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Methods: IVUS data were acquired from 10 patients after voluntary informed
consent. The X-ray angiogram was obtained prior to the pullback of the IVUS catheter
to determine the location of the coronary artery stenosis, vessel curvature and cardiac
motion. Cyclic bending was specified in the model representing the effect by heart
contraction. 3D anisotropic FSI models were constructed and solved to obtain flow
shear stress (FSS) and plaque wall stress (PWS) values. FSS and PWS values were
obtained for statistical analysis. Correlations with p < 0.05 were deemed significant.

Results: Nine out of the 10 patients showed positive correlation between wall
thickness and flow shear stress. The mean Pearson correlation r-value was 0.278 + 0.181.
Similarly, 9 out of the 10 patients showed negative correlation between wall thickness
and plagque wall stress. The mean Pearson correlation r-value was -0.530 + 0.210.

Conclusion: Our results showed that plague vessel wall thickness correlated positively
with FSS and negatively with PWS. The patient-specific [VUS-based modeling approach
has the potential to be used to investigate and identify possible mechanisms governing
plague progression and rupture and assist in diagnosis and intervention procedures.
This represents a new direction of research. Further investigations using more patient
follow-up data are warranted.
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Introduction

Assessing atherosclerotic plaque vulnerability based on limited in vivo patient data has
been a major challenge in cardiovascular research and clinical practice [1-7]. Considerable
advances in medical imaging technology have been made in recent years to identify
vulnerable atherosclerotic plaques in vivo with information about plaque components in-
cluding lipid-rich necrotic pools, plaque cap, calcification, intraplaque hemorrhage, loose
matrix, thrombosis, and ulcers, subject to resolution limitations of current technology.
Atherosclerotic plaque progression and rupture are believed to be associated with mech-
anical stress conditions [6-18]. Parallel to histology-based atherosclerotic plaque classifica-
tions introduced by American Heart Association (AHA) [19-21], based on in vivo image
data and computational modeling, we have introduced morphology- and stress-based
plaque vulnerability indices which provide quantitative plaque assessment (Table 1 and
Figure 1) [22]. Knowledge of those associations may be helpful for a better understanding
of plaque progression and rupture process and for diagnosis and prevention of
atherosclerosis-related cardiovascular diseases.

In vivo image-based coronary plaque modeling papers are relatively rare because clin-
ical recognition of vulnerable coronary plaques has remained challenging [9,10,23]. We
have published results based on follow-up studies showing that advanced carotid
plaque had positive correlation with flow shear stress and negative correlation with
plaque wall stress (PWS) [15]. In this paper, patient-specific intravascular ultrasound
(IVUS)-based coronary plaque models with fluid-structure interaction (FSI), on-site
pressure and ex vivo biaxial mechanical testing of human coronary plaque material
properties were constructed to obtain flow shear stress and plaque wall stress data
from ten (10) patients to investigate possible associations between vessel wall thick-
ness and both flow shear stress and plaque wall stress conditions. The information
may be helpful in establishing mechanisms governing plaque progression and rupture
and may eventually be useful in cardiovascular disease diagnosis, prevention, or neces-
sary interventions.

Table 1 Human coronary morphological plaque vulnerability index (MPVI) definition
and AHA classifications

MPVI Plaque Description AHA classification
V=0 Very stable Normal or slight intimal thickening Type |, some atherogenic
lipoprotein and intimal
thickening
V=1 Stable Moderate intimal thickening, no Type Il (fatty streak), Ill
extracellular lipid, calcification or (preatheroma)

significant inflammation

V=2 Slightly unstable Small lipid core (<30% of plaque size); Type IV, Vb, and Vc with less
calcification may be present; thick fibrous  than 30% NC by area; or VII/VII
cap (> 150 um); little or no inflammation
at plaque shoulders

V=3 Moderately unstable Moderate lipid core (30 — 40% of plaque Type Va, IV/V with 30-40% NC
size) and fibrous cap (65 - 150 um); by area
moderate intraplague hemorrhage;
moderate inflammation.

V=4 Highly unstable Large lipid core(>40%); thin fibrous cap Type VI; IV/V with > 40% NC
(< 65 um); large intraplaque hemorrhage; by area
extensive inflammation; evidence of
previous plaque rupture

Cap thickness threshold values were modified from previously published values to adjust to the differences between
coronary and carotid plaques based on available literature.
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Figure 1 Selected plaque samples with different vulnerability classified by histopathological

analysis. (a) Very stable plaque; (b) Stable plaque; (c) Unstable plaque; (d) Very unstable plaque. Each
category included histology, MR image, and segmented contour plots, respectively.

.

Methods

IVUS data acquisition

3D IVUS data were acquired during cardiac catheterization from 10 patients (7 M, 3 F,
age: 48-75; median: 55) at Washington University at St. Louis (n = 6) and Cardiovascu-
lar Research Foundation (n = 4) after voluntary informed consent, using procedures de-
scribed in Tang et al. [23]. In this paper, “plaque” was used to indicate the coronary
vessel segment chosen for model construction and analysis. Plaque contour detection
was performed using automated Virtual Histology software (ver. 3.1) on a Volcano s5
Imaging System (Volcano Corp., Rancho Cordova, CA). On-site blood pressure and
flow velocity data were acquired using a Combo-Wire XT 9500 (Volcano Therapeutics,
Inc.) 0.014-inch guide-wire with a Doppler flow velocity sensor. The X-ray angiogram
(Allura Xper FD10 System, Philips, Bothel, WA) was obtained prior to the pullback of
the IVUS catheter to determine the location of the coronary artery stenosis, vessel
curvature and its cyclic bending caused by heart contraction. Figure 2 gives plots of a
sample plaque IVUS slices, segmented contours, enlarged view, and the reconstructed
3D geometry showing lipid cores. The X-Ray angiogram and vessel bending were
shown by Figure 3. Figure 4 shows an on-site pressure and flow velocity measurement
screen shot and pressure condition digitized from the IVUS data.

Biaxial testing and anisotropic model of human coronary material properties

A total of eight coronary arteries from 4 cadavers (age range: 50-81) were obtained
from the National Disease Research Interchange, PA and from Washington University,
St. Louis with proper consent. A custom planar biaxial test device was used under
stress control to obtain stress and strain measurements over a wide range of ratios of
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Figure 2 IVUS model construction process. Slice 1 is outlet. (a) Selected IVUS slices from 45-slice set; (b)
Contour plots of selected IVUS slices from automated APIA segmentation; (c) Contour plots of selected IVUS
slices after smoothing and used in FE model construction; (d) Enlarged view; (e) Enlarged contour; (f) Enlarged
contour after smoothing; (g) 3D geometry showing 45 slices and lipid cores.

stress along the longitudinal and circumferential axes of arterial specimen splayed open
to form square samples (see Figure 5) [24]. The forces along the axes were measured
via two torque transducers via rigid arms (effective resolution ~0.02 N) to determine
the stress. Four graphite particles attached to the sample were tracked by a CCD cam-
era to determine 2D strain (640 x 480 pixels; effective resolution ~0.07% strain). The
applied maximum longitudinal: circumferential stress ratios were 1:1, 0.7:1, 0.5:1, 1:0.7
and 1:0.5. Based on average stress in the vessel walls at systolic pressure, the maximum
engineering stress applied was 250 kPa. The vessel material was assumed to be hypere-
lastic, anisotropic, nearly-incompressible and homogeneous. A modified Mooney-Rivlin
model was used to fit the biaxial data [23,24]:

W = C1 (11—3) + C2(12—3) + Dl[eXp(Dz(Il—S))—l]
+ K1 /2Ka { exp [Ky(Ii-1)*-1] }. (1)

11 = ZCH, 12 = §[112_Ctjcij]a (2)

where I; and I, are the first and second invariants of right Cauchy-Green deformation
tensor C defined as C=[C;] = XX, X = [Xj] = [0x;/9qy], (x;) is current position, (a;) is
original position, I, = Cj(n.){(n.); n. is the unit vector in the circumferential direction
of the vessel, ¢;, Dy, Dy, and K; and K, are material constants. A least-squares method
was used to determine the parameter values in Eq. (1) to fit our experimental
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Figure 3 X-Ray angiographic image, extracted centerlines of the coronary segment, and the
re-constructed 3D geometry with maximum and minimum curvatures. (a) X-Ray angiographic image;
(b) Lumen center line extracted from X-Ray angiography; (c) Lumen center lines extracted from X-Ray
angiography with max/min curvature; (d) Re-constructed 3D geometry with maximum and minimum
curvatures. Flow direction is marked in (a).
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Figure 4 Screen shoot from an IVUS Combo-Wire for patient-specific on-site blood pressure
acquisition and pressure conditions using in the models. (a) A snapshot of monitor screen showing
on-site blood pressure and blood flow velocity; (b) Patient-specific blood pressure extracted from IVUS.
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Figure 5 The biaxial testing apparatus and sample results showing 3D plots of measured
stress-stretch data from a human carotid sample with fitting curves by the anisotropic Mooney-Rivlin
model. (a) The biaxial testing apparatus; (b) Tissue sample mounted for biaxial test; (c) Anisotropic
stress-stretch data from a human coronary sample.

circumferential and axial stress-stretch data [24]. Five human coronary plaque samples
were tested and the one with median stiffness was used in this paper. The parameter
values are: ¢; =-1312.9 kPa, ¢y =114.7 kPa, D1 =629.7 kPa, D, =2.0, K; =35.9 kPa,
K, = 23.5. Figure 5c shows that our model with parameters selected with this procedure
fits very well with the measured experimental data. Our measurements are also consist-
ent with data available in the literature [25-27].

Reconstruction of plaque 3D geometry and mesh generation

All segmented 2D slices were read into ADINA input file. 3D plaque geometry was re-
constructed following the procedure described in Yang et al. [23]. Because plaques have
complex irregular geometries with component inclusions which are challenging for
mesh generation, a component-fitting mesh generation technique was developed to
generate mesh for our models [23]. Using this technique, the 3D plaque domain was di-
vided into hundreds of small “volumes” to curve-fit the irregular plaque geometry with
plaque component inclusions. The element type used for structural models (vessel and
plaque components) was 3D solid 8-node element. The element type used for the fluid
model was 3D fluid 4-node elements, free formed mesh. Mesh analysis was performed
by decreasing mesh size by 10% (in each dimension) until solution differences (mea-
sured by L, norms of solution differences of all components, including stress, strain,
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displacements, flow velocity, and pressure) were less than 2%. The mesh was then
chosen for our simulations. The number of elements used for the 10 plaques is given in
Table 2.

The FSI model with cyclic bending and boundary conditions
3D anisotropic and isotropic multi-component FSI models were constructed to calcu-
late flow and stress/strain distributions and evaluate the effects of cyclic bending and
anisotropic properties and demonstrations were given using the plaque sample shown
in Figure 2. Blood flow was assumed to be laminar, Newtonian, and incompressible.
The Navier-Stokes equations with arbitrary Lagrangian-Eulerian formulation were used
as the governing equations. Cyclic bending was specified by prescribing periodic dis-
placement at the lower edge of the vessel using data obtained from X-Ray angiography
and keeping the total length of the vessel unchanged. No-slip conditions and natural
traction equilibrium conditions are assumed at all interfaces. With that, we have:
p(ou/ot+ ((u-ug)-V)u) = -Vp + uV’u, (3
Vu=0, 4

u|r = 0x/dt, ou/on|

—~

5

)

)

0, )
6)
)
)

—

inlet,outlet —

—

p|inlet = Pin (t)7 p|outlet = pout(t)v

PVig = Gjj,1,j = 1,2, 3; sum over j, (7
eij = (Vj’j +Vj,i —I—Vmdi’j)/z,i,]’,O{ = 1,273, (8
0 Njfout,y = 0, (9)

Grij R ‘interface =0 Sij RY |interfaC37 (10)

where u and p are fluid velocity and pressure, ug is mesh velocity, u is the dynamic vis-
cosity (u = 0.04 P), p is density, I stands for vessel inner boundary, x is the current pos-
ition of I, o is stress tensor (superscripts indicate different materials), € is strain tensor,

v is solid displacement vector, superscript letters “r” and “s” were used to indicate dif-
ferent materials. For simplicity, all material densities were set to 1 g-cm™ in this paper.

Table 2 Number of elements used in the 10 models

Patient Wall-element- Wall-element- Wall- Wall-all- Wall-node  Fluid-  Fluid-node
tissue lipid element-Ca element (sum) element
P1 18570 1554 0 20124 22880 62283 12027
P2 48840 1470 0 50310 55680 160752 29715
P3 22620 1140 0 23760 26800 108221 20226
P4 24504 888 0 25392 29914 227508 42312
P5 23976 1368 0 25344 29904 346195 61821
P6 19800 3240 0 23040 27216 291137 52262
p7 28071 279 0 28350 32000 195501 35764
P8 28122 228 0 28350 32000 192915 36017
P9 27148 2808 2384 32340 38073 209326 38273

P10 30164 320 1856 32340 38073 199434 36664
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3D coronary plaque FSI models for the ten patients were constructed and solved by
ADINA (Adina R &D, Watertown, MA) to calculate flow and stress/strain distributions.
Each IVUS slice was divided into 4 quarters with each quarter containing 25 data
points taken on the lumen. Average FSS and PWS values from each quarter were ob-
tained from all slices of a plaque corresponding to maximum pressure condition for
statistical analysis. Standard linear correlation analysis was performed to find possible
correlations between wall thickness and the mechanical stressess (FSS and PWS). Cor-

relations with p < 0.05 were deemed significant.

Results

Plaque wall thickness correlates positively with flow shear stress and negatively with
plaque wall stress

Figures 6 & 7 and Table 3 give the correlation results between plaque (wall) thickness
and flow shear stress (FSS) and plaque wall stress (PWS), respectively. Mean quarter
values were used in the analysis. Corresponding to maximum pressure condition (for
simplicity, this is also when maximum curvature occurs), nine out of the 10 patients
showed positive correlation between plaque wall thickness and flow shear stress. The
mean Pearson correlation r-value was 0.278 + 0.181. Similarly, 9 out of the 10 patients
showed negative correlation between wall thickness and plaque wall stress. The mean
Pearson correlation r-value was -0.530 + 0.210.

Corresponding to minimum pressure condition (this is also when minimum curva-
ture occurs), 7 out of the 10 patients showed positive correlation between plaque wall
thickness and flow shear stress, 1 showed negative correlation, 2 showed no signifi-
cance. The mean Pearson correlation r-value was 0.272 + 0.189. For plaque wall stress,
9 out of the 10 patients showed negative correlation between wall thickness and plaque
wall stress, about the same as the maximum pressure case. The mean Pearson correl-
ation r-value was -0.537 + 0.238.

Effect of cyclic bending on plaque wall stress and strain behaviors

To demonstrate the effect of cyclic bending on plaque stress and strain behaviors,
plaque wall stress (PWS) and strain (PWSn) from the baseline model of the plaque
given in Figure 2 (Model 1-M1) and the model without cyclic bending (Model 2 — M2)
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Figure 6 Mean-quarter flow shear stress vs. mean-quarter vessel wall thickness (WT) distribution
plots from 10 patients showing positive correlation.
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Figure 7 Mean-quarter plaque wall stress (Stress-P,) vs. mean-quarter vessel wall thickness (WT)
distribution plots from 10 patients showing negative correlation.

are given in Figure 8. Model 2 used the minimum curvature from Model 1 and no cyc-
lic bending was imposed. For simplicity, zero phase angle between pressure profile and
curvature change was assumed, i.e.,, maximum and minimum bending in Model 1 oc-
curred with maximum and minimum pressure conditions. Maximum PWS from M1
corresponding to maximum bending was about 100% higher than that corresponding
to minimum bending (170.3 kPa vs. 84.51 kPa), while maximum PWS from M2 (no
bending) corresponding to the maximum pressure condition was only 34% higher than
that corresponding to minimum pressure condition (113.28 kPa vs. 84.49 kPa). Max-
imum PWS at maximum bending from M1 was about 50% higher than that from M1
at the same pressure condition. Differences in maximum of PWSn were similar to that
of PWS. It should be noted that cyclic bending changed the stress/strain distribution
patterns. The maximum bending caused some compression to the inner side of the ves-
sel as shown by the lower PWS and PWSn regions in Figure 8a and e.

Table 3 Plaque wall thickness correlates positively with flow shear stress and negatively
with plaque wall stress

Patient P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Segment length (cm) 215 5.16 3.30 6.60 440 2.80 3.15 3.15 27.5 275
MPVI 2 2 3 3 3 3 3 2 4 4
Qts 176 176 136 180 180 164 256 256 224 224
Correlation between vessel thickness and flow shear stress under maximum pressure
r 03963 02842 02982 0.1501 -0.1305 0377 0443 0456 0.1364 03687
p 0 0.0001 0.0004 00443 0.0808 0 0 0 0.0414 0
Correlation between vessel thickness and plaque wall stress under maximum pressure
r 00019 -0444 -0614 -0620 -0477 -0687 -0714 -0543 -0502 -0699
p 0.9799 0 0 0 0 0 0 0 0 0
Correlation between vessel thickness and flow shear stress under minimum pressure
r 0376 0313 0302 0119 -0151 0378 0459 0436 0124 0368
p 0000 0000 0000 0113 0042 0000 0000 0000 0063  0.000
Correlation between vessel thickness and plaque wall stress under minimum pressure
r 0007 -0630 -0712 -0655 -0487 -0648 -0811 -0680 -0379 -0372
p 0932 0000 0000 0000 0000 0000 0000 0000 0000  0.000

MPVI: Morphological plaque vulnerability index; Qts: Quarters.
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Figure 8 Plots of plaque wall stress and strain from 2 models showing the effect of curvature
variations on stress and strain distributions. M1: baseline model with cyclic bending; M2: model using
the minimum curvature without cyclic bending. (a) M1, PWS, max bending, Pin=112 mmHg; (b) M2, PWS,
no cyclic bending, Pin=112 mmHg; (c) M1, PWS, min bending, Pin=72 mmHg; (d) M2, PWS, no cyclic bending,
Pin=72 mmHg; (e) M1, PWSn, max bending, Pin=112 mmHg; (f) M2, PWSn, no cyclic bending, Pin=112 mmHg;
(g) M1, PWSn, min bending, Pin=72 mmHg; (h) M2, PWSn, no cyclic bending, Pin=72 mmHg.

Effects of cyclic bending on flow behaviors

It is reasonable to expect that cyclic bending would have impact on flow behaviors. Flow
velocity and flow shear stress from M1 and M2 are given in Figure 9. It is observed that
flow velocity and flow shear stress from both M1 and M2 corresponding to maximum
pressure condition were much higher than those corresponding to minimum pressure
condition. That was caused by flow rate changes in the cardiac cycle. Cyclic bending did
cause about 1% (or less) decreases in flow velocity and flow shear stress. The decreases
were smaller than previously reported [23] because the curvature change is small between
M1 and M2 while we compared a curved vessel with a nearly straight vessel.

Discussion

Our results show that IVUS data could be used to construct computational models to
calculate flow shear stress and plaque stress/strain conditions which may be used to
identify possible mechanisms governing plaque progression and rupture. This adds

Page 10 of 14
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Figure 9 Plots of flow velocity and flow shear stress from M1 and M2 showing the effect of
curvature variations on stress and strain distributions. M1 and M2 were defined as before. (a) M1,
Velocity + PWS, max bending, Pin=112 mmHg; (b) M2, Velocity + PWS, no cyclic bending, Pin=112 mmHg;
(c) M1, Velocity + PWS, min bending, Pin=72 mmHg; (d) M2, Velocity + PWS, No cyclic bending, Pin=72
mmHg; (e) M1, Flow shear stress, max bending, Pin=112 mmHg; (f) M2, Flow shear stress, no cyclic bending,
Pin=112 mmHg; (g) M1, Flow shear stress, min bending, Pin=72 mmHg; (h) M2, Flow shear stress, no cyclic
bending, Pin=72 mmHg.

mechanical stress conditions into the list of risk factors and represents a new direction
of research. While many factors are involved in plaque progression and rupture
process, it is natural to think that final plaque rupture happens when critical plaque
stress/strain exceed the plaque cap ultimate material strength. IVUS-based computa-
tional models can provide accurate stress/strain calculations and can serve as a useful
tool for physicians in their diagnosis and intervention surgical decision making process.

It should be made clear that our current data is wall thickness, which is not progres-
sion by itself. We are currently working on patient follow-up data and will report our
findings when available. Plaque progression and rupture are closely related to each
other. A better understanding of plaque progression may lead to better understanding
of plaque rupture process and more accurate plaque assessment schemes.

Some limitations of this study include: a) patient-specific and tissue-specific material
properties were not available for our study; b) while the angiographic movie provided
information for the position of the myocardium and partial information for curvature
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variations, two movies with different (preferably orthogonal) view angles are needed to
re-construct the 3D motion of the coronary and provide accurate curvature variation
information; c) some data such as zero-stress conditions (opening angle), multi-layer
vessel morphology and material properties are not possible to measure non-invasively
in vivo; d) tethering and interaction between the heart and vessel could not be included
because those measurements are not currently available. A model coupling heart motion
and coronary bending would be desirable when required data become available.

Conclusion

Image-based computational models with cyclic bending and fluid-structure interac-
tions could be used to provide more accurate flow and mechanical stress/strain
calculations which may be useful for plaque assessment and identification of mecha-
nisms governing plaque progression and rupture. Our results indicated that plaque
wall thickness had positive correlation with flow shear stress and negative correlation
with plaque wall stress. More patient follow-up data are needed to continue our

investigations.
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