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Abstract

Background: Modern medical advances have greatly increased the survival rate of
infants, while they remain in the higher risk group for neurological problems later in
life. For the infants with encephalopathy or seizures, identification of the extent of
brain injury is clinically challenging. Continuous amplitude-integrated
electroencephalography (aEEG) monitoring offers a possibility to directly monitor the
brain functional state of the newborns over hours, and has seen an increasing
application in neonatal intensive care units (NICUs).

Methods: This paper presents a novel combined feature set of aEEG and applies
random forest (RF) method to classify aEEG tracings. To that end, a series of
experiments were conducted on 282 aEEG tracing cases (209 normal and 73
abnormal ones). Basic features, statistic features and segmentation features were
extracted from both the tracing as a whole and the segmented recordings, and
then form a combined feature set. All the features were sent to a classifier
afterwards. The significance of feature, the data segmentation, the optimization of
RF parameters, and the problem of imbalanced datasets were examined through
experiments. Experiments were also done to evaluate the performance of RF on
aEEG signal classifying, compared with several other widely used classifiers
including SVM-Linear, SVM-RBF, ANN, Decision Tree (DT), Logistic Regression(LR),
ML, and LDA.

Results: The combined feature set can better characterize aEEG signals, compared
with basic features, statistic features and segmentation features respectively. With the
combined feature set, the proposed RF-based aEEG classification system achieved a
correct rate of 92.52% and a high F1-score of 95.26%. Among all of the seven
classifiers examined in our work, the RF method got the highest correct rate,
sensitivity, specificity, and F1-score, which means that RF outperforms all of the other
classifiers considered here. The results show that the proposed RF-based aEEG
classification system with the combined feature set is efficient and helpful to better
detect the brain disorders in newborns.
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Background
Over the past decades, modern medical advances have greatly increased the survival rate

of term and preterm infants [1]. Based on modern medical research, brain permanent

damage can be minimized before it becomes irreversible [2]. Amplitude-integrated elec-

troencephalography is an important tool for the neurological assessment of critically ill

newborns [3]. Compared with imaging techniques such as Magnetic Resonance Imaging

(MRI), aEEG is more suitable to continuously monitor the brain activity, which could

record tracking changes and the maturation process of brain. Benefiting from the non-

intrusive nature and high availability of aEEG, it is easy to be applied to portable bedside

equipment.

The cerebral function monitor (CFM) was created in the 1960s by Douglas Maynard

and first applied clinically by Pamela Prior [4]. In 1970s and early 1980s, Ingmar Rosén

and Nils Svenningsen introduced the CFM in the intensive monitoring of brain func-

tion in newborns [5][6]. Later, Lena Hellström-Westas started to evaluate the method

in the neonatal intensive care unit (NICU) [7].

AEEG signal is derived from a reduced EEG which can be captured by CFM. Unlike the

standard EEG, whose setting up and interpreting are labor intensive, aEEG signals are

recorded from limited channels with symmetric parietal electrodess [8]. The aEEG proces-

sing scenario includes an asymmetric band pass filter with pass band of 2-15Hz, semi-

logarithmic amplitude compression and time compression. The filtering will minimize

artifacts from sweating, movements, muscle activity and electrical interference. The ampli-

tude is semilogarithmic amplitude compression (linear display 0-10 µV ; logarithmic

display 10-100 µV). Continuous aEEG monitoring offers a possibility to directly monitor

the functional state of the brain over hours and days. Toet et al.[9] gave a comparison

between amplitude integrated electroencephalogram and standard electroencephalogram

in neonates and pointed out CFM is a reliable tool for monitoring background patterns

(especially normal and severely abnormal ones). Brain monitoring with aEEG is

also reported to can better define brain injury and predict out-come than many other

methods [3,10].

AEEG tracings are described and classified in several different ways, depending on

whether normal or abnormal circumstances are evaluated and whether term or pre-

term infants are studied [9]. A number of publications have described the normal

development of aEEG patterns in full-term and preterm infants [10][11][12]. Figure 1

illustrates two typical background activities of normal and abnormal aEEG traces. Clin-

ical aEEG monitoring can reveal abnormal brain activities, but there is a potential pos-

sibility that the abnormality would pass unrecognized by users [8]. A study on an

automatic method for detecting the cerebral activity based on aEEG can be helpful to

avoid such unrecognition. In [13], a statistical distribution feature of aEEG signal was

proposed. In [14], an algorithm for the automatic detection of seizures in aEEG was

proposed, based on a sudden increase of the aEEG lower boundary which is the char-

acteristic change caused by electrographic neonatal seizures.

To apply machine learning algorithms to aEEG interpretation task, the problem can

be considered as a classification problem of signal. Different machine learning algo-

rithms have been used for classification tasks. Among them, Random Forest (RF) and

Support Vector Machines (SVMs) are two widely used algorithms. Some studies
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reported that RF performed better in classification tasks for complex data [11]. In the

previous work presented in the 2013 IEEE International Conference on Bioinformatics

and Biomedicine (BIBM) [12], we explored a random forest model with combined fea-

tures for aEEG classification. The experiment results showed that RF achieved better

performance than other machine learning algorithms, indicating it is a promising algo-

rithm for the automatic aEEG signal interpretation. This paper is an extension to our

previous work, focusing on the optimizing the configuration of the classification

scheme.

Methods
The aEEG classification process is described in details in this section, including data

description, the algorithm of random forest, feature extraction, classification and eva-

luation. Figure 2 gives the block diagram of the RF-based classification system.

Data description

282 aEEG signals were acquired from Shanghai Children’s Hospital of Fudan Univer-

sity, using the Olympic CFM 6000 (Olympic Medical Inc, Seattle, WA). Raw EEG

signals were recorded through a pair of biparietal electrodes, and were then filtered,

rectified, smoothed and selectively amplified to get aEEG. The positions of the

recording electrodes were equivalent to the P3 and P4 electrode positions of the

international 10-20 system. The aEEG samples with impedance greater than 10kΩ

were discarded. The 282 cases include 209 normal cases and 73 abnormal ones, and

the duration of each recording was 3 hours. All the aEEG tracings were interpreted

to normal or abnormal ones by experienced clinicians independently.

Figure 2 The block diagram of the RF-based classification system.

Figure 1 Two typical aEEG background activities.
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Random forest model description

Random forest (RF) developed by Leo Breiman in 2001 has been proved to be a

powerful approach with excellent performance in classification tasks [15][16]. Introdu-

cing both bagging and random variable selection for tree building, RF utilizes an

ensemble of classification trees, which are built on the bootstrap sample of the data.

At each split, variable candidate set is randomly selected from the whole variable set.

Randomness is injected by growing each tree on different random subsamples and

determining splitter partly at random. Each tree is grown fully to obtain a low-bias.

Both bagging and random variable selection assure the low correlation for individual

trees. Through the averaging over a large ensemble of low-bias, high-variance but low

correlation trees, the Algorithm 1 yields an ensemble forest [15].

In this paper, several algorithmic issues were examined, including parameter optimi-

zation and imbalanced dataset processing.

Algorithm 1 Algorithm of Random Forest

Input:

T : Training set (�x1, y1), (�x2, y1), . . . , (�xn, yn);
Ntree: the number of trees to be built;

Mtry : the number of variables chosen for splitting at each node;

Training:

for each b = 1 : Ntree do

Draw a bootstrap sample Xb from the given training set T.

At each node of tree trb, select Mtry variables randomly and determine the best

split among these Mtry variables.

Construct an unpruned tree trb using the above bootstrapped samples.

end for

Classification:

Classify by majority vote among the N trees.

Compute
favg(X) := (p1(X), . . . , pk(X)) :=

1
N

N∑

b=1

fi(X)

fRF(X) := argmaxk{p1(X), . . . , pk(X)}

Parameter optimization

In order to achieve desired performance, two important parameters need to be opti-

mized in the RF algorithm. One is the number of input variables Mtry tried at each

split, and the other is the number of trees to grow (Ntree) for each forest. Mtry consid-

ered at each split is a real parameter in the sense that its optimal value depends on the

data. The default value (the square root of the number of input variables) is often a

good choice for Mtry [17]. Generally speaking, the number of trees Ntree in the forest

should increase with the number of candidate predictors Mtry , so that each predictor

has enough opportunities to be selected. To get an appropriate value of Ntree, we can

try several increasing values and select the value when the prediction error stabilizes.

Imbalanced datasets processing

In our dataset, the number of abnormal data is much smaller than that of normal data.

Most machine learning algorithms will perform poorly on the minority class because of

the imbalance in the class distribution, and RF is no exception. As the cost of
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misclassifying of the minority abnormal class is much higher than the cost of other

misclassifications, the imbalanced dataset problem is one of the important issues we

need to consider to insure a satisfying result.

In this paper, we attempt to make the classifier more robust to the problem of class

imbalance by using class weights. A heavier penalty is given when the RF misclassifies

the minority class because the classifier tends to be biased towards the majority class

[18]. Each class is set a weight, with the minority class given a larger one. Class

weights are applied in two places. The first one is in the tree building procedure,

where class weights are used to weight the Gini criterion for split point finding. The

second one lies in the prediction procedure to produce a “weighted majority vote” by

each terminal node. In such a weighted RF model, the final prediction is determined

by aggregating the weighted vote from each individual tree. As essential tuning para-

meters to achieve desired performance, the class weights can be selected through the

out-of-bag estimate of the accuracy of RF model [19].

Feature extraction

Three kinds of features were extracted to characterize the aEEG signals, including basic

features, the histogram features from the signal as a whole, and the segment features

got from segmented aEEG recordings.

Basic Features

Basic features were extracted from the initial 3-hour-length aEEG signal, including

minimum amplitude, maximum amplitude, mean value of amplitude and percentage of

the lower margin values under 5µV . For a 3-hour-length recording, we can get four

features.

Histogram features

According to the clinical diagnosis criteria, the distribution of aEEG amplitude means a

lot for interpretation of the signal [13][20][21][22]. In this work, a histogram of ampli-

tude was calculated to reveal the distribution of aEEG amplitudes.

As aEEG classification is more sensitive to lower amplitude than the higher ones,

in our experiments, 1µV was used as the width of interval in lower amplitude areas

(≤ 50µV ) and 10µV as the width of interval in higher amplitude areas (> 50µV ).

Thus we can get from one 3-hour-length aEEG recording 55 features carrying the

histogram information. Four different histogram of normal and abnormal aEEG sig-

nals are illustrated in Figure 3. We can observe that, the histogram of normal aEEG

looks like the normal distribution (shown in (a)), when those of abnormal aEEG sig-

nals are more irregular (shown in (b)-(d)).

Segment features

To capture subtle difference between normal and abnormal aEEG, the initial 3-hour-

length aEEG signals were also segmented into a series of segmentation, and then fea-

tures were extracted from the segmented series. The overlapped windowing data seg-

mentation scheme was used to catch more detailed information, which is

demonstrated in Figure 4. Here the length of the segment window was set to 3 min

and an overlap of 1.5 min was used. Experiments show that such a selection works

well in most scenarios with reasonable computing capacity. Four features were exam-

ined for each segment, including the upper boundary, the lower boundary, the mean

value and approximate entropy (ApEn). The mean value is the mean of the amplitudes
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of the segmentation. The upper and lower boundaries are derived from the envelope of

the segmented aEEG. The second order envelope was calculated for each segment.

Averaging the upper and lower envelop, we got the upper boundary and the lower

boundary of one segment (illustrated in Figure 5).

Approximate entropy [23][24] is a good description of aEEG signals helpful in detecting

brain disorders of the newborn. ApEn can be briefly described as follow: Given a time-series

u(1), u(2), . . . , u(N ), a vector in m dimensions is defined as

Xm
i = [u(i), u(i + 1), . . . , u(i +m + 1)], where m is the length of comparing window. And a

sequence of vectors Xm
1 ,X

m
2 , , . . . X

m
N−m+1 can be constructed. For each i, 1 ≤ i ≤ N − m + 1,

Figure 3 Amplitude histograms of normal and abnormal aEEG signals: (a) normal; (b)(c)(d)
abnormal.

Figure 4 Data segmentation scheme with overlapped window. Here a 1.5-min-window overlapping is
used, operating on 3 min segments of data.
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let Cm
r (r) be (n − m + 1)−1 times the number of vectors Xm

j within tolerance r of Xm
i . Then

we can define Fm(r) as the following formula from Cm
r (r):

�m(r) =

∑N−m+1
i=1 lnCm

i (r)

(N − m + 1)
, (1)

where ln is the natural logarithm. Given a fixed positive integer m and a positive real

number r, ApEn(m,r) is defined by

ApEn(m, r) = lim
N→∞

[�m(r) − �m+1(r)]. (2)

For a fixed N data points, it is defined as

ApEn(m, r,N) = �m(r) − �m+1(r). (3)

For one 3-hour-length aEEG recording, 80 segments were observed. And for each

segment, we can get four features: the upper boundary, the lower boundary, the mean

value and ApEn. Thus for one 3-hour-length recording, we can get 320 features.

Obviously it is time consuming if all these features are sent into a classifier. To speed

up the classification processing, it’s wise to reduce the dimension of the feature vector

by ignoring those unimportant ones. According to our previous work [23], ApEn with

higher or lower values may more likely indicate the abnormality of a signal. So the seg-

ment features were firstly sorted in an ascending order according to the values of

ApEn, and then only those segments with high and low values of ApEn are selected.

Through experiments, we picked up the segment features with the ten top and the five

bottom values of ApEn, and thus we got a 60-dimensional feature vector for one 3-

hour-length recording.

After the basic features, histogram features and segment features had been got

respectively, they were integrated into one combined feature set with 119 features.

Classification

The weighted RF was applied to classify the 282 aEEG signals based on the feature sets

got above. To evaluate the performance of RF on aEEG classification, other widely

Figure 5 Data Envelope of aEEG. The upper and lower boundaries are derived from the mean value of
upper and lower envelopes of the segmented aEEG.
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used classifiers were also tested on the same data sets and the identical feature sets.

The compared classification methods include the support vector machine with RBF

kernel (SVM-RBF), support vector machine with linear kernel (SVM-Linear) and artifi-

cial neural network (ANN). As a reference, we also considered the Maximum Likeli-

hood (ML), Decision Tree using CART (DT), Logistic Regression (LR), Linear

Discriminant Analysis (LDA) algorithm, four of the most popular traditional supervised

classification methods.

Performance evaluation

Instead of using cross validation or estimating from a separate testing, an unbiased error

can be estimated internally in random forest [25]. Each tree is constructed under a dif-

ferent bootstrap sample. About one-third of the samples are left out of the bootstrap

sampling and not used in the construction of the tree, so the left out samples can be put

into the tree as test samples. At the end of the procedure, we took the number to be the

class that got most of the votes every time. By calculating the proportion of misclassified

samples over all cases, we can get the OOB error estimation, which has been proved to

be an unbiased error estimation method for random forest [26].

Specificity, sensitivity and F1-score were applied to evaluate the performance of the

classifiers. The specificity is defined as the percentage of the number of true negatives

over the sum of the number of true negatives and that of false positives. The sensitivity

refers to the percentage of the number of true positives over the sum of the number of

true positives and that of false negatives. The F1-score can be interpreted as a harmo-

nic compromise of precision and recall, which reaches its best value at 1 and worst

score at 0 [27].

Results
We conducted a series of experiments on 282-subject dataset to achieve an optimum

configuration of the RF-based classifier. The experimental study can be divided into

three parts. The first set of experiments examined the effects of parameters Ntree, Mtry

and evaluated the candidate feature sets. In the second set of experiments, we dealt

with the problem of imbalanced datasets. And the third set of experiments compared

the performance of RF-based classifier with those of other classifiers.

Parameters tuning and feature evaluation

As there are two relevant parameters to be optimized in RF algorithm, we have to try

out one of the parameter with the other one supposed to be given.

To select an appropriate value of Ntree, we initially built forest with a default para-

meter of Mtry =
√
119 ≈ 11, and then the average Out of Bag (OOB) error was exam-

ined in different forest sizes Ntree. Figure 6 illustrates the change of OOB error with

increasing forest size Ntree under default Mtry . It can be observed that the OOB

error tends to be stable at 0.083 when Ntree increases to about 220. As RF works bet-

ter with greater Ntree, we selected 1000 as the forest size in our further experiments.

After Ntree had been set, forests were built with varying values of Mtry from 1 to 119.

Figure 7 shows the OOB error with different Mtry values. The optimal value of Mtry

with the smallest OOB error occurs near the default parameter of Mtry = 11, which

indicates that the optimal Mtry really occurs near the default value. Based on the
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experiments, a final random forest model was generated using the parameters

Ntree = 1000 and Mtry = 11.

To assess the feature sets, we worked out the significance of feature as following: In

every tree grown in the forest, first write down the OOB cases and count the number

of votes for the correct class, and then permute the values of feature xi in the OOB

cases randomly and put these cases into the tree classifier. For each tree t, subtract the

number of correct votes in the feature-xi-permuted OOB data from that of correct

votes in the unpermuted OOB data:

FIt(xi) =

∑
i∈B̄t I(yi = ŷti)

|Bt| −
∑

i∈B̄t I(yi = ŷti,πj
)

|Bt|
(4)

Figure 6 Random Forest parameter selection. The average Out of Bag (OOB) error with default Mtry for
different forest sizes. The size should be greater than 220 with a stable OOB error of 0.083.

Figure 7 Random Forest parameter selection. The average OOB error for different value of Mtry with
Ntree = 1000. The optimal value of Mtry with the lowest OOB error occurs near the default parameter of
Mtry = 11.
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ŷti = f t(xi) : predicted class before permuting; (5)

ŷti,πj
= f t(xi,πj) : predicted class after permuting ,πi; (6)

The average of FIt(xi) over all trees in the forest is the raw significance score for fea-

ture xi as in Equation 7:

Ixi =

∑Ntree
t=1 FIt(xi)
Ntree

. (7)

The significances of all the four kinds of features are shown in Figure 8. Most fea-

tures’ significances in the original feature set are greater than 0.05. To find the most

valuable features, the basic, the histogram and the segment features, as well as the

combined features were sent to a RF-based classifier respectively. The classification

results based on the four kinds of feature sets are depicted in Figure 9. It is obvious

that the combined feature set works the best among the four, with a minimum median

and narrowest variation of classification error.

Imbalanced datasets processing

For weighted random forest, we tuned the class weight for final prediction: when we

raise the minority class weight, the cost of misclassification of the minority class goes

up, thus we can get a higher true positive rate and a lower true negative rate. To bal-

ance the sensitivity and specificity, the geometric mean (G-mean) was applied. A dis-

tinctive property of the G-mean measure is that it is independent of the distribution of

classes. It will reach its best value when sensitivity and specificity are performed well

at same time. G-mean can be calculated by Equation 8:

g =
√
Sensitivity ∗ Specificity. (8)

Figure 10 gives the correct rate and G-mean of the weighted random forest with dif-

ferent weights. The results show that the model works the best when the weight of the

abnormal and normal class is assigned to 3:1.

Figure 8 Significances of Features. Features are arranged on x-axis by their serial number in the feature
vector.
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Classification

To appraise the performance of the RF-based classifier, some widely used classifiers,

including the SVM-RBF, SVM-Linear, ANN, DT, LR, ML, and LDA, were also applied

to classify the identical data based on the identical feature sets. OOB method and 10-

fold cross validation method were utilized to evaluate the prediction ability of RF and

those of other classifiers respectively. Further more, we compared the performance of

RF build on different feature sets. Based on previous analysis, we can select part of fea-

tures with high significance to build our model for acceptable accuracy and efficiency.

Table 1 describes the results of classification. In this table, RF with the optimal para-

meters outperforms all of the other classifiers. The RF method gets the highest correct

rate, sensitivity, specificity, as well as F1-score among the seven classifiers. Table 2

shows the performances of RF model trained with different feature sets. During the

model training, we selected the top n% (from 10% to 100%) features based on its sig-

nificance score to build our model.

Figure 9 The classification error of the four kinds of feature sets.

Figure 10 The correct rate and G-mean of the weighted random forest with different weights.

Chen et al. BioMedical Engineering OnLine 2014, 13(Suppl 2):S4
http://www.biomedical-engineering-online.com/content/13/S2/S4

Page 11 of 13



Conclusions
In this paper, we proposed a RF-based method for aEEG classification and defined a

combined feature set. Basic features, statistical features and segment features were

extracted from the whole signal as well as from signal segmentations. The combined

feature set consisting of the three kinds of features was then sent to the RF classifier.

The significance of feature, the data segmentation, parameter optimization of RF algo-

rithm, and the problem of imbalanced datasets were examined. Experiments were also

conducted to evaluate the performance of RF on aEEG classification, compared with

several other widely used classifiers. Results show that, outperforming other widely

used classifiers examined here, random forest with the combined feature set is efficient

and can help better detect the brain disorders in newborns.
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