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Abstract

Background: Robust point matching (RPM) has been extensively used in non-rigid
registration of images to robustly register two sets of image points. However, except for
the location at control points, RPM cannot estimate the consistent correspondence
between two images because RPM is a unidirectional image matching approach.
Therefore, it is an important issue to make an improvement in image registration based
on RPM.

Methods: In our work, a consistent image registration approach based on the point
sets matching is proposed to incorporate the property of inverse consistency and
improve registration accuracy. Instead of only estimating the forward transformation
between the source point sets and the target point sets in state-of-the-art RPM
algorithms, the forward and backward transformations between two point sets are
estimated concurrently in our algorithm. The inverse consistency constraints are
introduced to the cost function of RPM and the fuzzy correspondences between two
point sets are estimated based on both the forward and backward transformations
simultaneously. A modified consistent landmark thin-plate spline registration is discussed
in detail to find the forward and backward transformations during the optimization of
RPM. The similarity of image content is also incorporated into point matching in order
to improve image matching.

Results: Synthetic data sets, medical images are employed to demonstrate and
validate the performance of our approach. The inverse consistent errors of our
algorithm are smaller than RPM. Especially, the topology of transformations is
preserved well for our algorithm for the large deformation between point sets.
Moreover, the distance errors of our algorithm are similar to that of RPM, and they
maintain a downward trend as whole, which demonstrates the convergence of our
algorithm. The registration errors for image registrations are evaluated also. Again,
our algorithm achieves the lower registration errors in same iteration number. The
determinant of the Jacobian matrix of the deformation field is used to analyse the
smoothness of the forward and backward transformations. The forward and
backward transformations estimated by our algorithm are smooth for small
deformation. For registration of lung slices and individual brain slices, large or small
determinant of the Jacobian matrix of the deformation fields are observed.

Conclusions: Results indicate the improvement of the proposed algorithm in bi-
directional image registration and the decrease of the inverse consistent errors of the
forward and the reverse transformations between two images.
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Introduction
Point set matching is a kind of image registration method used widely in the areas of

shape matching, motion correction, object recognition and other computer vision

applications. The aim of point set matching is to find spatial transformations between

two point sets extracted from two images, where the correspondence relationship of

points is unknown. Many approaches attempted to solve for point set matching under

the affine or projective transformation [1-3]. Recently, there has been considerable

interest in point set matching for non-rigid objects [4-10].

The robust point matching (RPM) has become a popular point matching method

due to its robustness to disturbances such as noise and outliers. There are two issues

needed to be settled for RPM: the correspondence and the transformation. RPM

handled these issues generally based on an iterative estimation framework. It utilizes

similarity constraints to compute a set of putative correspondences, which include

inlier points that there are true correspondence relationship with points in other point

set and exclude outlier points without corresponding ones in other point set [5,6,8,9].

And then, under the current estimat of the correspondence, the transformation may be

estimated and used to update the correspondence.

Transformations used in RPM can be classified into two categories: non-parametric

and parametric. The non-parametric transformation is the one where the geometric

deformation is not any parametric mapping functions, such as elastic, fluid and diffu-

sive deformation field. Generally, geometric constraints are needed to estimate the

non-parameter transformations. Ma et al.[8] used a non-parametric geometrical map-

ping to formulate the point matching problem as robust vector field interpolation,

which took the advantage of regularization the vector field when nonparametric geo-

metric constraint is required. Although point set matching algorithms with non-

parametric transformation lead to a globally smooth dense deformation field, they can-

not preserve topology of the deformed field.

The parametric transformation is the one where the geometric deformation is repre-

sented as parametric mapping functions, such as thin-plate splines (TPS), radial basis

function based and affine transformations. Chui et al. [4] proposed the TPS-RPM algo-

rithm using TPS to map the source point set to the target point set. Wang et al. [7]

chose the TPS as the non-rigid deformation function to achieve group-wise registration

of a set of shapes represented by unlabelled point-sets. Jian et al. [9] employed the TPS

and the Gaussian radial basis functions respectively to implement three different cost

functions used in RPM. Lian et al. [10] applied linear transformation in RPM and

reduced the energy function of RPM to a concave function with very few non-rigid

terms.

However, whether non-parametric or parametric RPM, the majority of the existing

RPM algorithms are asymmetric, that is, the changes measured from transformations

are dependent of the order in which the images are registered. When interchanging

the order of register images, the RPM algorithm cannot estimate the inverse transfor-

mation. Asymmetry problem of registration algorithms lead to biased results when sta-

tistical analysis is performed after registration [11]. In order to tackle the asymmetric

problem in image registration, symmetric algorithms and inverse consistent algorithms

are proposed. Symmetric algorithms optimize cost functions without explicitly
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penalizing asymmetry. They construct symmetric cost functions by estimating one

transformation from one image to another, or construct ordinary cost function by esti-

mating bidirectional transformations to map two images to a common domain using

iterative method [12-22]. Bondar et al. [12] imposed a symmetry constraint to TPS-

RPM by evaluating the correspondence matrix based on the forward and the backward

transformations, but the transformation used in TPS-RPM still is unidirectional.

Bhagalia et al. [16] introduced a bi-directionality term to the RPM objective function,

their aim is to reduce the mapping errors in both forward and backward directions for

points only, instead of enforcing the forward and the backward transformation to be

inverse to each other.

Alternatively, inverse consistent algorithms introduce consistency constraints to the

cost function and estimate the forward and backward transformations at the same time

[23-32]. Consistency of the forward and backward transformations constrains the for-

ward and backward transformations to be inverses to each other, which ensures that the

correspondence produced by the forward transformation is consistent with the corre-

spondence produced by the backward transformation. The idea of inverse consistent

image registration is first proposed by Christensen et al. [23], in which inverse consis-

tency constraint introduced and added to the matching criteria of images. Johnson et al.

[24] developed the idea of Christensen and other authors. They proposed the Consistent

Landmark Thin-Plate Spline (CLTPS) registration algorithm to estimate the forward and

backward transformations between two images based on the correspondence of land-

marks. However, the correspondence of control points cannot be ensured during the

iterative procedure of the CLTPS algorithm. Furthermore, Christensen et al. [25]

employed Johnson et al.’s algorithm to track lung motion using CT images of multiple

breathing periods. He and others [26] concatenated a sequence of small deformation

transformations using Johnson et al.’s algorithm to estimate the forward and backward

large deformation transformations concurrently. Gholipour et al. [27] introduced the

inverse consistency to a cost function based on a parametric free-form deformation

model with a regular grid of control points. Algorithms in [23-27] are based on a para-

meterized function model. On the other hand, the consistency constraints are also intro-

duced into the registration algorithms based on the dense non-parametric model. Zhang

et al. [28] employed consistency constraints in a variational framework for multi-modal

images registration. Leow et al. [29] only solved the forward transformation by directly

modelling the backward transformation using the inverse of the forward transformation

in unbiased MRI registration. They employed the symmetrizing Kullback-Leibler(KL)

distance between the identity map and the transformation, and showed that symmetriz-

ing KL distance is equivalent to considering both the forward and backward transforma-

tions in image registration. Tao et al. [30] implemented a symmetric and inverse

consistent diffeomorphic registration algorithm by avoiding explicit calculation of the

inverse deformation. The inverse consistent registration algorithms produce the kind of

deformation results that maintain the neighbourhood relationship and present more bio-

logical meaning. They produce better correspondence between medical images and

smoother displacement fields compared with unidirectional registration algorithms.

The main focus of the paper is to estimate the inverse consistent parametric trans-

formations in RPM. The TPS is the most commonly used parametric transformation

in RPM. Although TPS produces a smooth transformation from one image to another,
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it does not define a consistent correspondence between the two images except at the

location of control points [24]. Correspondingly, the transformation solved by the

TPS-RPM is unidirectional, that is, the forward and the backward transformations can-

not be ensured to be inverted to each other, and the correspondence defined by the

forward transformation is different from the correspondence defined by the backward

transformation in TPS-RPM.

Presently, to the best of our knowledge, there is no an inverse consistent registration

method that can find the forward and backward transformation between two images

by matching the sets of points of two images. In this paper, we present an inverse con-

sistent registration algorithm based on robust point matching. The main contributions

of this paper as follow. Firstly, we introduce inverse consistency constraint in the RPM

cost function, and estimate the forward and backward transformations for two sets of

point simultaneously using modified CLTPS. We modify the CLTPS algorithm to

improve accuracy of point-to-point mapping in consistent transformations. Secondly,

the fuzzy correspondence relationships between points are estimated based on both

the forward and backward transformations. Image similarity is also incorporated to the

corresponding relationship between points in order to reduce the mismatch of points.

An earlier version of this article was published in the IEEE International Conference

on Bioinformatics and Biomedicine (BIBM) hold on 18-21 December 2013 [31] and

the sections about consistent robust point matching are from that article. In this

paper, we introduce the regularized TPS to preserve the topology of the deformation

fields, and estimate the forward and backward transformations during the complete

iterative process of point matching, instead of at the end of the iterative process. We

further introduce the modified consistent landmark thin-plate spline registration to the

complete iterative process of robust point matching. The convergence of our algorithm

is demonstrated by experiments. Additionally, we correct the experiment results of

RPM in [31] and conduct some new experiments to further compare the performance

of inverse consistent RPM using CLTPS in results.

Methods
TPS-RPM review

We first review the mathematical framework of TPS-RPM proposed by Chui et al.

[4]. Given the source point-set X = {xi, i = 1, 2, . . . , K} and the target point-set

Y = {yj , j = 1, 2, . . . , N} in a region Ω, the goal of TPS-RPM is to find the optimal

transformation h : Ω ® Ω that maps the source point-set X to the target point-set

Y , as well as estimating the corresponding relationship between X and Y . In TPS-

RPM, TPS is employed to model the transformation with parameters (a, W), which

maps points in X as,

h(xi; a,W) = a · xi +
K∑
j=1

wj · φ(rij), (1)

where a and W are affine transform matrix and warp coefficient matrix respectively,

wj is an element of matrix W, rij = ||xi − xj|| is the distance norm between point xi
and xj , j(rij) is the basis function of TPS.

A fuzzy correspondence matrix M with dimension (K + 1) × (N + 1) is defined to

describe the correspondence between points. Since the one-to-one correspondence
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relationship between point sets X and Y will probably not always exist, outlier point is

defined as corresponding point of the isolated point. Therefore, each row and each col-

umn of matrix M has an extra outlier point. The fuzzy correspondence of point xi and

yj is defined as follows:

mij =
1
T
e

−||yj − h(xi)||
2T , (2)

where T is the temperature in the anneal procedure of TPS-RPM. The fuzzy corre-

spondence matrix is subject to
∑K+1

i=1
mij = 1 for j ∈ {1, 2, . . . , N},

∑N+1

j=1
mij = 1 for

i ∈ {1, 2, . . . , K}, and mij ∈ [0, 1]. The nearer the distance between the mapped xi
and yj is, the more likely a corresponding relationship exists between xi and yj .

RPM employed soft assign and deterministic annealing technique to estimate the fuzzy

correspondence matrix M and the transformation h simultaneously that minimize the

following cost function:

E(M, a,W) =
K∑
i=1

N∑
j=1

mij
∥∥yj − h(xi; a,W)

∥∥2 + λ‖Lh‖2

+T
K∑
i=1

N∑
j=1

mij logmij−ζ
K∑
i=1

N∑
j=1

mij,
(3)

subject to
∑K+1

i=1
mij = 1 for j ∈ {1, 2, . . . , N},

∑N+1

j=1
mij = 1 for i ∈ {1, 2, . . . , K},

and mij ∈ [0, 1]. Here, h is the transformation maps two point-sets with components

hd, d = 1, . . . , D, where D is the dimension of Ω. L is the linear elastic operator, and

||Lh||2 is used to measure the smoothness of the transformation h, i.e.

||Lh||2 =
D∑

d=1α1

∑
+···+αD=2

2!
α1!...αD!

∫
RD

(
∂2hd

∂uα1
1 . . . ∂uαD

D
)
2∏

j

duj (4)

The cost function is derived from a statistical physics model. The term∑K

i=1

∑N

j=1
mij logmij is a barrier function, which is used to push the minimum of the

cost function away from the discrete points. The temperature T contorls the degree of

convexity of the cost function [3]. When T is sufficiently small, the cost function is

ensured to be convex. l and ζ are regularization parameters. In the TPS-RPM algo-

rithm, Expectation-maximization (EM) algorithm is adopted to solve M and h itera-

tively, the detailed process can be found in literature [4].

When TPS-RPM is used to register the source image I and target image J , the source

point set X and the target point set Y are extracted from I and J respectively. Next, TPS-

RPM is employed to estimate the forward transformation h : X ® Y , which is the trans-

formation to map the source image I to the target image J so that I(h(x)) = J . When

image J is registered to image I, the backward transformation g : Y ® X maps the image

J to image I so that J (g(x)) = I. As previously mentioned, it is required that the forward

transformation and the backward transformation are inversely consistent, i.e. g ○ h = id

and h ○ g = id, where id is the identity map, to ensure the correspondence between the
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two images to be consistent. However, the forward transformation h and the backward

transformation g is not dependent to each other for TPS-RPM, since TPS is an unidirec-

tional function which results in a non-consistent correspondence between the two

images except at the control points, that is, g ○ h ≠ id, h ○ g ≠ id and g ○ h ≠ h ○ g.

Furthermore, the value of the fuzzy correspondence matrix M is computed based on the

mapping errors in the forward transformation only, the mapping errors from Y to X will

not be penalized, which leads to a bias matching result.

Inverse consistent robust point matching

Firstly, we introduce several notations used in this paper. The forward transformation

from the source point set X to the target point set Y is denoted as h(x), the displace-

ment field is u(x) = h(x) − x; the backward transformation from Y to X is denoted as g

(x), the displacement field is w(x) = g(x) − x. The inverse of the forward transformation

is h−1, the corresponding displacement field is ũ(x) = h−1(x) − x, and the inverse of the

backward transformation is g−1, the corresponding displacement field is

w̃(x) = g−1(x) − x. An inverse consistent registration is required to satisfy g ○ h = id

and h ○ g = id. In other words, the forward and backward transformations estimated

by an inverse consistent registration should satisfy g = h−1 and h = g−1 in the region Ω.

Johnson et al. [24] defined the inverse consistency constraint as ||h − g−1||2 + ||g − h
−1||2, which makes sure that the function of forward transformation is similar with the

inverse function of backward transformation. Correspondingly, the function of back-

ward transformation is as similar with the inverse function of forward transformation

as possible. We impose the inverse consistency constraint on the RPM optimization

problem by minimizing the cost function given by

E(M, a,W) =
K∑
i=1

N∑
j=1

mij
∥∥yj − h(xi)

∥∥2 + N∑
j=1

K∑
i=1

mji
∥∥xj − g(yi)

∥∥2
+λ(||Lh||2 + ||Lg||2) + T

K∑
i=1

N∑
j=1

mij logmij

−ζ
K∑
i=1

N∑
j=1

mij + χ(||h − g−1||2 + ||g − h−1||2).

(5)

In (5), the mapping errors between two point sets are extended as the combination

of distance between the target point and the mapped position of the source point

using the forward transformation, and the distance between the source point and the

mapped position of the target point using the backward transformation, instead of

only using the forward mapping errors. Both the smoothness of the forward and back-

ward transformations ||Lh||2 + ||Lg||2 are included in the cost function. Χ is the

weighting parameters to make a trade-off between the inverse consistent error and

other terms.

The goal of the inverse consistent robust point matching is to estimate the inversely

consistent forward and backward transformations for two sets of points concurrently,

as well as making clear the correspondence between X and Y bidirectionally. The cor-

respondence matrix in traditional RPM is only based on the unidirectional transforma-

tion between the target point set and the source point set, while the value of

correspondence mij for two points in our algorithm is inversely proportional to the

mapping errors of points bi-directionally, i.e.
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mij =
1
T
e

− (||yj − h(xi)|| + ||xi − g(yj)||
)

2T .
(6)

Furthermore, to register images, the similarity of local image is introduced to the

correspondence as,

mij =
1
T
e

− (||yj − h(xi)|| + ||xi − g(yj)||
)

2T e

−(simh(J, yj, I, xi)
2 + simg(I, xi, J, yj)

2)

2Ts ,

simh(J, yj, I, xi) = 1 − corr(J(yj), I(h(xi))),

simg(I, xi, J, yj) = 1 − corr(J(g(yj)), I(xi)),

(7)

where, I(xi) and J (yj ) are two local regions centred at xi in image I and yj in image J

. I(h(x)) and J (g(x)) are deformed images of I and J using the forward transformation

and the backward transformation respectively. corr is the correlation coefficient used

to measure the similarity between two local regions. Ts is the temperature parameters

of image similarity. By introducing image information to the fuzzy correspondence

matrix, improvement of image matching is achieved for the inverse consistent RPM.

To find M, h and g that used to optimize formula (5), we still use the iterative strat-

egy proposed in [4]. The iterative process includes the E step to calculate the fuzzy

correspondence matrix according to the current estimated forward and backward

transformations. Next, it performs the M step to estimate the forward and backward

transformations on the basis of the current estimated fuzzy correspondence matrix. By

dropping the terms independent of h and g, it is needed to minimize the following

objective function:

Ec(h, g) =
K∑
i=1

∥∥vi − h(xi)
∥∥2 + N∑

j=1

∥∥zj − g(yj)
∥∥2 + λ(||Lh||2 + ||Lg||2)

+χ(||h − g−1||2 + ||g − h−1||2),
s.t. h(xi) = vi, g(yj) = zj,

(8)

where vi =
∑N

j=1
mijyj, i = 1, 2, . . . , K and zj =

∑K

i=1
mijxi, i = 1, 2, . . . , N are the

virtual points computed in the forward and backward directions respectively. More-

over, vi is expected to be corresponding to xi, and zj is expected to be corresponding

to yj also. vi and zj are held fixed during the procedure of the M step. Then, the opti-

mization problem is to find the optimal forward and backward transformations h and

g given four point sets {xi}, {yj}, {vi} and {zj}, where {xi} are corresponding to {vi}, and

{yj} is corresponding to {zj}. The iterative process continuously alternates the E step

with the M step until it converges. Next, we will discuss how to calculate transforma-

tions h and g at the same time by optimizing Ec(h, g).

Modified consistent landmark thin-plate spline registration

Given two point sets with known correspondence relationship, the Consistent Land-

mark Thin-Plate Spline (CLTPS) registration algorithm [24] was originally proposed to

solve the inversely consistent transformations between these two point sets. During the

procedure of CLTPS, only two point sets are used to estimate the forward and back-

ward transformations simultaneously. However, there are four point sets {xi}, {yj}, {vi}

and {zj} in RPM. Based on the correspondence between {xi} and {vi}, and the corre-

spondence between {yj} and {zj}, an intuitive approach to estimate the forward
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transformation h is to let {xi} be the source point set and {vi} be the target point set.

Conversely, let {yj} be the source point set and {zj} be the target point set to estimate

the backward transformation g. Details of CLTPS can be referred in [24].

However, there several existed problems in CLTPS: (1) the mapped positions of con-

trol points are oscillated near their target positions, instead of mapping exactly to the

target positions [31]; (2) topology of the forward and backward transformations cannot

be ensured to be preserved.

Firstly, there is a minor oscillation problem in CLTPS algorithm. In CLTPS, the for-

ward and backward displacements are updated iteratively using the temporary forward

and temporary backward transformations f1(x) and f2(x), where f1(x) is estimated by

considering the current mapped position of {xi} and {vi} as the source and target con-

trol point sets respectively, and f2(x) is estimated by considering the current mapped

position of {yj} and {zj} as the source and target control point sets respectively. How-

ever, in CLPTS, xi can be mapped to a location near to vi, but cannot be mapped to vi
exactly. The same goes for yj also. To tackle the oscillation problem of CLTPS, we pro-

pose a new approach to update the forward and backward displacements iteratively.

Denote ri and sj as the temporary mapped positions of xi and yj respectively. After the

kth iteration, xi is mapped to ri using the current forward displacement uk(x), and yj is

mapped to sj using the current backward displacement wk(x). We update the forward

and backward displacements iteratively as follows:

uk+1(x) = uk(x) + αu∗
k(x), u∗

k(x) = ut(uk(x) + x), ut(x) = f1(x) − x,

wk+1(x) = wk(x) + αw∗
k(x), w∗

k(x) = wt(wk(x) + x), wt(x) = f2(x) − x.
(9)

We use the forward displacement to demonstrate the improvement of the update.

a = 1 is assumed so as to simplify the analysis, then, at the k + 1th iteration, the dis-

placement of xi is,

uk+1(xi) = uk(xi) + ut(uk(xi) + xi)
= uk(xi) + ut(ri)
= uk(xi) + f1(ri) − ri
= ri − xi + vi − ri
= vi − xi.

(10)

It implies that xi is mapped to vi exactly using our approach. Similarly, we can prove

that yj is mapped exactly to zj using the backward displacement.

Secondly, the forward and backward transformations estimated by CLTPS cannot be

ensured to be topology-preserving, since the temporary transformations f1(x) and f2(x)

are estimated by TPS, which does not enforce one-to-one mapping. Topology preserva-

tion is an important property of a deformation, which ensures that connected struc-

tures remain connected, and that the neighborhood relationships between structures

are maintained before and after warping [33]. In image registration, topology preserva-

tion of deformation fields can prevent disappearing of existing structures or introdu-

cing new artificial structures after image warping. However, transformations estimated

by TPS are not constrained to be topology-preserving as they are motivated by small

deformation kinematics [34], and they do not allow for large deformations that main-

tain the topology of the template [35]. To preserve the topology of the deformation

field, the regularized TPS proposed by Chui et al. [4] is employed to estimate the

temporary forward transformation f1(x) and the temporary backward transformation
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f2(x), which preserves topology of deformation fields better than TPS. As shown in

Figure 1, the source points (circle points) are expected to be mapped to the target

points (star points). The regularized TPS produces a smooth and topology-preserving

deformation field, while TPS makes the deformation field folding, which is non-topol-

ogy-preserving. The parameter used in the regularization procedure is decreased gra-

dually to preserve the correspondence between points. Moreover, h and g are required

to be topology-preserving, so, after each adjustment of u(x) and w(x), the Jacobian

values of h and g are computed, when either of the minimum Jacobian values of h and

g is negative, the iteration is stop.

Finally, ri and sj are required to be updated as the newest mapped positions of xi and

yj for each iteration. So, after the update of the forward and backward transformations,

ri and sj are updated correspondingly using the latest transformations respectively.

More importantly, ri is closer and closer to vi with the increase in the number of itera-

tions, rather than swinging nearby vi as CLTPS. Similarly, sj is closer and closer to zj in

the iteration process. All these ensures that xi is mapped exactly to its target position

vi, and yj is mapped exactly to its target position zj using the modified consistent land-

mark thin-plate spline registration algorithm.

Details of the modified consistent landmark thin-plate spline registration are

described in algorithm 1.

Algorithm 1 Modified Consistent Landmark Thin-Plate Spline (CLTPS) registration

algorithm using four points sets.

1: Let ri = xi, sj = yj ; u(x) = 0, w(x) = 0, the steps a and b, the mapping error thresh-

old ξ of control point, and the maximum number of iteration miter, k = 1.

2: Regularized TPS is performed to estimate the temporary forward transformation f1
(x) based on the correspondence between ri and vi, and the temporary backward trans-

formation f2(x) based on the correspondence between sj and zj.

3: Update the displacements,

u(x) = u(x) + au*(x), u*(x) = ut(u(x) + x), ut(x) = f1(x) − x,

w(x) = w(x) + aw*(x), w*(x) = wt(w(x) + x), wt(x) = f2(x) − x.

Figure 1 Grid transformation of TPS and regularized TPS. (a) is a grid transformation using the regularized
TPS. Circle points are source points and star points are target points, the line between two points represents
the correspondence of points; (b) is a grid transformation using TPS, it can be seen that folding occurs in the
deformation field, which implies that the deformation field is not topology-preserving.
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4: Compute the Jacobian values of the forward and backward transformations, if the

minimum Jacobian values of the forward or backward transformations are negative, the

iteration is terminated.

5: Get h−1(x), the inverse function of forward transformation and g−1(x), the inverse

function of backward transformation.

6: Update displacement field of forward and backward transformation. u(x) = u(x) −

b[u(x) − g−1(x) + x], meanwhile, w(x) = w(x) − b[w(x) − h−1(x) + x].

7: ri and sj are updated as ri = xi + u(xi), sj = yj + w(yj).

8: Check whether the termination condition is met. If k > miter or |u(xi) − (vi − xi)| < ξ

or |w(yj) − (zj − yj)| < ξ, the iteration is terminated; otherwise, k = k + 1, go to step 2.

Results
In this section, we will evaluate the performance of inverse consistent RPM algorithm

with simulated data and medical images, and also illustrate the efficacy of the image

information in estimating the correspondence of points for image registration.

Synthetic data

Four synthetic point sets shown in Figure 2 are used to reveal the performance of the

inverse consistent RPM algorithm. We will match the source point set (red pluses) to

the target point set (blue pluses). We perform TPS-RPM (RPM), inverse consistent

RPM with modified CLTPS (MCRPM), and inverse consistent RPM with CLTPS

(CRPM) alternatively.

To determine the behaviours of the forward and backward transformations, a uni-

form grid in size of 100 × 100 is employed to be the deformation field of transforma-

tions. The inverse consistent error (ICE) of the forward and backward transformations

is evaluated by summing the forward consistency error and the backward consistency

error, ICE = ||h − g−1|| + ||g − h−1||. Considering that the transformation used in

RPM is uni-directional, we perform RPM in the forward and backward directions

simultaneously to estimate h and g respectively. The weighted mapping errors between

the target points and mapped source points using the forward transformation, and the

source points and mapped target points using the backward transformation are used to

define the distance error (DE), DE =
∑

i

∑
j
mij(||yj − h(xi)|| + ||xi − g(yj)||).

In order to compare the performance of MCRPM, CRPM and RPM, same iteration num-

ber is used for three algorithms, the results are shown in Figure 2 (there are some errors in

the experiment results of RPM in [31], we correct these errors here). It can be seen that

the forward and backward registration results using MCRPM are similar to those using

RPM, which implies that the forward registration accuracy of MCRPM is equivalent to that

of RPM. Furthermore, both the forward and backward registration accuracy using

MCRPM are satisfied. Especially, it is noted that the backward registration error using

RPM is not better than that using MCRPM for data 1 and data 2, which demonstrate the

advantages of the MCRPM in the bidirectional registration. The bidirectional registration

error using CRPM is large for the first and the third point sets, since there is a significant

deformation between these two point sets, and the oscillation problem leads the mapped

positions of points are not corresponding to their target positions obviously in these cases.

Evaluation results are shown in Table 1. It can be seen the inverse consistent errors

of MCRPM are smaller than CRPM and RPM. The ICE of CRPM is larger significantly
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than others for data 1, data 2 and data 3. The reason is that the transformation esti-

mated by CRPM cannot map the source points to the expected positions and vice

versa because of the oscillation problem. It further demonstrates the improvement of

MCRPM also. Especially, the topology of transformations cannot be preserved for

RPM until the end of the iteration for the first data. Figure 3 shows ICE and DE for

four data using three algorithms respectively. Noted that the non-topology-preservation

of transformation occurs for the first and the fourth data using RPM, which is caused

by the large deformation between point sets. The red arrows label the situation of

topology non-preservation of transformations. Moreover, the distance errors of

Figure 2 Registration results of synthetic point sets registration. From left to right: original points,
registered results using MCRPM, CRPM and RPM respectively; In the first column, blue points are target
points, red points are source points; In the other three column, blue points are forward registration results,
red points are backward registration results, the symbol ‘+’ represents target point sets, the symbol ‘o’
represents the mapped source point sets.

Table 1 Inverse consistent errors of MCRPM, CRPM and RPM (’-’ denotes the topology of
transformation is not preserved)

Data MCRPM CRPM RPM

1 0.0150 0.2430 -

2 0.0157 0.0841 0.0423

3 0.0395 0.1538 0.0706

4 0.0137 0.0349 0.0423
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MCRPM and CRPM are similar to that of RPM, and they maintain a downward trend

as whole, which demonstrates the convergence of MCRPM and CRPM.

The deformed fields of the forward and backward transformations produced by

MCRPM, CRPM and RPM for four synthetic data are shown in Figure 4, respectively.

The expanded grids represent expansion of a deformation field, and contracted grids

represent contractions of a deformation field. The areas marked by green cross are the

topology non-preserving fields. Notice that MCRPM algorithm results in relatively uni-

form grids in most of the deformed field, compared with that using CRPM and RPM

algorithms. Moreover, MCRPM and CRPM have more smooth deformation fields com-

pared with RPM due to the inverse consistent constraints. Especially, the forward and

backward transformations produced by RPM cannot preserve topology and lead to arti-

facts such as “folding” and “tearing” (marked as the green points) of the deformed

fields for data 1. These deformed fields show the advantage of using inversely consis-

tent transformations as opposed to using unidirectional transformations.

Small deformation registration of brain Images

The second example is a consistent image registration, which is used to demonstrate

the performance of our approach for registration when the intensity information of

images is included. In Figure 5, 6, we show the results of matching two brain images

(each of size 256 × 256). We use two images shown in Figure 5(a) and Figure 6(a) as

the target images, and deform the target images manually to get source images, shown

in Figure 5(e) and Figure 6(e). These test images are used to evaluate the performance

of our algorithm for image registration with small deformation. We will register the

source images to the target images, and register the target images to the source images

simultaneously. We extract the points from source images and target images respec-

tively, and then perform registration using MCRPM, CRPM and RPM alternatively.

The optimal registration results of three algorithms are selected to compare registra-

tion accuracy of these algorithms. The mean square deviation (MSD) between the tar-

get image and mapped source image using the forward transformation, and the source

image and mapped target image using the backward transformation is defined as,

MSD =

√
1
Nx

∑
x

[
J(x) − I(h(x))

]2 + √
1
Nx

∑
x

[
I(x) − J(g(x))

]2, where Nx is the number

of pixels in images.

Figure 3 The inverse consistent error and the distance error for four synthetic point sets. The red
arrows mark the situation of topology non-preservation of transformations. From left to right is data 1 to 4.
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Figure 4 The deformed fields of four synthetic point sets. (a)-(d) are the forward and backward
deformed fields for data 1 to data 4 respectively. The up rows in (a)-(d) are the forward deformed fields,
and the bottom rows in (a)-(d) are the backward deformed fields. From left to right: MCRPM, CRPM and
RPM. The area marked by green cross is the topology non-preserving field.
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Registration results are shown in Figure 5(b)-(d), Figure 5 (f)-(h), Figure 6(b)-(d) and

Figure 6 (f)-(h). Here, the parameters a = 0.5, b = 0.2 are used for the proposed algo-

rithm. It can be seen that RPM is unable to match the inner anatomy of the brain

(Figure 5(d) and Figure 5(h)), since the point sets cannot cover the tiny anatomical

structure totally and regions without control points are deformed unmanageably using

Figure 5 Image registration results of brain images. (a):The source image. (b)-(d):The difference
between the registered source image and the target image using MCRPM, CRPM and RPM respectively.
(e): The target image. (f) - (h): The difference between the registered target image and the source image
using MCRPM, CRPM and RPM respectively.

Figure 6 Image registration results of brain images. (a):The source image. (b)-(d):The difference
between the registered source image and the target image using MCRPM, CRPM and RPM respectively.
(e): The target image. (f) - (h): The difference between the registered target image and the source image
using MCRPM, CRPM and RPM respectively.
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the unidirectional transformation estimated by RPM. It is noted that MCRPM and

CRPM register the tiny anatomy of the brain better due to the inversely consistent

transformations. Moreover, MCRPM and CRPM matches the outside contour of the

brain better than RPM slightly, since RPM does not considering image information

similarity between points, which is in the most obvious in matching the outside con-

tours. The MSD for these two image registrations by the three algorithms are shown

in Figure 7 respectively. Again, MCRPM achieves the lower registration errors in same

iteration number. Also, it is noted that the MSD for registration results using MCRPM

and CRPM decreases significantly, which is caused by introducing image information

in the estimation of point correspondences.

MSD and inverse consistent error of the optimal registered results using MCRPM,

CRPM and RPM are listed in Table 2. It can be seen that MCRPM achieved the opti-

mal results in respect to both the MSD and the inverse consistent error. It is observed

that the inverse consistent error using MCRPM and CRPM are better than that using

RPM significantly, which demonstrate the advantages of inverse consistent transforma-

tions used in the image registration.

To further analyse the smoothness of the forward and backward transformations, it

is needed to examine the determinant of the Jacobian matrix of the deformation

field. The determinates of the Jacobian matrix of h and the Jacobian matrix of g are

denoted as Det(h) and Det(g) respectively. The determinant of the Jacobian matrix

close to 1 indicates less expansion and contractions at a pixel, which means the

deformation at the point is less; the more pixels whose Jacobian determinant values

are close to 1 are, the less the deformation field is. To quantify the distance between

the deformation and the identity map, |Det(h) − 1| and |Det(g) − 1| are calculated

and listed in Table 3. Noted that for the small deformation (Figure 5 and Figure 6),

the mean values of |Det(h) − 1| and |Det(g) − 1| for MCRPM and CRPM are less

than that for RPM, which means the forward and backward transformations esti-

mated by MCRPM and CRPM are smooth for small deformation.

Lung Slices

We evaluate the accuracy of registration on thoracic images, which are provided by

DIR-lab (http://www.DIR-lab.com) and consist of 10 cases, each one having a thoracic

Figure 7 Accuracy of the forward and the backward image registration. (a) and (b) shows the mean
square deviation of the registration results of Figure 5 and Figure 6 respectively.
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image at with six phases. We extract a slice from the image with the maximum inhale

phase as the source image, and the corresponding slice with the maximum exhale

phase as the target image. We utilize the slices extracted from 10 cases of thoracic

images from DIR-lab to compare registration results of different algorithms as demon-

strated in Figure 8. The source and target image are shown in Figure 8(a) and (b), they

are slices of a lung with the maximum inhale phase and the maximum exhale phase.

Bronchi in the source image might not exist in the target image and vice versa because

of the respiratory motion. Correspondingly, there are many outliers in both point sets

extracted from the source image and the target image. This experiment is used to

demonstrate the performance of inverse consistent registration when many outliers

included in the point sets. Images in Figure 8(c) show the forward registered results by

MCRPM, CRPM and RPM respectively. Figure 8 (f) shows the registered images in the

backward direction by three algorithms, respectively. Noted in both directions, the

registered results by MCRPM and CRPM match their template images better than

RPM. Especially, the improvement of the registration accuracy at the contours of the

lung images can be observed in Figure 8 (d) and (g) also. It demonstrates that our

algorithm performs better than RPM when many outliers exist in both point sets

simultaneously, because the inherent structure of RPM algorithm does not efficiently

handle outliers in this case [5]. Figure 8 (e) and (h) are the forward and backward grid

transformations by three algorithms. It can be seen that the transformations estimated

by MCRPM and CRPM are smoother than by RPM.

To illustrate the registration accuracy of all ten cases, Figure 9(a) shows the MSD of

registration results using three algorithms respectively. The MSD measure of ten cases

illustrates that MCRPM and CRPM achieve the lower registration errors. It is noted

that the registration errors of MCRPM are less than that of CRPM, which is due to

the improvement of mapping accuracy of points. The inverse consistent errors of ten

registration results shown in Figure 9(b) show that whether using the MCRPM or the

CRPM, the inverse consistent errors are smaller than that using RPM. Furthermore,

MCRPM is better than CRPM in aspect of inverse consistent error also.

Table 4 lists the Jacobian value of the forward and backward transformations for

registration of lung slices. It is observed that the mean values of |Det(h) − 1| and

|Det(g) − 1| for MCRPM and CRPM are larger than that for RPM for many cases.

The reason is that the deformations of lung slices registration are non-rigid, it

Table 2 The mean square deviation and mean inverse consistent error of registration
results of Figure 5 and Figure 6

MSD ICE

MCRPM CRPM RPM MCRPM CRPM RPM

Figure 5 22.98 23.76 29.63 0.0092 0.0107 0.0242

Figure 6 26.23 31.01 54.13 0.0054 0.0074 0.0233

Table 3 The Jacobian values of the forward and backward transformations of Figure5
and Figure 6

|Det(h) − 1| |Det(g) − 1|

MCRPM CRPM RPM MCRPM CRPM RPM

Figure 5 0.0098 0.0150 0.0342 0.0201 0.0167 0.0365

Figure 6 0.0163 0.0236 0.0920 0.0198 0.0264 0.0871
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Figure 8 Registration of lung slices. (a) and (b) are the source and target images, they are slices with
maximum inhale and maximum exhale phases respectively. (c) is the forward deformed results by MCRPM,
CRPM and RPM respectively. Corresponding to (c), (d) shows the difference between the source image and
the forward deformed results, and (e) is the forward grid transformation. (f) is the backward deformed
results by MCRPM, CRPM and RPM respectively. Corresponding to (f), (g) shows the difference between the
target image and the backward deformed results, and (h) is the backward grid transformation.
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requires large expansion or contraction deformations to match each other. So it is

reasonable that large or small values of Det(h) and Det(g) are observed.

Individual brain images

The fourth experiment contains the same slices extracted from 10 subjects of Brain

Web. This experiment is used to demonstrate the performance of our approach for

inter-subject image registration when the deformations of images are large. One sub-

ject serves as the target image and another image is aligned to the target image. Regis-

tration described as subject 1-2 means that subject 1 and subject 2 are used for

evaluation.

Figure 9 Lung slice registered results. (a) and (b) show the MSD and the inverse consistent errors for
ten lung slices registration using the MCRPM, CRPM, and RPM respectively.

Table 4 The Jacobian values of the forward and backward transformations

|Det(h) − 1| |Det(g) − 1|

Case MCRPM CRPM RPM MCRPM CRPM RPM

1 0.1159 0.0986 0.1275 0.1324 0.0991 0.1357

2 0.1104 0.0903 0.1026 0.1186 0.0906 0.0896

3 0.1336 0.1435 0.1553 0.1544 0.1639 0.1540

4 0.2086 0.2157 0.2593 0.2351 0.2349 0.2028

5 0.1640 0.1338 0.2396 0.1713 0.1316 0.2863

6 0.1492 0.1716 0.1947 0.1709 0.1771 0.1494

7 0.1034 0.1185 0.1467 0.1054 0.1137 0.0711

8 0.2659 0.2083 0.2259 0.3125 0.2356 0.2913

9 0.0997 0.1125 0.0791 0.1096 0.1261 0.0808

10 0.1445 0.1332 0.2197 0.1290 0.1065 0.1433
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To illustrate the proposed algorithm, we demonstrate the registration results of sub-

ject5-6, where visually significant deformation is present. As seen in Figure 10(a) and (b),

both the MCRPM and CRPM produces a close match between the source image and the

target image. However, as seen in Figure 10(b), the RPM deforms the target image to the

source image by the backward transformation that is similar to an affine transformation.

The reason is that RPM provides more freedom for the affine transformation to avoid

unphysical reflection mappings [4]. If this constraint is not introduced, RPM will lead to

transformations with large bending energy and result in worse registration results. It

exactly demonstrates the advantage of introducing the inverse consistent transformations

to non-rigid image registration. Figure 10(c) and (d) illustrates that the Jacobian fields of

the forward and backward transformations estimated by three algorithms. It is noted that

the intensity pattern of the forward and backward Jacobian fields of the MCRPM and

CRPM are closely opposite of one another since MCRPM and CRPM produced inversely

consistent transformations, while the similar results cannot be observed in the forward

and backward Jacobian fields of RPM. The intensity pattern of the inverse consistent

errors of the forward and backward transformations are shown in Figure 10(e) and (f)

respectively. Obviously, the inverse consistent errors of MCRPM and CRPM are smaller

than that of RPM at almost every pixel location in the image domain. Note that there are

large regions of bright pixels in the backward deformation field of RPM, which implies

large inverse consistent errors occur in the backward transformation. MSD and ICE mea-

sures of nine registered results are shown in Figure 11. Again, MCRPM achieves the lest

registration error, and MCRPM and CRPM are better than RPM in respect of inverse con-

sistent error.

Furthermore, by collecting the Jacobian values from all pixels, Figure 12 shows the

histogram of Det(h) and Det(g). As Figure 12 shows, the peek position of Jacobian his-

togram by the RPM indicates that the deformation by RPM is mainly determined by

the affine transformation and the non-rigid deformation is weak. For the problem of

inter-subject registration, the deformation is mainly determined by non-rigid transfor-

mation rather than the affine transformation, so it indicates that the registration result

by the RPM is not satisfied. The distribution of Jacobian value implies that the trans-

formations for MCRPM and CRPM are non-rigid deformation mainly, which is in

accord with the deformation of inter-subject registration.

Conclusions
We proposed a consistent image registration approach by combining the RPM algo-

rithm and modified consistent landmark thin-plate spline algorithm together. It intro-

duced the forward and the backward transformations to the cost function of points

matching, and estimated the correspondence matrix based not only on bi-directional

transformations but also on the correlation of image content. The forward and back-

ward transformations were estimated during the complete iterative process of point

matching. The regularized TPS was introudced to our algorithm to produce topology-

preserving transformations for image registration with large deformation, and produce

smooth transformations for image registration with small deformation. The modified

consistent landmark thin-plate spline algorithm improved the correspondence between

points, and significantly reduced the inverse consistent error between the forward and

backward transformations. Experiment results demonstrated the convergence of our
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Figure 10 Individual brain slice registration example. (a) and (b) show the forward and backward
registered results for subject 5 and 6 using the MCRPM, CRPM, and RPM. From left to right: MCRPM, CRPM
and RPM. (c) and (d) show the visualization of the Jacobian maps of the forward and backward
deformations corresponding to (a) and (b). The bottom two rows (e) and (f) show the intensity pattern of
the magnitude and location of the forward and backward transformation inverse consistent errors using
three algorithms respectively.
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algorithm, and medical images registration results showed that our algorithm was

superior to RPM in aspect of intensity matching between images. A desired improve-

ment in our approach would be to reduce computational time to estimate the inversely

consistent transformations.
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Figure 11 Individual brain slice registered results. The first row (a) and the second row (b) show the
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