brought the disease and
vectors to cities [8].

There are four triatomine species in Chile: Triatoma
infestans, Mepraia spinolai, Mepraia parapatrica and
Mepraia gajardoi [9]. Our study zone has only reported
the first two species. Mepraia spinolai has been de-
scribed as a mainly sylvatic species, but there are reports
of individuals entering houses [10]. Its described habitat
is mainly rocky places and rock piles, but has also been
found in terrestrial bromeliads [6]. The prevalence of
M. spinolai, detected by molecular techniques, varies
between 42.7% to 76.1% [6,11,12] in sylvatic foci; the
few individuals of this species that were captured in
dwellings and sent to the National Health Service
presented 22.8% of infection in the study area [13].
Human blood has been detected as part of the blood
meal of M. spinolai [14). Mepraia spinolai is the main
vector of T. cruzi in the sylvatic cycle of transmission
in its area of distribution. However, Triatoma infestans
is a more efficient vector, compared to M. spinolai
[15]. The main differences between both species were in
their alimentary profile and in their behaviour. They are
particularly evident in the activity rhythm - M. spinolai is
diurnal -, the time that its bite takes- shorter in
M. spinolai -, and the delay in the defecation - longer in
the latter species. These facts would explain its low epi-
demiological impact regarding human vectorial transmis-
sion [16]. Triatoma infestans was found recently in
sylvatic environments, associated to endemic terrestrial
bromeliads in the Metropolitana Region, with a prevalence
of 40.9% [6], and rock piles in the Valparaiso Region, with
36.5% of infection [17], along with periodic findings inside
human dwellings, which mainly correspond to winged
adults; the infection in the study area was reported to be
48.4% [13]. Almost all domestic colonies have been elimi-
nated by the Chagas disease vector control program; in
fact, in 1999 vectorial T. cruzi transmission to human
population was declared interrupted in Chile [18]. Recent
reports on human seroprevalence of T. cruzi infection in a
national health survey indicated 1.8%, 0.9% and 0.7% in
Coquimbo Region, Valparaiso Region and Metropolitana
Region, respectively [19].

The vectorial disease transmission depends on eco-
logical and environmental parameters of the ecological
niche, which defines the ecologic space within which a
species can maintain populations without immigration
[20]. The understanding of this complex environmental
dependency, by means of ecological niche modeling,
would help in answering the spatial and temporal issues
relevant to domestic transmission control. Given the
lack of local data in most of the study zone, there is a
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need to find predictive models that will allow extrapola-
tion of the actual data of ecological niche to areas that
have similar characteristics. Current statistical models
can be grouped into two domains: data modeling and al-
gorithm approaches [21]. Data modeling approach starts
with assuming a stochastic data model, such as linear or
logistic regression which will be fitted and used to both
predict what responses are going to be to future input
variables and to extract information about how nature is
associating the responses with input variables. Algorithm
modeling approach focuses on prediction and uses pre-
dictive accuracy to validate the models. In general, the lat-
ter approach involves a machine-learning algorithm,
decision trees or neural networks, to discover associations
between point-occurrence data and sets of electronic
maps summarizing environmental/ecologic dimensions
that may or may not be important in limiting species’ geo-
graphic distributions. This methodology will provide dis-
tribution predictive models to be subsequently validated
with new or independent data [22].

Triatoma infestans is very closely associated to domes-
tic and peridomestic structures. The success of this spe-
cies in particular is related to the ability to efficiently use
the available resources in human environments. How-
ever, environmental variables do describe their geo-
graphical distribution on a regional scale. This indicates
that there is an adequate environmental profile to permit
the existence of this vector that is not necessarily associated
with the availability of human dwellings [23]. Analyzing the
relation between the temperature and the population’s in-
trinsic rate of natural growth (r) of T. infestans, even
though temperature was not the only climatic variable that
limited the growth capacity of this species’ populations, and
hence, its geographical distribution, the prediction of the
regression model closely matched the known distribution
of this species [24]. The relation between geographical dis-
tribution and temperature, humidity, precipitation and alti-
tude was shown for some species of Triatominae [25,26].

Usually there is an indirect association between
hematophagous insects and vegetation because the
plants shelter warm blooded hosts, which are their feed-
ing sources [23]. Vegetation is a variable that includes
temperature effects, precipitation and edaphic proper-
ties; because of this, it becomes an indicator related to
variables that directly influence the demographic pro-
cesses (mortality, birth rate, dispersion). What frequently
occurs is that animal distribution is not associated to the
classic distribution patterns of vegetal communities, but
to spatio-temporal variability indicators of photosynthetic
active biomass, as NDVI, acquired by remote sensors. So,
vegetation can be characterized by its spatio-temporal
change patterns [27].

Satellite-based remote sensing offers significant bene-
fits for many applications because it provides historical



Hernandez et al. International Journal of Health Geographics 2013, 12:29

http://www.ij-healthgeographics.com/content/12/1/29

data for comparison and analysis [28]; as in Medical En-
tomology, where environmental variables obtained by re-
mote sensors can be used to elaborate the predictive
models of the geographic distribution of several disease
vectors [29,30]. This tool has been applied to study
Chagas disease vectors in a few instances, mainly of dif-
ferent species of Triatoma [5,20,22].

Our objective was to determine the distribution pat-
tern of Triatoma infestans and Mepraia spinolai at a re-
gional level, generating a predictive spatial model of
their distribution that incorporates quantifiable macro-
environmental variables.

Results and discussion

Distribution of positive cases

The results indicated that 14.3% of the rural houses sur-
veyed were positive cases (i.e. their inhabitants had seen
triatomines). The surveyed houses corresponded to
0.89% of the total rural houses of the study area.
Coquimbo Region exhibited the highest value, reaching
24.8% of surveyed dwellings, while Valparaiso and
Metropolitana Regions showed lower similar values of
8.8% and 8.5%, respectively (see Table 1). Figure 1 shows
the spatial distributions of positive and negative cases.
Positive cases increased northwards of the study zone,
which supports the previous knowledge that these
triatomines prefer habitats with higher temperatures,
low rainfall, and xeric vegetation.

In some rural areas we observed individuals of
M. spinolai, which were found by inhabitants in their
homes. This indicates that, despite being a predominantly
wild species, it also lives near or within human settlements.
Therefore, the habitat of M. spinolai and T. infestans
maybe overlapping more than expected, a situation that re-
veals the advantage of studying both species together and
not separately. This apparently new invasion process of
M. spinolai to dwellings and peridomicile areas might
be related to previous subnotification of its intrusions
and therefore lack of scientific reports; however, it is
not the first time to be reported [10,13], and it could
also be showing the effects of possible reduction of
animal preys in their natural environment. In fact,

Table 1 Results of the survey of rural houses regarding
triatomines according to people’s knowledge, by region

Region Rural houses Rural houses % positive

sampling size positive cases* rural houses
Coquimbo 452 112 24.8
Valparaiso 420 37 88
Metropolitana 425 36 8.5
Total 1,297 185 14.3

* The term “positive case” refers to a house in which an inhabitant answered
positively regarding having seen triatomines.
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several authors have observed that starved triatomines
are more likely to be attracted by live bait [42].

RF predictions

This is the first study that applies RF to model ecologic
niche of vectors of Chagas disease. This approach de-
livers strong information predictors, and ensures conver-
gence if they are iterative, giving them good predictive
accuracy [21]. The five km cell size grid explained more
variability than the other tested scales (Table 2). This
model exhibited a Pseudo R* of 41.82%, a Mean Square
Error (MSE) of 500.47 and a Root Mean Square Error
(RMSE) of 22.38. Figure 2 shows the predicted maps of
presence probability for each scale.

The most relevant set of variables (Figure 3) for the
5 km cell size grid model (best) ordered from most to
least important are: land use (USO), vegetations indexes
(SAVI and NDVI), topography descriptors (DEM, PEND
and EXP) and the third principal component (CP3). It is
noteworthy that the three most important variables are
related to vegetation, confirming its suitability to predict
the spatial distribution of triatomines in the landscape,
same as described by Gorla for T. infestans in Central
and South America [23].

Regarding the principal components of the climate
layers, for the models 10 and 2.5 km cell size, CP1
showed the greatest importance (Figure 3), which can be
explained taking into account that the seasonal
temperature is one of the main factors that define the
geographical habitat of triatomines [23]. However, for
the 5 km cell size grid model, CP3 was more important,
showing that rainfall patterns are one of the main cli-
matic characteristics that differentiate places with or
without triatomines in the study zone. This was reported
previously by Gorla et al. [24], who stated that precipita-
tion regime is also an important variable to predict the
distribution of 7. infestans on its own but also in com-
bination with type and altitude distribution of the
vegetation.

Improving the model

Taking the 5 km cell size grid results as a base, we im-
proved the model by only including the most important
variables in a new model of RF algorithm, from most to
least important: USO, SAVI, NDVI, DEM, PEND, EXP
and CP3. Table 3 and Figure 4 show the results for this
new model. They produced a Pseudo R* of 46.2% and a
RMSE of 21.5.

According to these results, Coquimbo Region has the
highest probability of positive cases for the study zone,
with an arithmetic mean of 61.3% of the surface. The
Metropolitana Region, on the other hand, has the lowest
overall probability with an average of 36.9% of the sur-
face. Table 4 resumes values for all three regions.
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Figure 1 Spatial distribution of survey results. Sampling spatial distribution of, from left to right: presences, absences and both.
.

The best estimation, that explains 46.2% of the spatial
distribution of triatomines, coincides with the distribu-
tion reported for T. infestans in Latin America, on a
continental scale [23,43-45]. They established that the
spatial distribution of T. infestans in Chile increases from
the center (Metropolitana Region) towards the north.
Similarly, in our model, presence probability distribution
increases towards the north (Coquimbo Region), tending
to cover the central-coastal region and avoiding areas of
the Andes range.

On the other hand, there is a tendency towards the
south to have lower probabilities of presence by the
coast, near the Pacific Ocean. Regarding the tendency of

Table 2 Random forests model statistics for each of the
cell size grids

Cell size 10 km 5 km 2.5 km
Pseudo R? (%) 28.79 41.82 14.23
MSE 520.25 50047 749.57
RMSE 22.80 22.38 27.37

the genus Mepraia being located away from the coast in
its southern distribution, our results seem to be in agree-
ment with those of Frias [9]. For M. spinolai, there were
no other previous studies on ecologic niche modeling.
Therefore, this prediction is the first approach to estab-
lish its spatial distribution.

Knowing the probable location of these species will
allow the sanitary authorities to be able to optimize the
resource distribution, allocate more in areas of greater
risk, and less in those with minimum probability. It will
also allow them to include areas that at present are not
incorporated in the Chagas disease prevention and con-
trol programme, but are suspected to have triatomines
according to this prediction, aiming to keep the country
free of the vector-borne Chagas disease transmission.

The same approach applied to gather the data for this
study - surveying rural population, educating them re-
garding Chagas disease and its vectors, and obtaining in-
formation about triatomines presence or absence - could
be applied in other countries where Chagas disease or
other vectorial illnesses are present, combined with
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Figure 2 Predicted triatomines’ presence probability. Predicted maps of triatomines’ presence probability for 10 km, 5 km and 2.5 km cell

ecologic niche modeling, to provide a base map to be
used for prevention and control of these diseases, for re-
source optimization; and it can also be used as base for
other studies, to predict locations of vectors on a smaller
scale: a local model, to more accurately predict where
triatomine foci are [46].

Conclusions

This investigation is the first approach to model the
spatial distribution of vectors of Chagas disease in an
endemic area using the methods described. The method-
ology proposed, which included a survey, environmental
variables and ecological niche modeling, was successfully
used for this end. Triatomines had higher probability of
presence in the northern part of the study zone. How-
ever, the amount of population at risk in the southern
area makes it equally important, even with lower prob-
abilities of triatomines. The best results were found
using 5 km cell size grids, and smaller resolutions could
not improve the results. The relationship between or-
ganisms and their environment are one of the most im-
portant causes of spatial distribution patterns of species,
allowing their description to be reasonably well explained
by climatic factors on broader spatial scales. However, at
smaller scales it is likely that the species distribution re-
sponds to factors such as resource allocation and micro-
environmental variations. This can be explained by

assuming the existence of a different set of variables
which express its influence on more detailed scales.
We believe that a better model should incorporate
both regional and local predictors in order to fully
understand triatomines’ spatial distributions. We rec-
ommend developing similar studies on higher scales,
focusing the analysis on the local level, allowing a
more accurate definition of the interactions between
these species and environmental variables. This study
will be a tool to optimize resource allocation, for those
working in prevention and control of Chagas disease,
and to keep the country free of the vector-borne
Chagas disease transmission.

This study could also be used as an example of the use
of people’s knowledge regarding a particular vectorial
disease to be modelled, combined with environmental
variables using the tools provided. For example, by using
the free software environment R-project to obtain a pre-
diction for that disease in this or other countries.

Methods

Study design and sample

The study zone corresponds to north-central Chile:
Coquimbo Region, Valparaiso Region and Metropolitana
Region, comprising a total area of approximately
72,300 km? (Figure 5). In order to obtain indirect field
data for presence/absence of triatomines - Mepraia
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Figure 3 Predictor variable importance plot. Variable importance plot generated in randomForest indicating the relative importance of the
predictor variable given the increase in the mean square error (MSE) when extracting a variable percentage. The most important variables are
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spinolai and Triatoma infestans - we surveyed rural
areas belonging to the study zone. To validate the infor-
mation reported by the householders, firstly we used
two sets of pictures with unlabelled images of the target
species and other insects, to check if they were able to
identify triatomines among the other insects. Afterwards,
we used laboratory samples of T. infestans and M. spinolai
in different developmental stages (eggs, nymphs, adults)
to ensure a correct identification and to gather further
data about whether they had seen these insects, inside or
outside their dwellings. The participants’ answers were
registered to the survey of that dwelling.

The statistical design of the surveys was a stratified
random sampling using clusters of three rural houses as
a sampling unit. We divided each of the three regions
into their communes, and then into National Survey
Districts (NSD). Using data from the Chilean National
Statistics Institute a sampling size of about 1% of the

Table 3 Random forests model statistics for the 5 km cell
size grid using the most important variables

Parameter Value
Type of random forest Regression
Number of trees 500
Pseudo R’ 46.2%
MSE 460.006

total number of rural houses was assigned to each com-
mune. Then, within each commune, the sampling units
were allocated to NSD, in proportion to their sizes in
terms of their total rural houses. This way, a few NSD
from each commune were selected for sampling. Table 5
shows the sampling size and proportion in each region.

Environmental variables

As input to model the probability of presence of
triatomines 12 environmental variables, grouped in four
sets, were used.

Group 1 Climate layers from the WorldClim database
(http://www.worldclim.org) gridded to 1 km? resolution.
We performed a Principal Component Analysis PCA [31]
to the 19 available variables to summarize the information
into a smaller number of components and we used only
the first three components (CP1, CP2 and CP3). From the
principal components analysis of these variables, the first
component (CP1) was found highly related to seasonal
mean temperature, while the second (CP2) and third
(CP3) components were mainly related to the thermal
variation and rainfall patterns, respectively.

Group 2 LANDSAT TM data images, from 2009 and
2010, were obtained from the Earth Explorer Web site
of the United States Geological Survey (USGS). Subse-
quently, a geometric correction was performed using
polynomial rectification based on Chilean regular
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cartography 1:50000 with 30 control points per image,
obtaining a Root Mean Square Error (RMSE) less than
30 m. Also, standard radiometric corrections were ap-
plied on all images to reduce the atmospheric effect fol-
lowing the method proposed by Chavez [32], and for the
topographic correction the one proposed by Riano et al.
[33]. Once the images were corrected, a set of vegetation
indexes were calculated: Normalized Difference Vegetation

Table 4 Average probability of triatomines presence
(PbbP) according to the best model for each region of
the study zone

Region PbbP  Assessed area (km?)  Actual area (km?)
Coquimbo 613 31,627 40,580
Valparaiso 390 13,797 16,396
Metropolitana 36.0 11,814 15403

Index NDVI [34], and the Soil Adjusted Vegetation Index
SAVI [35,36]. Finally, tasseled cap components [37]
Brightness (TCB), Greenness (TCV) and Wetness (TCH),
were obtained.

Group 3 The NASA/NGA Shuttle Radar Topography
Mission SRTM digital elevation model (90 m) was freely
downloaded from the site Earth Explorer. Slope (PEND),
aspect (EXP) and altitude (DEM) were directly calcu-
lated from SRTM data. Only areas under 3,500 m above
sea level were included.

Group 4 Land cover map, scale 1:50000, obtained from
CONAF-CONAMA-BIRF National datasets [38]. We
used these layers to classify every land cover type into
habitat suitability scores (USO) for triatomines using as-
suming no habitat as 0% and perfect habitat as 100%
(Table 6). This determination was made by national ex-
perts on triatomines’ biology, using scientific literature
review as a complement.
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Figure 5 Map of the study zone in Chile. Map of the three regions of the study zone: Coquimbo, Valparaiso and Metropolitana (central Chile).

Data grids construction

In order to obtain appropriate data sets for further ana-
lysis regular grids for the whole study zone were built.
As it was not known which size was going to best suit,
10, 5 and 2.5 kilometers as alternatives cell sizes (100, 25
and 6.25 km?) were used, respectively. Using these grids,

Table 5 Sampled number of rural houses and total rural

houses in each region

Region Samples Total %
Coquimbo 452 48,702 093
Valparaiso 420 43521 0.97
Metropolitana 425 54,256 0.78
Total 1,297 14,6479 0.89

Table 6 Classification of land cover types (USO) into
habitat suitability scores for triatomines

Land cover

Habitat suitability score (%)

Open shrubs and succulent plants
Dense shrubs and succulents

Open shrubs

Dense shrubs with/without trees
Rock formations

Open land and urbanizations
Steppes and second growth forests
Prairies and forests

Forests and dense plantations

Other land covers

90-100
80-90
70-80
60-70
50-60
40-50
30-40
20-30
10-20

<10
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the average and standard deviation of the 12 environ-
mental variables for each cell were extracted. To add
presence/absence to all cells containing sampling units,
the following probability was assigned:

Positive_cases
* 100

Positive_cases + Negative_cases

Where, P is the probability of triatomines presence
(PbbP), Positive_cases and Negative_cases are the num-
ber of houses with positive and negative identification of
triatomines by the householders, respectively. So in each
cell of the three grids the following 12 variables were fi-
nally obtained: DEM, PEND, EXP, NDVI, SAVI, TCB,
TCV, TCH, CP1, CP2, CP3 and USO.

Random forests predictor

As prediction was this study’s focus, preference was
given to the algorithm modeling approach to model the
triatomines spatial distribution. Random Forests algo-
rithm (RF) was used to predict the probability of
triatomine presence (PbbP), using the set of 12 environ-
mental variables as input. In the RF [39], implemented
in the R-project package randomForest, prediction is
obtained by amassing regression trees each constructed
using a different random sample of the data, and then
choosing splits of the trees from subsets of the available
predictors, randomly chosen at each node. The RF
models in this study were obtained by amassing 500
trees as base classifiers, with 12 variables tried at each
split. The main result of this procedure is a presence
probability map of triatomines in the study zone.

Validation
For each run, RF gives the associated Mean Square Error
(MSE), thus not requiring cross-validation or some form of
independent validation to obtain an estimation of the model
error [40]. From this, the RMSE, simple statistic that mea-
sures the precision of each RF model was calculated [41].
The results obtained using the best model were com-
pared with an independent dataset consisting of positive
houses, which were determined as such by direct collec-
tion of triatomines performed by trained personnel of
the National Health Service in 34 grid cells of our study
area. This data is presented in Figure 4 as verification
points (black crosses). According to the model, for the
same 34 cells, the average probability of presence is
51.9% with a standard deviation of 16.3%. In other
words, the model is able to predict the actual presence
of triatomines in the study area.
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