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Abstract

Background: Object detection in 3-D medical images is often necessary for
constraining a segmentation or registration task. It may be a task in its own right as
well, when instances of a structure, e.g. the lymph nodes, are searched. Problems
from occlusion, illumination and projection do not arise, making the problem simpler
than object detection in photographies. However, objects of interest are often not
well contrasted against the background. Influence from noise and other artifacts is
much stronger and shape and appearance may vary substantially within a class.

Methods: Deformable models capture the characteristic shape of an anatomic object
and use constrained deformation for hypothesing object boundaries in image
regions of low or non-existing contrast. Learning these constraints requires a large
sample data base. We show that training may be replaced by readily available user
knowledge defining a prototypical deformable part model. If structures have a strong
part-relationship, or if they may be found based on spatially related guiding
structures, or if the deformation is rather restricted, the supporting data information
suffices for solving the detection task. We use a finite element model to represent
anatomic variation by elastic deformation. Complex shape variation may be
represented by a hierarchical model with simpler part variation. The hierarchy may
be represented explicitly as a hierarchy of sub-shapes, or implicitly by a single
integrated model. Data support and model deformation of the complete model can
be represented by an energy term, serving as quality-of-fit function for object
detection.

Results: The model was applied to detection and segmentation tasks in various
medical applications in 2- and 3-D scenes. It has been shown that model fitting and
object detection can be carried out efficiently by a combination of a local and global
search strategy using models that are parameterized for the different tasks.

Conclusions: A part-based elastic model represents complex within-class object
variation without training. The hierarchy of parts may specify relationship to
neighboring anatomical objects in object detection or a part-decomposition of a
complex anatomic structure. The intuitive way to incorporate domain knowledge has
a high potential to serve as easily adaptable method to a wide range of different
detection tasks in medical image analysis.
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Background
Motivation

Although medical images provide insight into patient-specific human anatomy other-

wise not accessible, their interpretation still requires extensive expert knowledge to fill

the semantic gap between image data and depicted anatomy and/or function. Image

characteristics of the object-of-interest may be known but are often not unique.

Furthermore, noise, imaging or reconstruction artifacts alter the depicted content to a

much greater extent than for pictures such as photos. Anatomical objects are not

always contrasted well against each other and neighboring structures have similar

appearance. However, most of the data is 3-D. Change of shape and appearance due to

projection has not to be dealt with.

Still, detection and segmentation is possible if a suitable model completes missing

information and corrects measurement errors in the data. The premier effect of such

deficient information would be an incorrect delineation of the object’s boundary.

Hence, shape is the most important supplementary model information. Context infor-

mation about adjacent structures, as well as information about object and background

appearance may be added for discriminating among similar objects.

Developing a different method for each new detection or segmentation task is ineffi-

cient. Thus, a major challenge is to find a parameterizable representation that can be

adapted efficiently for finding different objects.

Object shape can be represented by sampling points on its boundary. If such model

is fitted to the data, boundary points of a model instance are registered with likely

boundary locations in the image (e.g., high gradient strength locations). If artifacts or

low contrast cause some model points not to have counter parts in the image, the

model instance predicts the local course of the boundary there. Visible shape parts

have to be sufficiently characteristic so that this prediction does not result in inaccep-

table errors.

Several problems have to be dealt with:

- The model has to include within-class variation of the structure of interest, while

inhibiting influences from between-class variation.

- A weight for combining data and model needs to be set appropriately.

- The search for object instances in the data has to deal with many local minima of

the corresponding optimization criterion.

Fusing shape model and image data requires a quality-of-fit (QoF) function where

supporting information from the data are represented by a term Eexternal, which is regu-

larized by a term Einternal, representing, in this case, deviation from the prototypical

shape model:

E = Einternal + λ · Eexternal (1)

This expression is found in many formulations of segmentation and detection tasks.

It may be interpreted as an energy balance where external influences from a potential

field generated by the data are counteracted by internal forces that represent domain

knowledge such as the shape of an object or just the smoothness of its boundary. The

parameter l weighs the reliability of these two kinds of information. The equation can
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also be interpreted as logarithm of the conditional probability given by a normal-

distributed likelihood function based on Eexternal and a normal-distributed a priori prob-

ability depending on Einternal. Here, l represents the ratio of variances of the two

distributions.

Equation (1) may be optimized by gradient descent. It requires that the model

instance is initialized sufficiently close to the optimum searched for. For global optimi-

zation, stochastic search techniques, e.g., the method by [1] may be used, which draws

randomly distributed initializations and selects the best fitting candidates based on (1).

With this paper, we present an elastically deformable model as representation for

shape and appearance. We argue that this model may be used efficiently for object

detection as it does represent shape variation and expected appearance for an object

class without requiring training (although training may improve performance). The

main reason for this lies in the fact that model information is represented by integrat-

ing simple deformable shapes in a part-based model that, depending on the task, either

represents object parts or guiding structures. We show that this model can be applied

to solve different detection and segmentation tasks in medical image analysis.

The remainder of the paper is structured as follows. We first present previous work

on models in object detection for medical images. We then present our elastic model,

its application to object detection and its extension to a part-based model. We con-

clude with a number of examples that show the different capabilities of applying the

model to detection and segmentation tasks.

Previous work

Extracting an object-of-interest from the image contradicts the usual assumption for

segmentation that segment characteristics are part of the data information. Extracting,

e.g., a liver from CT images may require separating it from gall bladder, stomach, and

feeding vessel. Depending on imaging modality and protocol the appearance of these

structures may be very similar and insufficient for separation.

Extraction may be simple for a human observer with necessary knowledge about

shape, appearance and location of the organ. In a computer-guided solution, a detec-

tion task has to be solved first, which supports the subsequent boundary delineation

task. The two tasks may be solved in parallel or sequentially. In the latter case, the

detection result constrains the subsequent segmentation. In the former case, a model

instance is expected to deform into the object that is searched for.

The information that is needed for detection and segmentation can be quite com-

plex. Necessary domain knowledge may be introduced at several stages of the process

and the “intelligence” of the solution lies in the construction of the process from its

sub-tasks (e.g., the kidney detection and segmentation scheme of [2]). Alternatively, a

model can be built that contains information of all aspects about the object necessary

for identification in the data including possible dependencies between different types

of information. Detection is then fitting a model to measured data (e.g., the application

of a shape and appearance model for detecting the left ventricle of the heart in MRI

[3]). We prefer the latter approach as it separates model description from the search

for model instances and may be adapted easier to a new detection task.

If detection precedes delineation, it localizes the object-of-interest. In this case, the

result locally constrains boundary delineation if the object is not sufficiently contrasted
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against adjacent structures. Localization may be interactive (e.g., seed points for region

growing [4], closed active contours [5], or starting points for live wire delineation [6]).

In this case, the detection result often includes little information with respect to object

boundary, since interaction costs are usually kept to a minimum. Hence, interactive

localization is most suitable if the boundary itself is well defined by the data and inter-

action is used to find the object among different structures with similar appearance.

Small artifacts such as noise can be accommodated by requiring smooth and closed

boundaries. If substantial parts of the boundary cannot be derived from data informa-

tion, they need to be added by interactive delineation of boundary parts.

Localization by matched filter methods such as vesselness filters [7], blobness [8],

template matching [9] and Hough transform [10] does not require interaction, except

possibly for specification of a relevancy threshold for a successful detection. These

methods are capable of finding multiple instances of an object. The filters predict the

(average) object shape and appearance which may then be used as prior for data-driven

segmentation, e.g., by graph cuts [11-13] or level sets [14,15]. The methods operate

with few parameters which usually can be found easily. Of course, it restricts shape

representation either to variable, but simple shapes (e.g., the vesselness filter) for which

intra-class variation can be described by few parameters, or to a representation by a

single average shape (e.g., the generalized Hough transform).

Representing acceptable shape variation of complex object shape is more difficult.

Unconstrained shape variation will cause the model to fit almost everywhere in the

image while an overly constrained shape will not fit well to the data. Active Shape

Models (ASM) and its many variants have found widespread use since their introduc-

tion in [16]. Shape is represented by coordinates of a set of labeled points. If appear-

ance variation shall be represented as well, it is given by intensity or texture variation

at these points. Variation is trained from correspondingly labeled test data. Influence

from rotation, translation and sometimes scaling has to be removed by Procrustes ana-

lysis [17]. Variation is assumed to be normal-distributed and highly correlated. Hence,

principal component analysis is used for de-correlation and information is reduced to

a few eigenmodes (modes of variation). The model enables a potentially arbitrarily

exact fitting of the missing boundary, as long as the visible part of the boundary suffi-

ciently constrains the variation of the missing part.

Training of such a point distribution model (PDM) can serve two purposes. It estimates

shape (and appearance) variation of the class of objects to be delineated and it restricts

shape variation. The success of PDMs for model-guided segmentation has been shown in

numerous publications (e.g., [5,18,19]). Often only few training samples - considering the

degrees of freedom of the untrained model - are needed for segmentation. The reason is

probably twofold. Firstly, within-class shape variation has much fewer degrees of freedom

than the model so that the true co-variance can be estimated from few samples. Secondly,

boundary delineation does not require exact estimates of intra-class variation anyway as

long as incorrectly estimated shape variation is corrected from boundary information in

the data.

Besides PDM, the Hough transform may be extended into a probabilistic shape

model as well [20]. However, compared to a PDM, its versatility is restricted since

appearance information is not part of the model and it is unclear how the trained

information may be used for subsequent boundary delineation.
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Since a shape model has not to be very accurate for boundary delineation, prototypical

variation has also been used for shape-supported boundary delineation. If detection is

not necessary (e.g. when tracking a heart shape in a 3d+time sequence), the necessary

shape information are properties such as closedness, smoothness and similarity of the

boundary between time frames. This has been used, e.g., in tracking the heart beat from

CT using an active surface based on a finite element model (FEM) to restrict boundary

variation between time steps [21]. This concept has been extended to an elastically

deforming shape model (e.g., the mass-spring model [22] or an FEM [23]). Such model

restricts organ variation to elastic deformation of a prototypical shape. This is particu-

larly simple for a homogeneous, linear-elastic FEM since only few parameters regulate

its stiffness. Defining such a prototype solves part of the optimization problem in detec-

tion as well, since - similar to active contour models - rather basic image information

can be embedded by forces acting on a model instance, locally attracting it to the object-

of-interest.

However, an elastic model provides just an approximation of intra-class shape varia-

tion. To some extent, either the delineation goal or the detection goal has to be sacri-

ficed if the shape of the object itself or its variability is complex. If stiffness

overestimates true shape variation, the model instance may adapt to the object bound-

ary given sufficiently reliable image information, but shape deformation may not be

used for object detection. If the shape variation is overconstrained it may be used for

object detection but will result in a poor segmentation of the object.

Instead of training complex shape variation, some of this variation can be efficiently

represented using part-based models. A shape is decomposed into simpler parts. Variation

is then that of the parts and that of part-relationships. In other applications, part-based

models have been successfully used for articulated object detection (e.g., detection of faces

and people [24], or pedestrian recognition [25]). Although part-relationships may be learnt

[26], an advantage is that the qualitative knowledge of a decomposition of an object into

parts is often readily available (e.g. the decomposition of the spine into a sequence of

vertebrae separated by disks). We successfully applied a combination of deformable mod-

els with a part-based representation for several object detection and boundary delineation

tasks in medical image analysis.

With this paper we describe how to use our part-based deformable model for object

detection and segmentation and illustrate the applicability to different tasks in medical

image analysis.

Methods
As stated above, variation represented by deformable models often does not have to be

exact. However, if it is to be specified by the user instead of being trained from sam-

ples, parameterization of the model should be intuitive. Representing the object as an

elastically deformable material meets this condition since most users have an under-

standing of how elasticity influences shape variability. Elastic models have been used in

medical image applications for quite some time (e.g., [27] for elastic registration),

although not often to restrict shape variation for detection tasks. We use this concept

to replace trained shape variation. It should be noted that we do not want to simulate

deformation behavior of an object (e.g., the deformation of the heart ventricles over

time). Elastic deformation is solely used to replace distribution estimates to restrict
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shape variation among objects of the same class. Since describing complex shape varia-

tion by few elasticity parameters may be too simple, we use deformable objects as

components of a part-based model. Relationships between parts are modeled by an

elastic superstructure.

Object detection consists of a local and a global part. Localized delineation lets a

model instance be attracted and deformed by image features. The global search is rea-

lized by repeatedly generating random initializations of model instances and selecting

the best fitting candidates. Fitting is defined according to equation (1) by a data term

that is regularized by shape deformation.

Finite Element Models (FEM)

We use FEMs to represent the deformable shape. A finite element model represents

linear-elastic deformation of a 2-D or 3-D object based on a discretization of the object

domain into finite elements e. Elements are generated from node locations that sample

the object domain. The number of nodes depends on the accuracy with which an

object is described. For a given object, the FEM is generated from a 2-D or 3-D repre-

sentation of the object’s shape, either based on a priori knowledge, e.g., about the

shape of a vertebra, or from an example segmentation. If segmented data is used, it

should reflect a representative object example. It may also be helpful to smooth the

segmentation in order to remove irrelevant detail from the model instance before gen-

erating the FEM. The FEM may be generated by triangulating the segment, e.g., by

computing a Delaunay triangulation.

For a single element, external forces f(e) at element nodes cause node displacement u(e).

Their relation is governed by a stiffness matrix K(e)

K(e)u(e) = f(e). (2)

The displacement depends on applied forces, the elasticity and geometry of the ele-

ment, as well as on the interpolation functions used to compute continuous material

deformation within the element. When linear interpolation is sufficient - which is true

for our applications - element shape and elasticity parameters are the only influences

that define the deformation behavior.

The different elements e of the FEM are assembled according to the decomposition

of the object domain (for details see [28]). It results in an aggregated stiffness matrix K

which gives the following relation between forces f and displacement u via

Ku = f. (3)

Element-wise assemblage happens in two steps (see Figure 1). First, nodes of all ele-

ments are re-labeled so that nodes of two different elements have the same label only

if this node is common to the two elements. Then, expanded matrices K(e)
exp and force

vectors f(e)exp are created for each element e having a size that depends on the total num-

ber of nodes of the FEM. Locations in K(e)
exp and f(e)exp that represent labels not occurring

in e are filled with 0’s. Assemblage is then simply summing expanded matrices and

vectors.

The FEM approximates the mean shape and possible physics-based deformation of

the object-of-interest. Shape variation among different exemplars from the object class

is given by the FEM decomposition and few material parameters. Assuming that the
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model consists of isotropic, linear elastic material, the elasticity of the elements can be

described by Poisson’s ratio and the elastic modulus [29]. The Poisson’s ratio p is the

ratio between deformation in the direction of an incident force and deformation ortho-

gonal to it (see Figure 2a). For most materials, 0 ≥ p > -1, since compression in one

direction causes expansion in the orthogonal direction. For object detection, it may be

useful to define a positive Poisson ratio. This would cause contraction in all directions

if forces in some direction cause compression. Scale invariance can be implemented

(to a small extent) using this parameterization.

The elastic modulus, given the isotropic material assumptions above, may be

described by Young’s modulus. It tells how an isotropic material resists deformation

due to opposing forces (see Figure 2b). Changing Young’s modulus controls the

amount of deformation due to external forces, e.g., image-derived forces.

Given element geometry, interpolation functions, Poisson’s ratio and Young’s modu-

lus, the stiffness matrix can be computed for each element and assembled into global

stiffness matrix K. Hence, the FEM, created from an exemplary segmentation or from

a priori knowledge, represents a deformable shape by very few parameters that are

intuitive in a sense that a user does not have to understand the underlying numerical

concepts of the FEM method.

Dynamic optimization and object detection

Using the FEM for object detection requires localizing and deforming the model based

on image-derived forces. The extension of the FEM to a dynamic model has the practi-

cal advantage that parts of the localization tasks can be solved as a time-dependent

attraction of a model instance to local image features. It requires extension of the

Figure 1 Assemblage of an FEM from elements. Elements are assembled by first re-labeling nodes, then
extending the stiffness matrices accordingly (non-zero entries are indicated in blue) and then adding the
matrices.

Figure 2 Factors that influence the elasticity of an FEM . (a) Poisson ratio p represents how
displacement due to an incident force is transferred orthogonal to the direction of incidence. In (a) the
Poisson ratio is negative, since a contraction in force direction causes an extension orthogonal to it. (b)
Elasticity represents the amount of deformation caused by an incident force.
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governing equation by a mass matrix M, which represents resistance to forces based on

the current acceleration ü(t) at time t, and by a damping matrix D that represents

transfer of kinetic energy dependent on current speed u̇ (t):

Mü (t) +Du̇ (t) + Ku (t) = f (t) . (4)

Specifying masses in M is necessary if a moving model instance should resist force

changes from the image in order to let it move over spurious image details from noise

or artifacts. If this is not necessary, mass may be omitted, leading to a damped gradient

descent.

For practical reasons, we use Raleigh damping, which defines D as linear combina-

tion of M and K:

D = αM + βK. (5)

If the system is mass-free, we may set D = I + bK, where I is the identity matrix.

External forces acting on FEM nodes may be defined separately and differently for

every node. It is, however, practical to define node groups and let each node group be

attracted by the same kind of image forces. Examples are the following:

- Boundary nodes are attracted by boundary features in the image

- Inner nodes are attracted by image features according to the specific appearance

of the object to be detected

Different kinds of boundary or appearance nodes can be defined if the expected edge

strength or appearance varies in an object-specific fashion.

External forces can be computed based on the current location and displacement of

nodes with respect to image features in the model’s vicinity. This may become neces-

sary if the data is unreliable and current node locations and displacement are used to

select image regions evaluated for force computation. An example will be demon-

strated in Application 2 described below.

If data quality permits, external forces can be pre-computed as gradient of a potential

field derived from the image. Potential fields may be defined separately for each node

group (see Figure 3). Nodes of the FEM are pulled to a minimum in the potential. In

order to attract an FEM instance over some distance, the potential field is convolved with

an influence function, i.e., a low pass filter that is decreasing with distance from the kernel

center. Local features for boundary nodes are edges or edge features such as gradient

length. Local features for appearance nodes depend on expected intensity or texture. The

influence function is a Gaussian of which the variance determines the influence radius.

It should be noted that, while boundary nodes relate visible object boundary in the

image directly to model nodes, appearance nodes typically do not. Since expected

appearance (e.g., brightness) may or may not be constant over the object it may not

help to move and deform an FEM instance into its proper place. Appearance nodes

are useful nonetheless:

- A single or several appearance nodes may help to determine whether the bound-

ary nodes - which are only sampling the boundary - sit on the correct object

boundary.
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- Appearance nodes that sample the appearance inside the object and in the back-

ground in the object’s vicinity may serve as a complex boundary model in cases

where the boundary is difficult to detect in the data using a local operation such as

edge detection.

Since local features are not unique (otherwise, detection would be trivial), the influ-

ence radius, i.e., kernel width should be as large as possible in order to attract FEM

instances from far away, but small enough to avoid overlapping influences, i.e., blurring

from different local features.

Given particular potential fields, an FEM instance can be placed anywhere in the

image and deforms under the field-derived forces. The potential field is constant over

time and may be pre-computed. Forces f change with the displacement in the potential

field and, therefore, with time. An instance has found its final destination when inter-

nal forces from deformation and external forces from the image balance each other.

Computing adaptation of the deforming FEM instance to the image requires computa-

tion of the dynamic system described by equation (4).

Computation of this system of dependent differential equations can be done in several

ways (see, e.g., [28]). We prefer a computation via decorrelation into independent modes.

It does not only produce a stable solution to the problem but also allows selecting relevant

deformation modes (similar to the selection of variation modes in ASM). This has been

used for object classification [30], mapping between similar objects [31], and to provide a

base for training an ASM, if training is desired and possible [32].

For optimization, a generalized eigenproblem is solved for mass matrix M and stiff-

ness matrix K

KE = ME�with ETKE = � andETME = I, (6)

where Λ is the diagonal matrix of eigenvalues, E is the column matrix of eigenvec-

tors and I is the identity matrix. Mapping K and M onto E and assuming Raleigh

damping according to equation (5) results in a new system

M’c̈ (t) +D’ċ (t) + K’c (t) = ETf (t)

with M′ = ETME = I,D′ = ETDE = diag (d1, ..., dn),K′ = ETKE = �

and Ec(t) = u(t), Eċ(t) = u̇(t), Ec̈(t) = ü(t).

(7)

Figure 3 Example of a potential field. The field is generated from a weighted combination of a T1- and
a T2-weighted image for attracting nodes to vertebrae. It is clearly visible that the minima for the
vertebrae are just local minima, since several internal organs produce a much more pronounced minimum.
Detection will therefore require additional information from shape and configuration of vertebrae.
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The new diagonalized system contains simple differential equations of the type

c̈i (t) + d′
i ċi (t) + λici (t) = eiT • fi (t) , (8)

where ei is the i-th eigenvector of E and li is the i-th eigenvalue. An analytical solu-

tion for such equations can be computed stably and fast. The approach is applicable

for a mass-free system as well.

Eigenvectors and eigenvalues carry semantics similar to ASM. An eigenvector is

called a mode of vibration and represents a generalized symmetry axis of shape defor-

mation. The overall deformation is a weighted sum of the generalized deformations

due to the transformed forces ETf(t). It is possible to reduce the number of modes in

order to remove small information details and reduce computational costs. Eigenvalues

characterize the amount of force necessary to cause displacement. Assuming ascending

order of eigenvalues, the first n! eigenvalues of an n-dimensional FEM will be zero and

represent rigid transformation (rotation and translation). The following, intermediate

eigenvalues are the most relevant modes representing shape deformation.

Rigid transformation is still part of the model, which is different to ASM where the

trained model is normalized with respect to rotation and translation and where this

information has to be incorporated into the fitting process by means of an additional

registration step. This causes problems, however, since deformation constrained by

the stiffness matrix K is defined as strain caused by a directed force on an infinitesimal

line at this point. Since this line is defined in the given coordinate system, rotation of

the FEM instance would make the stiffness matrix K dependent on the current rotation,

hence dependent on time t. This is unwanted since it would require re-computation of

K and of the vibration modes at every new iteration step. Neglecting it would cause

some part of the rotation to be interpreted as deformation possibly leading to serious

distortions (see Figure 4) [33]. This is only acceptable if we assume that local fitting of

the model instance comprises only little rotation. Still, this would result in a loss of the

benefit of including rotation into the optimization. Hence, we use warping techniques,

presented, e.g., by [33,34] to circumvent the problem.

The basic idea of warping is to include the current rotation into the representation.

Therefore, forces are applied to the un-rotated model and the result is rotated back. If

warping is applied on the node level, the current rotation Ri is computed for all nodes

i. They are concatenated into an orthogonal matrix R of which its inverse is applied to

the current displacement u(t) as well as to its derivatives. Deformation is then applied

to these vectors and the result is rotated back (the impact of this correction can be

seen in Figure 4). It can be shown that this can be applied in the spectral basis as well

[33]. This essentially means that the current vibration modes are “rotated” versions of

the original modes.

The current rotation can be computed by several methods. A fast way is to search

for the rotation Ri at node coordinates xi that optimally registers difference vectors

dij = xi - xj between xi and adjacent nodes xj relative to difference vectors dij0 at t = 0.

The resulting optimization problem

Ri = argmin
R(t)

∑M

j=1

∥∥dij (t) − R (t)dij0
∥∥ (9)

for each node can be computed fast using a method proposed by [35].
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Dynamic optimization of an FEM instance as described above produces a locally

optimal fit. For global optimization we use a stochastic initialization technique similar

to the method that was suggested by [1]. FEM instances are initialized at different loca-

tions in the image and serve as detection candidates for the object-of-interest. After

performing local optimization as described above the best candidates spawn new

instances in their vicinity. The process ends when no further improvement can be

reached.

Rating candidates requires definition of a QoF function. It is defined according to

equation (1). Data quality Eexternal measures the value of the potential field at final node

locations and the regularization term Einternal measures the deviation of the model from

its initial shape based on the weights of the vibration modes.

Computational complexity of the process is O(N) where N is the number of nodes of

the model instance. However, computation times depend on the convergence of the

various iterative optimization schemes, namely the iterative deformation, the iterative

computation of the singular value decomposition in [35] for computing the warping,

and on the number of iterations in the stochastic search.

Hierarchical part-based model

The few parameters of the deformable model described in the previous section are suf-

ficient for object detection as long as the object in question has a rather characteristic

Figure 4 Modes of vibration of a 3-D stick model. The first n! modes of an n-d model (in this case the
first 6 modes of the 3-D model) represent rotation and translation and are not shown. Only odd modes
are shown since, in this case, deformation of mode 2k is the same than mode 2k-1, except that it deforms
orthogonal to mode 2k-1. If warping is omitted (upper row), local rotation is resulting in unwanted
deformation.
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mean shape and appearance. If this is not the case, training of shape variation such as

in ASMs would help. However, to reduce training effort (ideally up to a point where

all parameters are user-specified based on domain knowledge), information has to be

included in a qualitative rather than a quantitative way. Hence, we adopted the princi-

ple of part-based models for augmenting the descriptive power of our model.

Representation by a part-based model serves two different purposes:

- The parts may be sub-objects of the object-of-interest (such as the vertebrae of a

spine model).

- The parts may relate the object-of-interest to surrounding objects that help to

localize the object.

Additionally to the elastic deformation of the parts, division into parts, their relation-

ship to each other, and potential mutual deformation are relevant for model

specification.

A part-based model can be realized conveniently within a hierarchical FEM (HFEM)

framework [36-38]. The shape is decomposed into parts based on user’s specification.

Each part is represented by an FEM. This constitutes the morphological layer of the

complex object. Parts may have different material properties and different potential

fields to accommodate their different semantics. Spatial relationships between parts are

represented by a second-level FEM which constitutes the structural layer. Forces on

the structural layer FEM are exerted from deformation and displacement on the mor-

phological layer of the HFEM. They, in turn, impose constraints on the shape of its

structural layer.

The HFEM may be realized explicitly by generating a set of morphological and struc-

tural FEM or implicitly by generating a single, heterogeneous FEM from the morpholo-

gical and the structural FEM.

Explicit representation results in a set of independent morphological FEM that are

coupled to the structural layer via virtual zero-length-springs that connect nodes of the

two layers [36] (see Figure 5). Relationships between sub-shapes are specified by the

kind of connection between the layers. For instance, the following relationships can be

defined for a 2-D model using different numbers of nodes (see Figure 6):

- A single-connected shape may rotate independently but is restricted in distance

to other sub-shapes via the structural layer.

- A sub-shape that is connected via two nodes to the structural layer is further

restricted in its rotation. Properties such as approximate orthogonality or paralle-

lism of parts can be ensured by this kind of connection.

- A sub-shape connected by more than two nodes shares some of its non-rigid

deformations via the structural layer.

The influence of external forces between layers is then realized by a message passing

algorithm [37]. Displacements due to deformation on the morphological layer act as

external forces on the structural layer, while deformations on the structural layer cause

forces on the morphological layer. Computation of the dynamic behavior, hence,

requires solving the optimization problem presented in the previous section for each
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sub-shape on the morphological layer, passing the resulting forces to the structural

layer, computing the resulting deformation and passing displacement back to the mor-

phological layer.

In the hierarchical representation, each FEM is diagonalized separately resulting in its

own vibration modes. It allows selecting vibration modes independently for each FEM.

Hence, different requirements on precision, e.g., between structural and morphological

layer, or for different substructures on the morphological layer can be accommodated.

When computing the quality of fit, equation (1) has to be computed first for energies

Ej of each subshape j on the morphological layer, resulting in a weighted sum of mor-

phological fits

Etotal =
∑N

j=1
wjEj. (10)

The weights wj may be used to account for a different importance of parts. If, for

instance, some parts are just guiding structures to find the actual object-of-interest,

their fit has not to be very precise.

Since the part relationship may be decisive for detecting the object, deformation and

image support is then computed for the structural layer FEM as well. Deformation is

measured in the same way as for the morphological layer. The external energy is now

given by the state of the morphological sub-shapes. Hence, it is simply defined by the

QoF from the sub-shapes of the layer below.

Figure 5 Hierarchical FEM. The structural layer is connected to the morphological sub-shapes via virtual
links. Each displacement from one layer is transferred as force on the other layer.

Figure 6 Different kinds of connection between layers cause different kinds of restrictions. (a)
Single-connected nodes allow for independent rotation around the nodes. (b) Double-connected nodes
can be used to enforce approximate orthogonality or parallelism (this example) between sub-shapes. (c)
Connecting further nodes of the sub-shape with the structural layer enforces co-deformation, such as, e.g.,
curvedness of the sub-shape (left sub-shape in 6.c) or its size (right sub-shape in 6.c).
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Alternatively to representing the part model as a hierarchy of homogeneous FEM it

may also be represented as single heterogeneous FEM [38] (see Figure 7). Heterogene-

ity refers to the fact that it will be a combination of the different part-FEMs, each of

which possibly having different elasticity parameters.

Morphological and structural layer FEM are defined as above. However, instead of

treating them as single FEM, which communicate through message passing, the FEM

are assembled in the same way as elements were assembled to the FEM. Assemblage is

guided by node connections between structural and morphological layer as before.

Through the assemblage these nodes are treated as shared nodes between elements of

the morphological and the structural layer.

Solving the part-based FEM optimization by assemblage in a single, heterogeneous

FEM has different properties compared to the previous method:

- Computation of vibration modes applies to the complete part-based object and

optimization does not require message passing between deformable part models.

- The quality-of-fit is computable in the same way than for a single FEM based on

deformation and input from the data.

- Different potential fields and/or different material properties of the part-FEM

replace the weights in equation 10.

- If warping is used on the node level this applies to the complete FEM. Hence,

single-connected FEM do not allow independent rotation.

In general, the second solution is simpler regarding computation of dynamic defor-

mation and stochastic optimization, but it also integrates parts tighter into the repre-

sentation. Therefore, it depends on the application which of the two methods should

be preferred. This will be discussed further in the next section where we will present

different applications using the two approaches for different analysis goals in medical

image analysis.

Results and discussion
In the following, we present a number of applications to illustrate how to parameterize

and use a part-based deformable model for various tasks in medical image analysis.

We will summarize performance and results for each application. Since we use the

application to demonstrate the use of the model, we refer to the original publications

[38-40] for details.

Figure 7 Integration of morphological and structural sub-models in a single FEM. Structural and
morphological layer are connected and elements of the different FEM are assembled to a single FEM.
Elasticity parameters of the morphological and structural FEM may be different.
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Indentifying Heschl’s gyrus in flat maps of the human cortex

Experiments with functional magnetic resonance imaging (fMRI) attempt to localize

and delineate particular brain regions, such as the human primary auditory cortex

(pAC) and neighboring higher-order areas, in vivo. The pAC is known to be located

on the first transverse temporal gyrus (i.e., Heschl’s gyrus, HG). Since the region cov-

ered by the pAC is very small with respect to the spatial resolution of fMRI and the

signal to noise ratio is rather poor, fMRI data of a population of subjects are combined

to arrive at a representative functional map. The combination of individual data to a

group map requires the mapping of corresponding regions across subjects. We solved

this registration task by localizing macro-anatomical landmarks (i.e., the lateral “Syl-

vian” fissure and superior temporal sulcus) that delineate the superior temporal lobe

and enclose the highly variable Heschl’s gyrus. The detection is performed using a

deformable model of HG that is fitted to the cortical surface (i.e., a surface mesh that

represents the grey-white matter interface, gwI) [36,40]).

Input data for the deformable object detection task are 2-dimensional flat maps of

the gwI (details about cortex reconstruction and flattening can be found in [41]). The

function value at each location in the flat map is the curvature of the folded cortex

before flattening (see Figure 8). Hence, change from outward folds (gyri) to inward

folds (sulci) is given by zero crossings in the flat map.

Identifying HG in a given flat map requires finding a specific U-shaped border at

those zero crossings. This is difficult since the size, location, orientation and individual

shape of HG vary substantially between subjects, while there are several gyri of similar

shape in each cortical flat map. Experts identify the correct gyrus by means of its rela-

tion with two anatomical landmarks: the Sylvian fissure (SF) and sulcus temporalis

superior (STS) are approximately parallel to each other and orthogonal to HG.

A part-based deformable model is well suited to represent anatomical descriptions

such as U-shapedness and spatial relations between cortical gyri and sulci.

HG, STS and SF were modeled on the morphological layer of a two-level model and

combined on a structural layer that models the structural configurations of the macro-

anatomical landmarks. Since the gyri and sulci were simple 2-D shapes, they were

manually drawn based on example images. For HG, two different variants were created

since some subjects may have a HG with a sulcus intermedius (SI).

Boundary nodes of the HG and the HG+SI models had access to smooth potential

fields, whose minima represent zero crossing locations of the flat map. In practice, the

filtering operations were approximated as follows. For a given surface mesh we com-

puted a discrete, difference-of-Gaussian filtered version of the curvature mapping:

Figure 8 Flatmap generation from anatomical MRI. (a) reconstructed grey-white-matter interface (gwI)
(b) overlayed curvature depicts gyri (light) and sulci (dark) (c) inflated gwI (d) flattened gwI.
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We first applied an operator that separated convex regions (gyri) and concave regions

(sulci), and then we used a discrete approximation of a heat diffusion kernel to smooth

the resulting binary map. The low pass filter kernel widths of s1 = 2 mm and s2 = 2s1
for the difference-of-Gaussian provided a good tradeoff between a large region of influ-

ence and blurring of adjacent zero crossings. During the model fit, we estimated for

each model node the vector to the nearest salient vertex on the cortical surface mesh

(with a local maximum filter response and within a given sampling distance) and used

the weighted radial component of this vector as external force.

Internal nodes of the HG model responded to positive curvature (gyri) only, whereas

the HG+SI model contained nodes responding to negative curvature (sulci) at the SI

location as well. Again, the potential fields were in practice defined based on heat ker-

nel smoothed versions of the binary curvature maps.

The shape and pose of HG, the exact relations between HG and the landmarks and

also the shape of the landmarks SF and STS vary dramatically between subjects:

- Since SF and STS primarily served as limits for restricting the cortex region to be

searched for HG, it was important to robustly and correctly localize these land-

marks, while only roughly matching their main branches. The STS and SF models

were constructed as simple line-shaped structures, undersampled with FE nodes

that responded only to appearance, i.e. curvature information. This sparse sampling

allowed bridging gaps in the curvature maps, while sufficient similarity of the struc-

ture to a line was still ensured. (example images showing variability of SF, STS)

- The model at the top-layer arranged HG (and HG+SI, resp.) as the central part of the

AC folding pattern nearly orthogonal to the two surrounding parallel sulci. To set up a

sparse top layer model, “link” nodes were identified for related sub-shapes and dupli-

cated such that the resulting structural model consisted of these shared link nodes

(see Figure 9). Four nodes represented the parallel arrangement of SF and STS in the

2-D flat maps, and the internal node was linked with the HG model to position it

“above STS” and “below SF”. In the structural prior model HG+SI an additional node

was linked with a simple SI model in a “contained in HG"-relation.

- The FE nodes are then subject to boundary conditions, such that any nodal dis-

placement in the morphological coordinate frames (e.g., due to image forces)

enforced displacements in the global model coordinate frame, while the resulting

nodal displacements of the top-layer model acted as across-level spring forces on

the link nodes of the morphological shape models.

Figure 9 Generation of the hierarchical model from an example image. Models of Heschl’s gyrus (in
this case without a sulcus intermedius - SI), sylvian fissure (SF) and sulcus temporalis superior (STS) are
connected via virtual links to the sparse structural model depicted on the right.

Toennies et al. BioMedical Engineering OnLine 2014, 13(Suppl 1):S1
http://www.biomedical-engineering-online.com/content/13/S1/S1

Page 16 of 25



- The search for the independent optimum pose parameters (of the structural

model as well as HG and HG+SI, resp.) was based on a quasi stochastic sampling

of an a priori constrained search space. To define the constraints, we used the

Talairach-transformed flat map coordinate system [40,42] and asked an expert to

annotate an example and specify possible variations in the location, size and orien-

tation of the anatomical structures. This information was encoded in terms of pose

parameter distribution functions.

- Young’s modulus was 2.0, Poisson ratio was 0.4 and material density was set to

1.0 for all models.

At each iteration of the deformable model search, a population of 100 model

instances was initialized with random affine parameterizations and fitted to the data.

Randomness was introduced into this evolutionary process by employing a rank selec-

tion of fitted instances. Reproductive success varied with the relative “fitness”, i.e. qual-

ity, of instances. Poor fitting results were deleted, and Gaussian noise was added to the

pose parameters of the best fitting instances to simulate the “mutation” in the repro-

duction step and initialize new deformable model instances. This evolution process

ends if no improvement in overall fitting quality was observed (typically after 3 steps).

Success of the deformable model search for HG was measured by determining the

percentage of cases were the correct gyrus was identified by one or more model

instances among the 2% of best rated candidate solutions. The method was applied to

flat maps from 80 subjects. A detailed discussion of results can be taken from [36,40].

In summary, we could show that

- Using just the HG model without guiding structures and constraints on possible

poses resulted in a 5% success. By constraining the search space, the correct gyrus

was identified in about 50% of all cases.

- Using the HG model together with SF and STS resulted in 80% success which

can be improved to more than 90% if model parameters have been trained.

- This part-based model could be directly used (1) to compute precise segmenta-

tions of HG with less than 3 mm error compared with manual segmentations of

HG and (2) to classify the given cortical surfaces correctly with respect to the pre-

sence of a sulcus intermedius.

- Using a single-layer model that comprises HG, STS and SF instead of the multi-

ple layer model led to a significant decrease in result quality which did not improve

by training. This means that the relevant anatomical information was better cap-

tured by the structural decomposition and deformation parameters.

- The method is very robust to changes in the parameterization.

This example shows that domain knowledge, such as the structural arrangement of

landmark structures that predict the location of a highly variable object of interest

within data that carry poor semantics, can be directly formulated in the form of effi-

cient constraints of a hierarchical, deformable model. This is very interesting in that

one could expect that such a model provides a better symbolic representation of the

“true” object anatomy and anatomical variability than a model that is learnt from

annotated training data. Moreover, the expert knowledge can be more efficiently
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improved by training (e.g., of correct poses) and expressed with less effort (e.g., by

annotating a single example and “painting” connecting relations such as “parallel to”

and “contained in” between the different structures, by accepting good solutions, apply-

ing interactive forces during the model fit or by correcting the deformed shape of

poorly fitted model instances).

Segmenting the Substantia Nigra in transcranial sonography

Transcranial sonography (TCS) produces ultrasound images of the brain that are

acquired by imaging through the temporal bone window. The mesencephalic brain

stem, or midbrain, containing the substantia nigra (SN) is visible in TCS images,

although image quality compared to regular ultrasound images is poor.

The echogenicity of the SN is a relevant feature in the diagnosis of Parkinson’s dis-

ease [43]. Computer-guided delineation of SN in TCS images has been the goal of the

work presented in [39]. We observed that the butterfly-shaped midbrain section

imaged by TCS is fairly invariant across patients as is the SN location relative to the

midbrain. Since image artifacts inhibit a direct segmentation of the SN on the basis of

low level image features, such as intensity or gradients, we used an elastically deform-

able model for the detection of the midbrain. This is again a part-based model, but

here we used a hierarchy of morphologies in a sequential fit (see Figure 10). The first

layer consisted of two SN regions that were attached to a midbrain shape model on

the second layer. The shape model is then used to constrain the final segementation

(instead of using the shape itself for segmentation such as in [44]).

Since artifacts and noise severely distort the images, it was not possible to compute

smooth and reliable potential functions by linear filtering. To set up external image

forces, we used a regional classifier over image regions that are large enough to coun-

teract this effect and provide object boundary information. Three different node poten-

tials were defined to account for the non-deterministic image signal:

- Appearance nodes of all parts have a similar potential function: SN nodes reacted

on high echodensity, since the SN typically produces more reflections than sur-

rounding midbrain tissue. The internal nodes of the SN models sample a Gaussian

low pass filtered version I* = Gs * I of the image I (where s = 2.0), and the inten-

sity forces are f = �∇I*, with � > 0. For the echopoor midbrain, we expect low

intensities in the interior and let � < 0.

Figure 10 TCS of the midbrain (left) and derived model (right). The model T(2) on the upper layer
represents the midbrain morphology which has been attached to substantia nigra (SN) models T1(1) and
T2(2). After fitting model instances to the data, the boundary nodes of the fitted Ti(2) model instances are
selected and then subsampled as contour models C1 and C2. These are finally used as Active Contour
Model for segmentation (Figure taken from [39]).
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- The boundary FE nodes did not rely on intensity gradients since these were extre-

mely unreliable. Instead, we computed at each iteration of the model fit a balloon-

force fb = �bn in the model instances’ current contour normal direction that pulls

the nodes towards more robustly estimated inter-tissue boundaries. The magnitude

and sign �b of the balloon force was defined using regional texture information.

We dynamically computed an optimal discriminant between “object” and “back-

ground” based on statistics over image intensity samples taken from the inside of

the model and from the background. The sampling regions were defined in the

image in inward and outward normal directions at the boundary nodes of the

model instance.

- Young’s modulus was 0.9, Poisson ratio was 0.25 and material density was set to

0.9 for all models

As in the previous section, a deformable shape search computed the best fitting shape by

simultaneous optimization of multiple two-layer model instances. In this application, how-

ever, the search was performed sequentially on the global (midbrain localization) and local

context (detection and segmentation of the SN). After finding the best fitting instance of

the midbrain model, multiple instances with different parameterizations of the SN models

were aligned to it and matched to the data to detect the hyperintense SN regions. This

sequential process was necessary because the SN appears as a stripe-like structure on both

branches of midbrain, but regularly exhibits the same echotexture as the adjacent brain

tissue. That is, the midbrain serves as “guiding structure” for the contained SN, but for a

given TCS image it is neither known in advance whether the SN is clearly visible, nor how

much an echodense pattern of the SN extends. The fit of SN models should not influence

the deformation of the midbrain model instance.

Successful detection means that the true boundary of the SN will be in the vicinity of the

boundary estimate by the SN sub-shapes. A final segmentation should make use of this

information (e.g., shape-driven level sets [15] or graph cuts [12]). In the last step of our

algorithm, the boundaries of the two deformed SN templates were taken as initial place-

ment of Active Contour Models, which are then locally deformed to precisely adapt to the

SN boundaries in the TCS image. The template contours were re-sampled to increase the

sampling density and flexibility of the contour models. Internal forces and external balloon

forces were set up as described in [45] and above (see [39] for details).

The model was applied to 10 data sets, for which expert segmentations were avail-

able, and it was found that in all cases the echogenic patterns of the midbrain and SN

were correctly localized (Figure 11 shows an example). Small values of 1.03 ± 0.44 mm

boundary error at a pixel size of 0.1482 mm showed that the region boundaries were

also outlined with high precision. This example application shows how to combine a

model search with a constrained segmentation without training based on qualitative a

priori knowledge about the appearance of the object. It also shows that the model is

able to overcome problems from serious distortions in the image by replacing gradient

information by a more elaborate boundary model.

Detection of human vertebrae in MRI

Investigation of normal variation of the anatomy of the spine and its vertebrae is one

of the research questions within SHIP (Study of Health in Pommerania, [46]). We use
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MRI from SHIP to detect the course of vertebrae of the lower back. More than 40 dif-

ferent MRI image sequences have been acquired within SHIP from several thousands

of subjects in Pommerania. Two of the sequences - a T1-weighted and a T2-weighted

sequence - showing spine and vertebrae were used for the detection task using our

model-based approach. Although vertebrae detection and segmentation focuses on

radiographs and CT images, MRI-based analysis has been the subject of research in

medical image analysis as well [47]. The domain knowledge in existing methods is

often represented by a specific combination of processing modules where model infor-

mation is inserted at several stages. Our goal was to investigate whether this can be

replaced by our deformable part model. The advantage would be that adapting the

detection to some other application would solely relate to model generation without

having to change modules of the search process.

Global optimization was not used since initialization is simple for the given data. The

user places the model instance in a sagittal view on the middle slice of the image sequence.

Optimization then takes place by model deformation based on local image attributes.

The model was constructed according to the appearance of vertebrae and spine in a

sample image sequence. Main attractor is the spine which is clearly visible in all images.

Hence, the model consisted of a two-level hierarchy where vertebrae sub-shapes were con-

nected with a spine sub-shape by a structural model on the second level (see Figure 12).

Vertebrae sub-shapes were constructed all equal since no substantial variation is expected

between different vertebrae of the lower back. The spine model supported proper localiza-

tion of the vertebrae. Since its most discriminate aspect was the cylindrical shape, it was

represented by a deformable, straight cylinder consisting of appearance nodes only.

Appearance nodes represent the vertebra shape, since the relatively low and varying signal

of the gradient allows only for small values of s in the smoothing function if boundary

nodes were chosen. This strategy bears some similarity to the boundary model that was

employed in the previous example for localizing the midbrain in TCS.

For each of the two shape models, the vertebra and the spine, a weighted combina-

tion of the T1-weighted and the T2-weighted image was computed as appearance input

(Figure 3 shows computation of the vertebra potential function). Weights for each of

the two models were determined a priori and produced a clearly recognizable local

minimum for vertebra and spine appearance, respectively.

We used a single heterogeneous model, since the sub-shapes formed a common unit

(the spine model) for which, e.g., vibration modes are computed and selected. The

restriction that sub-shapes cannot rotate independently around a single connection

Figure 11 Example for the fitting process. (a) Best fitting midbrain model instance (b) induced
initialization of the SN model instances (c) deformed SN instances (d) result after active contour
segmentation based on (c). (Figure taken from [39]).
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was not critical. It was even a desired attribute since it very well reflected anatomical

relations between sub-shapes. Young’s modulus was 1.0, Poisson ratio was 0.0 and

material density was set to 0.1 for all models.

Model generation from the sample shape was by Delauney triangulation from evenly

distributed sample nodes. It produces a set of “well-shaped” tetrahedrons. Computing

the rotation using node warping was solved by minimizing equation 9. Total computa-

tion time until convergence on a standard quad-core CPU was between 1.1 and 2.6

seconds per case with an average computation time of 1.5 seconds.

We evaluated the method on 49 data sets from SHIP. Detection was declared successful

if the center of each vertebra sub-shape was in the corresponding vertebra in the image

data. Examples of results can be seen in Figure 13. Vertebrae were detected correctly in all

but one case. In further 3 cases, minor mis-orientations happened. E = 1 provided an

almost stationary behavior with respect to detection for parameter changes of more than

10% for the other parameters. Further details on results can be taken from [38].

Since one of the analysis goals is to investigate whether variants exist in a normal

population, we also clustered shape information of the spinal canal [48]. We currently

also investigate clustering on the entire model using the weight vectors of the fitted

model instances for analysis of the shape of the spinal cord. This is future work, of

course, since detection is not yet followed by segmentation. However, first results are

promising, since clustering weight vectors into five clusters using k-means clustering

revealed four shape variants that seem to be anatomically meaningful (see Figure 14).

Cluster variance, however, is relatively high compared to inter-cluster distances (see

Table 1)

Conclusion
We presented a part-based deformable model that can be used for directly and effi-

ciently representing domain knowledge necessary for detection of objects in medical

Figure 12 Two-level FEM for spine and vertebrae. The morphological sub-shapes are connected at
nodes to a structural model that constrains transformation and deformation of sub-shapes with respect to
each other.
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Figure 13 Examples for detection results (initialization and result after convergence). Presently, the
model does not contain the typical curvature close to the os sacrum. Detection was satisfactory but
orientation of L5 was sometimes not correct when curvature was not supported from a strong signal at
the spine (e.g., case 1). Including expected curvature of the spine might be necessary if the detection
result is to be used as shape prior to segmentation.

Figure 14 First results from clustering the converged model. It shows the ability to distinguish
between shape classes. Improvement is needed, however, since insufficient fit in the lower part of the
spine degrades the results.

Table 1 Intra- and inter-cluster distances for shape clustering of the adapted spine
model.

Inter-cluster
distance

1 2 3 4 5

1 0 73.2748 169.9500 123.3598 81.9592

2 73.2748 0 150.4898 83.5072 88.7331

3 169.9500 150.4898 0 71.1408 90.5465

4 123.3598 83.5072 71.1408 0 66.5185

5 81.9592 88.7331 90.5465 66.5185 0

Intra-cluster distance 63.8863 60.1210 51.8204 50.8078 50.7387

Inter-cluster distances are distances between the means of weights of vibration modes for each cluster. Intra-cluster
distances are average standard deviations of all vibration mode weights.
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images. Different examples demonstrate its application to context-based detection,

model-based segmentation, and to shape analysis.

Establishing and applying such model requires readily available methods for generat-

ing a triangulated shape and appearance models from a segmentation as well as meth-

ods for local and global optimization. Domain knowledge of our part-based deformable

model resides almost completely in the model and not in the sequence of processes to

fit the model to the data. The model does not require training, since the few para-

meters (stiffness, decomposition into parts, node potentials, pose parameters) can be

set a priori and adapted intuitively. However, experience about setting up the model

will speed up the design process. A number of decisions have to be made:

- Structural decomposition of the model depends on part-relationships that can be

derived from knowledge about the anatomy or arrangement objects to be detected.

In medical applications, parts are typically anatomic substructures or a group of

neighboring landmark structures that are necessary to determine an object’s

position.

- Elasticity parameters describe the variability between shape instances and - on the

structural level - variability of spatial relations between sub-shapes.

- External forces are set depending on the expected appearance of the object in the

image. While gradient-based potential forces often allow for exact determination of

the object boundary, they may be supplemented by intensity or texture-based

forces if gradient information is unreliable.

In future we will investigate the potential for parameter training of the model. Training

of the few parameters in the data and the model terms should be much simpler requiring

less training data than training of a PDM. An alternative to adapt parameters would be to

take the detection result as an initialization for the search of an optimal potential field

given the converged model instance instead of trying to improve the overall performance

of the model. This may also enhance the potential of the model to guide data-driven seg-

mentation schemes such as level set segmentation or graph cuts. It will also be worthwhile

to take a second look at the analysis of shape parameters for the detection of shape classes

using adapted model parameters.
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