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Abstract
Background: In some cases, it may be necessary to combine distinct finite element meshes into
a single system. The present work describes a scheme for coupling a finite element mesh, which
may have curvilinear elements, to a voxel based finite element mesh.

Methods: The method is described with reference to a sample problem that involves combining
a heart, which is defined by a curvilinear mesh, with a voxel based torso mesh. The method involves
the creation of a temporary (scaffolding) mesh that couples the outer surface of the heart mesh to
a voxel based torso mesh. The inner surface of the scaffolding mesh is the outer heart surface, and
the outer surface of the scaffolding mesh is defined by the nodes in the torso mesh that are nearest
(but outside of) the heart. The finite element stiffness matrix for the scaffolding mesh is then
computed. This stiffness matrix includes extraneous nodes that are then removed, leaving a
coupling matrix that couples the original outer heart surface nodes to adjacent nodes in the torso
voxel mesh. Finally, a complete system matrix is assembled from the pre-existing heart stiffness
matrix, the heart/torso coupling matrix, and the torso stiffness matrix.

Results: Realistic body surface electrocardiograms were generated. In a test involving a dipole
embedded in a spherical shell, relative error of the scheme rapidly converged to slightly over 4%,
although convergence thereafter was relatively slow.

Conclusion: The described method produces reasonably accurate results and may be best suited
for problems where computational speed and convenience have a higher priority than very high
levels of accuracy.

Background
In some cases, it may be necessary to combine distinct
finite element meshes into a single system. For example,
the task that motivated this work involved integrating a
curvilinear mesh[1] of the Auckland canine heart[2] with
a voxel mesh of a human shaped torso. The heart mesh
described in [1] was created to perform simulations on a
stand alone heart. Fischer et al. [3] describe an elegant

technique for coupling a stand alone heart model to a
torso surface via the boundary element method, but this
scheme is not applicable where it is desired to know the
intra-thoracic potential distribution, which requires a full
volume mesh.

Many types of volume meshing strategies exist[4]. Meshes
can generally be divided into two categories, structured
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meshes and unstructured meshes. Structured meshes,
which include voxel meshes, are characterized by interior
nodes that are connected to the same number of nodes. In
contrast, the internal nodes in an unstructured mesh may
be connected to different numbers of nodes. Structured
meshes are generally easy to work with because of their
regularity. However, it may be difficult to conform a struc-
tured mesh to an irregular boundary, a task which is easier
with an unstructured mesh.

One approach for coupling a voxel mesh to a mesh with
an irregular boundary (e.g. the outer heart surface)
involves individual treatment of the voxel elements that
intersect the boundary. This scheme, known as the Carte-
sian cut cell method[5], has the drawback of being rela-
tively complex and therefore likely to be difficult to
implement. Another coupling technique involves extrud-
ing prism elements from a triangular surface mesh (e.g.
the outer heart surface) in the surface normal direction,
and then coupling the prism elements to Cartesian ele-
ments[6]. Again, the disadvantage of this approach is that
it is relatively complicated.

The present work describes a technique that is a variant of
the hybrid Cartesian/prism scheme, with a novel method
for coupling the prism elements to the voxel elements.
The scheme is easy to code, computes quickly, requires lit-
tle or no user supervision, and has all the advantages asso-
ciated with voxel meshes. The main drawbacks of the
scheme are relatively uneven and slow convergence after a
certain degree of accuracy has been reached. One addi-
tional limitation is that the scheme is most suitable for
geometries which are reasonably well characterized by a
spherical harmonic expansion.

Methods
Outline
The present scheme will be described with reference to a
particular problem that involves coupling a previously
meshed heart[1] to a torso, as shown in the left hand
panel in Figure 1. The goal is to solve for the extracellular
potential (Ve) throughout the heart and the potential out-
side of the heart (Vo) in the elliptical equation[7]

∇•(Di + De)∇Ve = -∇•(Di)∇Vt; within heart muscle

∇•(σo)Vo = 0; in the torso and blood pools  (1)

where Di and De are the intracellular and  extracellular
conductivity tensors within heart muscle, σo represents
the conductivity in the torso and blood pools respectively,
and Vt are the transmembrane potentials throughout heart
muscle.  At the interface between the heart and torso, the
potential is continuous  (Ve = Vo), the normal component
of the extracellular current is  continuous with the normal

component of the current through the torso/blood  pools
(nT DeVe = nT σo Vo, where n is the unit normal vector), and
there is no flow of  intracellular current into the torso/
blood pools (nT DiVi = 0).

Figure 2 is a flow chart of the coupling scheme. The first
step of the method involves embedding the heart in a pre-
liminary voxel mesh that is slightly larger than the heart,
as indicated in Figure 3. The next step involves locating
preliminary voxel mesh nodes ("boundary nodes") that
are outside of the heart but close to the heart, as indicated
by the red circles in Figure 3. A surface ("boundary sur-
face") is fitted to these boundary nodes. The boundary
surface is essentially a projection of the outer heart sur-
face, as shown in Figure 3. A temporary mesh ("scaffold-
ing mesh") is generated between the outer heart surface
and the boundary surface and the stiffness matrix for this
mesh is computed. The scaffolding mesh is indicated by
the purple area in Figure 3. The scaffolding mesh includes
extraneous temporary nodes that are then removed from
the stiffness matrix, leaving a coupling matrix that couples
the pre-existing outer heart surface nodes to the boundary
surface voxel nodes. A voxel mesh is generated for the
entire torso by adding voxels to the preliminary mesh. The
resulting stiffness matrix for the torso nodes is then com-
puted. Finally, a complete system matrix is assembled
from the pre-existing heart stiffness matrix, the heart/torso
coupling matrix and the torso stiffness matrix.

Preliminary mesh; boundary extraction
Given the heart surface, a preliminary voxel mesh is gen-
erated that is slightly larger than the heart. In the two
dimensional example illustrated in Figure 3, the prelimi-
nary voxel mesh encloses all of the squares within the blue
rectangle. The nodes of this mesh are designated as Xp =
(xp, yp, zp). It will be assumed that the voxels are isotropic
(side length = s) and chosen to be defined with respect to
some convenient origin. The preliminary voxel mesh
should extend for a distance of at least 1s in the x, y and z
directions beyond any point on the outer heart surface.
The voxel size s is preferably the desired voxel size for the
entire torso mesh.

The next step involves locating boundary nodes Xb ⊆ Xp
that are outside of the heart but closest to it, as illustrated
in Figures 3 and 4. The boundary nodes are located by
finding boundary voxels Vb, which are defined as those
voxels that have at least one node within the heart and at
least one node outside of the heart. The boundary nodes
Xb ⊆ Xp are defined as all of the nodes within these voxels
Vb that are outside of the heart.

There are a number of methods for locating the boundary
voxels. One convenient method, which was used in the
present example, is applicable to any surface (e.g. the
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heart surface) that may be characterized by spherical har-
monics[1]. In this case, the spherical harmonics provide a
continuous representation of a surface, and therefore may
be used to determine whether any given point is inside or
outside of this surface.

More particularly, the outer heart surface Sh is approxi-

mated by Rh = F(θ,Φ), where Rh is the radius of the approx-

imate outer heart surface, F is a spherical harmonic

polynomial as will be further described below, and θ and

Φ are azimuthal and polar angles, respectively. Figure 4

shows a 2-D representation of Rh. Rh, θ, and Φ are defined

with respect to a convenient origin which is at the point
(xh, yh, zh). This origin is preferably chosen such that it

results in a good spherical harmonic expansion. The grid

points Xp are translated so their origin is (xh, yh, zh), which

results in a set of translated node points X'p = (xp- xh, yp -

yh, zp - zh). The azimuthal and polar angles θp and Φp (with

respect to the (xh, yh, zh) origin) are computed for X'p, and

then the value F(θp, Φp) is computed, which is the radius

of the outer heart surface at the angles θp and Φp. If this

radius is greater than the radius

 of a translated node

point, then that point is within the heart. The set of node

points within the heart will be denoted by the set Xh ⊆ Xp.

The above procedure locates the nodes Xh ⊆ Xp within the
heart. The boundary voxels Vb are then defined as those
voxels that have at least one node within the heart (Xh)
and at least one node outside of the heart. The boundary

( ) ( ) ( )x x y y z zp h p h p h− + − + −2 2 2

Sample problemFigure 1
Sample problem. The heart/torso system is shown in the left panel. The right panel shows corresponding simulated electro-
grams at the sites designated in the left panel.
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points Xb are those nodes that are within the boundary
voxels but outside of the heart.

Surface formation
A surface (the boundary surface Sb) is generated by fitting
a spherical harmonic expansion to the points Xb about the
origin (xh, yh, zh). The radii (Rb) and azimuthal and polar
angles θb and Φb are computed for the boundary points, as
indicated in Figure 4, which shows only the azimuthal
angle. The spherical harmonic expansion of the radii Rb
may be expressed as

where N is the number of terms in the spherical harmonic
expansion, Pi is the Legendre function of degree i of the

first kind, Pi
m is the associated Legendre function of degree

i and order m, ai, aim, bim are coefficients (to be deter-
mined), P and C are matrix and vector representations of
the Legendre function values and coefficients, respec-
tively, and Rb is a vector representation of the radii Rb. A
least squares fit (C = P\Rb in Matlab notation) results in a
set of coefficients Cbs that define the boundary surface Sb
characterized by Rbs = F(θ,Φ), where F is the spherical har-
monic expansion of order N with coefficients Cbs, and Rbs
is the radius of a point on the surface Sb at a given pair of
azimuthal and polar angles (θ, Φ).

The appropriate value of N will depend on the geometry
of the problem and may be determined empirically. For
the heart shown in Figure 1, N = 8 produced good results.
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Flow chart of the coupling schemeFigure 2
Flow chart of the coupling scheme.
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Scaffolding mesh generation
The next step involves forming a scaffolding mesh that
couples the original heart nodes Xh to the boundary nodes
Xb. The scaffolding mesh, which is indicated by the purple
region in Figure 3, joins the heart surface Sh to the bound-
ary surface Sb. With reference to Figure 5, which again
shows a two dimensional example of the present scheme,
the scaffolding mesh is shown in light purple and one of
the scaffolding mesh elements is indicated by a dotted
black quadrilateral. The scaffolding mesh provides an
approximation of the electrical coupling between the orig-
inal heart mesh nodes (Xh, shown as black filled circles)
and the boundary nodes (Xb, shown as red filled circles).
The scaffolding mesh is only an estimate of this electrical

coupling because the mesh does not include the actual Xb
nodes, but approximations (dotted red circles) of the loca-
tions of the boundary nodes (Xb).

In three dimensions, the scaffolding mesh comprises pris-
matic elements. Each prismatic element consists of two
similar triangles, one on the heart surface Sh and one on
the boundary surface Sb, whose corresponding vertices are
joined to one another. The triangles, in turn, are formed
from combinations of the original heart nodes Xh and
boundary nodes Xb, and projections of these nodes.

More particularly, the heart nodes Xh are projected onto
the surface Sb by a line that passes through the heart nodes

General mesh structure in 2 dimensionsFigure 3
General mesh structure in 2 dimensions. The heart is embedded in a preliminary "scaffolding" voxel mesh, which comprises all 
of the voxels within the blue rectangle. The preliminary mesh is in turn embedded and aligned with a voxel torso mesh, whose 
outer nodes are shown in green. Within the preliminary mesh, the voxels that have nodes both inside and outside of the heart 
are located, and the nodes in these voxels that are outside of the heart are defined as boundary nodes (Xb). A surface (the 
"boundary surface") is fitted to these nodes. A coupling mesh (in purple) between the outer heart surface and the boundary 
surface is then generated.
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and the heart origin (xh, yh, zh), as illustrated in Figure 4.
Similarly, the boundary nodes Xb are projected onto both
the surface Sb and the surface Sh by a line that passes
through these nodes and the heart origin (xh, yh, zh). The
projection of the boundary nodes on to Sb will be referred
to as Xb'. From an implementation standpoint, the projec-
tions may be accomplished by calculating the (θ,Φ) pair
for any point (about the (xh, yh, zh) origin), and then com-
puting the radius R = F(θ,Φ) for either the heart surface Sh
or boundary surface Sb from its corresponding spherical
harmonic expansion F(θ,Φ).

The result of the mutual projections is two sets of points,
one on Sh and the other on Sb, such that each point at a
given (θ,Φ) on a surface has a corresponding point on the

other surface at the same (θ,Φ). Thus, a triangular tessella-
tion of one surface may be used to generate an identical
triangular tessellation of the other surface.

There are many ways to tessellate a surface. The approach
that was adopted took advantage of the regularity of the
(θ,Φ) coordinates of the heart nodes Xh. These nodes
formed a regular grid in the (θ,Φ) coordinates by choice;
it is easy to form a such a regular grid when the surface at
issue (Sb) is characterized by spherical harmonics. Because
of the cyclicity of the azimuthal angle θ, the original (θ,Φ)
grid (-π<=θ<=π) points were augmented such that those
points (θa, Φa) with θa<=-4π/5 were identified, and new
points with (θa+2*π, Φa) added to the grid. This "wrapped
around" grid was triangulated, and the triangles character-

Finding boundary nodes and creating the boundary surfaceFigure 4
Finding boundary nodes and creating the boundary surface. A convenient origin within the heart serves as the basis for fitting a 
spherical harmonic expansion to the outer heart surface, which generates a surface characterized by the radius Rh(θ,Φ). Voxels 
that have nodes both within and without of this surface are boundary voxels. Within these voxels, the nodes outside of the 
heart are boundary nodes (red). A surface ("boundary surface") is fitted to these nodes by performing another spherical har-
monic expansion about the heart origin. This surface is characterized by the radius Rb(θ,Φ).
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ized by all three points having θ>2*π were removed. This
type of tessellation is generally acceptable only in cases
when there are points at both poles (Φ = +/-pi) and there
is a reasonably smooth gradation in the Φ values of the
points. This condition was satisfied in the present case
because the original heart points Xh were generated via a
spherical harmonic expansion with an even division in
the Φ direction.

The left panel in Figure 6 shows the surface of the example
problem heart with both the original heart surface points
(blue) and projected grid boundary points Xb (red) trian-
gulated in the manner described above. The boundary sur-
face (right hand panel in Figure) has shape very similar to
that of the heart surface and the triangulation is identical
to that shown for the heart surface.

Because each triangle on the heart surface has a corre-
sponding triangle on the boundary surface, connecting
the corresponding triangle nodes by radial line segments
defines a prismatic element. All of the prismatic elements
define the scaffolding mesh.

Heart to torso transfer matrix
The finite element stiffness matrix (Ak) for the prismatic
element (scaffolding) mesh describes the electrical cou-
pling between the heart surface and the boundary surface.
However, this matrix contains extraneous elements, i.e.
the projected heart nodes on the boundary surface (Xhp),
and the projected boundary nodes on the heart surface
(Xbp). These extraneous nodes must be removed, resulting
in a transfer matrix between the heart nodes and the
boundary nodes.

Creating the scaffolding meshFigure 5
Creating the scaffolding mesh. The boundary nodes (Xb) are projected onto both the heart surface and the boundary surface, 
as indicated by the red diagonal line circles and red dotted circles, respectively. The original heart surface nodes are projected 
on to the boundary surface (black diagonal lined circle). The projected nodes along with the original heart surface node define 
an element of the scaffolding mesh (shown in black dotted fill for just one element).
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The concept of extraneous nodes will be further described
with reference to Figure 5. The desired final matrix should
reflect only electrical coupling between the original heart
mesh nodes (Xh) shown as filled black circles and the
boundary nodes (Xb) shown as filled red circles. The posi-
tions of the boundary nodes (Xb) are approximated by the
dotted red circles (Xb'), so in actuality the final desired
stiffness matrix will reflect the coupling between the filled
black circles and the dotted red circles. However, the scaf-
folding matrix also contains electrical coupling between
the desired nodes (filled black and dotted red circles) and
extraneous nodes (circles with black and red diagonal
lines), which are the projected heart nodes on the bound-
ary surface (Xhp), and the projected boundary nodes on

the heart surface (Xbp). These extraneous nodes must not
exist in the desired final system matrix.

First, to assemble the finite element stiffness matrix (Ak)
for the prismatic element mesh, the local stiffness matrix
for each prism element is constructed. This may be done
in a number of ways. For a Galerkin type FEM, a closed
form local matrix based on the prismatic geometry may be
used. Alternatively, each prism may be decomposed into
tetrahedrons, and the stiffness matrix, based on linear
basis functions, may be computed for each tetrahedron.

To remove the extraneous nodes in Ak, it was partitioned
as follows:

Tessellated surfacesFigure 6
Tessellated surfaces. The heart surface is in the left panel and the boundary surface is in the right panel. The tessellated pat-
terns for the surfaces are identical. In the right hand panel, the boundary surface is represented by a transparent mesh that 
shows the embedded heart surface (aqua).
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where the subscript h denotes the heart surface nodes Xh,
the subscript e denotes the extraneous nodes (Xhp ∪ Xbp)
to be removed, and the subscript b' denotes the projected
boundary nodes Xb'. The desired coupling matrix (Ac)
between Xh and Xb' is found by solving for the extraneous
nodes in the set of equations Ak = 0:

where

The set of equations Ak = 0 is somewhat of an oversimpli-
fication of the process of eliminating extraneous nodes.
More precisely, the right hand side corresponding to each
extraneous node is set to 0. To take a simple example,
assume it is desired to eliminate a variable x2. If the row in
the matrix Ak corresponding to x2 is equal to -3x1 + 4x2 -
2x3, then setting this row equal to 0 and solving for x2
yields x2 = 1/4(3x1 + 2x3). 1/4(3x1 + 2x3) is then substi-
tuted for x2 wherever it appears in any other equation,
effectively eliminating x2 from the system of equations.

Total system matrix
The total system matrix comprises a combination of the
preexisting FEM heart matrix (Ao), the FEM heart to torso
coupling matrix Ac, and the FEM torso matrix At.

The FEM torso matrix At is based on a voxel based mesh of
the torso. If the voxel torso mesh did not exist a priori, it
may be generated by extending the preliminary mesh
until it approaches the outer torso, as indicated by the
green filled circles shown in Figure 3. The outer torso
nodes may be found in a number of ways. In the approach
adopted, the original torso surface nodes were multiply
interpolated with two dimensional Legendre polynomi-
als, resulting in a set of surface indicator functions analo-
gous to the spherical harmonic surface indicator function
described with reference to generation of the boundary
surface.

The FEM stiffness matrix At for the voxel matrix was com-
puted once again with a Galerkin type scheme with linear
basis functions. For voxel meshes, this type of FEM matrix
may be generated very quickly, on the order of a few sec-
onds assuming reasonable computer processing speed
and memory.

The FEM matrix (As) for the entire system is:

where the subscript g denotes the set of torso mesh nodes
excluding the boundary nodes, and the subscript i denotes
the set of original heart nodes excluding the outer surface
heart nodes Xh. In this equation, the preexisting FEM heart

matrix Ao has been partitioned into components: (i) that
connect interior heart nodes to other interior heart nodes

( ); (ii) that connect interior heart nodes to nodes on

the heart surface (  and ); and (iii) that connect

outer heart nodes to other outer heart nodes ( ). Sim-

ilarly, Ac and At have been partitioned into portions: (i)
that connect "internal nodes" (i.e. nodes that are not a
part of any other matrix) to other "internal nodes"; (ii)
that connect "internal nodes" to "overlapping nodes" (i.e.
nodes that appear in two matrices); and (iii) that that con-
nect "overlapping nodes" to "overlapping nodes."

For example,  represents the coupling between the

outer heart surface nodes, which are overlapping nodes, to

themselves in the matrix Ao. Similarly,  represents the

coupling between the outer heart surface nodes to them-
selves in the matrix Ac. The matrix entry in As for the cou-
pling of the outer heart nodes to themselves is thus the

combined entry  + .

The discretized version of equation (1) is AsVe = Ao, rhsVt,
where Ve and Vt are the vectors corresponding to the con-
tinuous variables in equation (1), and Ao, rhs is the origi-
nal, pre-computed stiffness matrix corresponding to the
right hand side of equation (1). Ao, rhs and Vt must be
appropriately augmented with 0's to match the size of
AsVe. The boundary conditions at the heart/torso bound-
ary, that Ve is continuous and the normal component of
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the current is continuous[3], are necessarily enforced by
the finite element formulation used to create As.

Test
The above described scheme was tested as follows. A
spherical shell, analogous to the outer heart surface, was
coupled to a surrounding spherical "torso". The potentials
on the inner spherical shell were set equal to those which
would have occurred had there been an ideal current
dipole, normalized to unit strength, located at the sphere's
origin and oriented along the z axis. Given this potential
distribution, the potentials throughout the spherical
"torso" were computed and compared with the analytic
solution[8]:

where Φ is the polar angle (as before), R is the radius of
the outer spherical torso surface, and r is the radius to an
observation point. For the test problem, R was set at 50.
The radius of the spherical shell/heart surface was set at
40, roughly the same size as the heart shown in Figure 1.
To create the potential distribution equivalent to a dipole
oriented along the z axis, the potentials on this sphere/
heart surface were thus set at:

A voxel mesh, akin to the torso mesh shown in Figure 3,
was generated to fill in the space between the inner and
outer spherical surfaces, and the corresponding FEM
matrix At was computed. Next, a coupling matrix Ac to link
the torso to the nodes on the spherical shell/heart surface
was created. The system of equations As *Vc = 0 was con-
structed, where As is the total system FEM matrix and Vc is
the solution. The spherical shell/heart surface nodes were
set equal to their corresponding potential V(40, Φ), result-
ing in an augmented system A'*V' = b, where V(i)' = 1
where i represents the spherical shell/heart surface nodes.
This system was solved using the biconjugate gradient sta-
ble method, after preconditioning by scaling each row in
the matrix so that its diagonal element was equal to 1.

Relative error was defined as:

where Vc is the computed solution (excluding the spheri-
cal shell/heart nodes) and Va is the analytical solution.
Both the number of nodes on the spherical shell/heart

surface and the number of nodes in the "torso" were var-
ied.

Heart beat
The heart in Figure 1, which is based on the Auckland
canine model[2], was meshed[1] and oriented within a
human shaped torso, as shown. A cellular automata like
scheme was used to generate an activation and repolariza-
tion sequence throughout the heart, resulting in a corre-
sponding sequence of transmembrane potentials Vt.
Maximum Vt was 100 mV, with the resting potential set at
0 mV. Initial left ventricular and right ventricular activa-
tion sites were chosen roughly in accord with Selvester et
al.[9] but were adjusted to generate better matches of epi-
cardial potentials with recordings made by Spach et
al.[10] in intact chimpanzees.

A propagation sequence was generated by a simple
eikonal like scheme, according to which propagation
velocity (v) was assumed to be proportional to the square
root of bulk cardiac tissue conductivity[11]. The eikonal
like scheme was implemented by calculating a propaga-
tion time between connected nodes in the heart mesh,
selecting initial activation sites, and then stepping
through time to activate the remaining heart nodes. The
activation time of a heart node was set equal to the activa-
tion time of its nearest neighbor plus the approximate
propagation time from the heart node to this nearest
neighbor. The propagation time between neighboring
nodes was set equal to v/d, where v is velocity (propor-
tional to the square root of the conductance between
nodes) and d is the distance between nodes.

Repolarization was initiated from the right ventricular
breakthrough area[10] and allowed to spread like a wave
across the epicardium in the manner in which activation
was simulated. Repolarization was then allowed to pro-
ceed inward transmurally toward the epicardium based
simply on relative transmural depth. In other words, repo-
larization proceeded from the epicardium inward.
Although this oversimplified repolarization sequence is
not necessarily strictly physiologically correct[12], it was
chosen because of convenience and because it produced
reasonable intra-epicardial gradients and epicardial/
endocardial transmembrane gradients that resulted in
realistic T waves.

Within the heart muscle: (i) intracellular conductivity
along and transverse to fiber direction was set equal to 1
and 1/6, respectively; (ii). extracellular conductivity along
and transverse to fiber direction was set equal to 1 and 1/
3, respectively. Ventricular blood and torso conductivity
were set at 5 and 2.5, respectively.
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The heart mesh had approximately 270000 nodes and the
torso mesh had approximately 120000 nodes. The system
of equations was solved with Matlab's preconditioned
conjugate gradient routine. The preconditioner was an
incomplete Cholesky (0 fill in) factorization of the system
matrix.

Results
For the sphere test, Figure 7 shows relative error as a func-
tion of the number of total nodes, i.e. heart surface nodes
(inner spherical shell) and torso nodes (between inner
and outer spherical shells). The error drops rapidly to
somewhat over 4% but convergence is markedly slower
thereafter. It should be noted that different error curves
were obtained depending on the relative balance between
heart surface nodes and torso nodes; the curve shown in
Figure 7 is representative of the general pattern of fast con-
vergence with relatively few nodes and slow convergence
after that. If the number of heart surface nodes (inner
spherical shell) was held constant and the number of
torso nodes increased, convergence was not necessarily
monotonic.

Figure 1 shows the resulting simulated electrocardiograms
at various locations roughly corresponding to the 6 pre-
cordial leads in the standard 12 lead electrocardiogram.
The electrograms have a reasonably realistic shape. The
peak to peak amplitude of approximately 4–5 mV is in
line with the approximately 4.5 mV voltage difference
across the torso in a body surface mapping study of chim-
panzees[10]. The simulated maximum voltage difference

across the epicardium (which occurred approximately 40
ms into the QRS complex) was approximately 13 mV,
which is similar to the maximum epicardial potential dif-
ference reported by Spach et al. 28 ms into the QRS onset
of the chimpanzee QRS complex.

The top panel in Figure 8 is a cross sectional view through
the torso, along the plane indicated in the lower panel,
which also shows the potentials on the torso surface and
the outer heart surface. (In the lower panel, the colorbar is
scaled to the torso potentials; the larger magnitude maxi-
mum and minimum heart potentials are saturated in this
color scale and are simply red and blue, respectively.) The
positive and negative tissue on the outer heart surface is
faithfully projected onto the torso surface (bottom panel),
as desired. The transverse slice shows a potential jump
from the depolarized outer heart surface to the adjacent
torso volume, as theory predicts[13]. The potential distri-
bution across the torso slice appears to be reasonable.

Discussion
This work describes a convenient scheme for coupling a
pre-existing, possibly curvilinear, finite element mesh to a
voxel mesh. The scheme is easy to code and generates a
complete system matrix (i.e. the coupling and torso matri-
ces along with final matrix assembly) fairly quickly, on the
order of 10's of seconds for the heart/torso coupling
example problem on a 2.80 GHz Xeon processor running
Microsoft Windows XP with 3 GB of DRAM. The relatively
good speed is helpful in cases, such as in the example
problem, where some experimentation is required to fix
the orientation of the preexisting and voxel meshes.

In this problem, the only user supervision involved ori-
enting the heart within the torso. The rest of the process,
namely the generation of coupling and torso matrices and
assembly of the final matrix, was automatic.

The disadvantages of the scheme are that it appears to con-
verge relatively slowly after a given degree of accuracy has
been reached. It also may converge non-monotonically if
only the number of nodes in the voxel mesh is increased.
Given the weight of advantages and disadvantages, the
scheme may be most useful for prototyping, where high
accuracy is not required at the outset and experimentation
is required to align the preexisting and voxel meshes.

One possible reason for the slow convergence is that the
boundary surface Sb can not perfectly fit the boundary
nodes because this surface can not follow the sharp cor-
ners between some of the adjacent boundary nodes.
Indeed, for this reason, the error of the fit between Sb and
the boundary nodes decreases slowly as the number of
torso nodes is increased, which mirrors the overall slow
convergence of the scheme.

Results of the sphere testFigure 7
Results of the sphere test. Convergence is not monotonic 
and is relatively slow after approximately a 4% error has 
been reached.
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There are a few possibilities for improving the scheme.
First, instead of trying to fit the boundary surface to all of
the boundary nodes (Figure 3), the corner boundary
nodes (at the vertices of the rectangle defined blue red cir-
cles in Figure 3) could be excluded from the surface fit,
yielding a better surface fit to the non-corner boundary
nodes. These corner nodes could be coupled to the
boundary surface through tetrahedral elements.

Another possible improvement would be to generate the
coupling matrix with a very high spatial resolution mesh,
and then couple this to a lower spatial resolution voxel
mesh by removing extraneous nodes from the higher res-
olution mesh in the same manner that extraneous nodes
were removed from the scaffolding matrix in the scheme
described above. The coupling between higher and lower
resolution meshes would be easy because both are voxel

based meshes, so that it is easy to generate a low resolu-
tion mesh whose nodes are all within the set of the high
resolution mesh nodes. For example, the high resolution
mesh could be generated by creating nodes at the mid-
points of the low resolution mesh, as shown in Figure 9.
This mesh is non-conforming, due to the presence of
nodes in the smaller elements that are not nodes of the
neighboring larger elements. As an alternative to remov-
ing these nodes through elimination, which may cause
numerical problems, this type of mesh may be treated in
the manner described by Schimpf et al.[14]

Yet another alternative would be to couple the outer heart
surface and the boundary surface with the boundary ele-
ment method, which would avoid the requirement of
eliminating extraneous nodes.

Computed potentialsFigure 8
Computed potentials. Potentials on the heart and torso are shown in the lower panel and potentials through the cross section 
indicated by arrows are shown in the upper panel. In the lower panel, the heart potentials, which are greater than the torso 
potentials, saturate the color scheme.
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The present scheme may be applied to problems in bioen-
gineering other than the heart/torso coupling problem.
Further, the present scheme could be used in areas outside
of bioengineering. However, extensions of the scheme to
problems in which the preexisting mesh (e.g. the heart
mesh) is not reasonably smooth may prove difficult
because prismatic elements in the scaffolding matrix
could be very irregularly shaped. Similarly, irregular node
spacing on the preexisting mesh might also cause prob-
lems. If there are too few nodes on the outer surface of the
preexisting mesh, then the scaffolding mesh might not
have sufficient resolution for an accurate solution. If the
physics of a problem require a very accurate representa-
tion of the geometry in the area of the boundary between
the scaffolding mesh and voxel mesh, the present scheme
will likely not prove suitable.

In summary, a scheme has been advanced that may be
useful in situations where rapid computational speed and
ease of use is a higher priority than great accuracy. Further,
it may be possible to improve the convergence of the
present scheme.

Glossary
Ac – the desired coupling matrix between Xh and Xb'

Ak – the FEM scaffolding mesh matrix

Ao – the preexisting FEM heart matrix

As – the total system matrix, assembled from Ao, Ac, and At

At – the FEM torso matrix

Boundary nodes – the nodes within the preliminary voxel
mesh that are closest to, but outside of, the outer heart sur-
face

Boundary surface – a surface that is fitted to the boundary
nodes

Outer heart surface – the outer surface of the preexisting
heart mesh

Preliminary voxel mesh – a voxel mesh that is slightly
larger than the heart mesh, which is embedded within the
preliminary voxel mesh

Scaffolding mesh – a mesh that is constructed that fills in
the volume between the outer heart surface and the
boundary surface

Sh – outer heart surface

Sb – boundary surface

Xp – nodes in the preliminary voxel mesh

Xb – boundary nodes

Rh – radius of spherical harmonic surface that approxi-
mates Sh

X'p – Xp points translated to the origin of the heart coordi-
nate system

Xh – the subset of Xp that lies within the heart

Xb' – nodes derived by projecting boundary nodes on to Sb

Xhp – the heart nodes as projected on the boundary sur-
face; part of scaffolding mesh nodes

Xbp – the boundary nodes as projected on the heart sur-
face; part of scaffolding mesh nodes
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