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Abstract

Background: Atrial fibrillation (AF) is the most common and debilitating
abnormalities of the arrhythmias worldwide, with a major impact on morbidity and
mortality. The detection of AF becomes crucial in preventing both acute and chronic
cardiac rhythm disorders.

Objective: Our objective is to devise a method for real-time, automated detection of
AF episodes in electrocardiograms (ECGs). This method utilizes RR intervals, and it
involves several basic operations of nonlinear/linear integer filters, symbolic dynamics
and the calculation of Shannon entropy. Using novel recursive algorithms, online
analytical processing of this method can be achieved.

Results: Four publicly-accessible sets of clinical data (Long-Term AF, MIT-BIH AF,
MIT-BIH Arrhythmia, and MIT-BIH Normal Sinus Rhythm Databases) were selected for
investigation. The first database is used as a training set; in accordance with the receiver
operating characteristic (ROC) curve, the best performance using this method was
achieved at the discrimination threshold of 0.353: the sensitivity (Se), specificity (Sp),
positive predictive value (PPV) and overall accuracy (ACC) were 96.72%, 95.07%, 96.61%
and 96.05%, respectively. The other three databases are used as testing sets. Using the
obtained threshold value (i.e., 0.353), for the second set, the obtained parameters were
96.89%, 98.25%, 97.62% and 97.67%, respectively; for the third database, these
parameters were 97.33%, 90.78%, 55.29% and 91.46%, respectively; finally, for the fourth
set, the Sp was 98.28%. The existing methods were also employed for comparison.

Conclusions: Overall, in contrast to the other available techniques, the test results
indicate that the newly developed approach outperforms traditional methods using
these databases under assessed various experimental situations, and suggest our
technique could be of practical use for clinicians in the future.

Keywords: ECG, RR interval, Atrial fibrillation, Nonlinear filter, Integer filter, Symbolic
dynamics, Shannon entropy

Background

Atrial fibrillation (AF) is recognized as the most common clinically encountered arrhyth-
mia in adults [1], which affects approximately 0.4% of the general population. The
prevalence of this tachyarrhythmia increases with age, with less than 1% affected in per-
sons under the age of 60 years and in excess of 6% for those over the age of 80 years [2,3].
Atrial fibrillation is associated with a high risk of stroke, heart disease (e.g., congestive
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cardiac failure), and cardiovascular mortality [1,4]. There is also a close relationship
between AF and obesity [5], obstructive sleep apnea [6], and long-term alcoholism [7],
which reciprocally bear cumulative risks for promoting the development of AF [1]. The
early identification of AF appears to be crucial for patients with cardiovascular disease,
especially for stroke patients to whom the secondary stroke prevention is of primary
importance.

Issues relating to clinical significance of rhythm classification and the impetus for
improving the accuracy of atrial tachyarrhythmia estimation have motivated the devel-
opment of innovative computerized AF detectors. Since the early 1980s, a series of
sophisticated methods have been investigated to cope with the challenges of AF detection
[8-25]. Most of which are based upon two main character traits of this type of arrhythmia
shown in a surface electrocardiogram (ECG): (i) RR (R-wave peak to R-wave peak) interval
irregularity (i.e., chaotic behavior of heart rate variability), and (i) P-wave absence (PWA)
or F-wave substitution (i.e., very low amplitude waveforms of odd morphologies) result-
ing from the abnormal rapid atrial activity (AA). Although P waves or cardiac AA can
be an alternative clue in the detection of AF, the absence or presence of P waves are not
readily identifiable as various types of high-intensity noise often coexist in ECGs, which
may lead to a low degree of predictive accuracy. In addition, the relationship between AA
in the surface ECG and the diverse mechanisms of AF has not yet been well delineated
[3]. Due to the challenges in detecting AA in ECG measurements, detection techniques
based on inferences from RR intervals are preferred to produce relatively robust outcomes
[21-23,25].

In this study, a reliable method for the fully automated detection of AF episodes from
surface ECGs is proposed. This method comprises of a three-pass procedure. The initial
pass, where a RR interval sequence is pre-processed with nonlinear and integer filters,
which aims to generate low/high scale reference sequences. The second pass, which aims
to obtain a symbolic sequence, where the information of the RR interval sequence is
subsequently compressed by the symbolic dynamics with sequences obtained from the
initial pass. Finally, Shannon entropy is used in the third pass, to calculate the entropy
of the symbolic sequence and thereby discriminate whether or not AF is present in the
current cardiac beat. Further methodological insight of present key points on the online
analytical processing of measurements through the recursive realization with respect to
beat-by-beat classification is discussed in the following sections. Ultimately, we quantitatively
investigate the performance of our newly developed technique to that of currently state-of-the-
art techniques with four widely used clinical databases under various experimental situations.

Methodology

Pre-processing of RR,, series

A. Median filter

A median filter is implemented by windowing the acquired data, ranking the samples in
the window, and outputting the median of the sorted samples. Considering a RR interval
(RR;,) sequence x, as shown in Figure 1(a), the output y, of this nonlinear filter is given by,

Yn = median{xnfw, Xyt )anrw} (1)

where the window is of a fixed width 2w + 1. From the perspective of signal processing,
the time delay of the median filter is w. A window size of 17 is used herein, with a delay
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Figure 1 Example for the application of this method for detecting AF. (a) Raw RR interval sequence x;
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of 8 samples. The introduction of a median filter brings about two advantages: (i) the
suppression of unwanted outliers, which are mostly caused by erroneously detected (or
missed) R-wave peaks; (ii) to preserve sharp edges (i.e., onsets and terminations of AF
episodes) without extensively blurring the context.

B. Integer filter for low scale reference
Subsequently, we filter the output y, of median filter with a low-pass filter of the form

—16

1 —
Hj(2) =

1o T @
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where, the gain is Gainl = 16 = 2%, and the intrinsic delay of Hj(z) is 7.5 samples.
This low-pass filter is applied to smooth y, resulting from the previous median filter-
ing. Another benefit of the low-pass filter is the removal of fluctuations possibly caused
by Respiratory Sinus Arrhythmia (RSA) phenomena around the current sample from
acquisition. Let x/,, be the output of this filter, as illustrated in Figure 1(b).

C. Integer filter for high scale reference
Another low-pass filter Hj,(z) is then applied to the resultant x/,, of the previous low-pass
filter H;(z),

1 732 _ ;=64 4 ,~9%
Hn(®) = 1—2z71+4272 ®)

where, the gain is Gain2 = 2048 = 2!, and the relevant delay of Hj(z) is 47
samples. This low-pass filter is introduced to generate a reference RR sequence of
a larger scale, which needs to be exploited in the definition of symbolic series as
explained in the following subsection. The resulting output denoted by %/, is shown in
Figure 1(c).

As we have seen, the time delays of x;,, and x/, are —62.5 and —47 samples with
respect to xh,, respectively. To ensure synchronization of the filtered data, let x; and
xl/n denote the corresponding time-delay corrected sequences of x;, and x/,, respec-
tively. Then, ARR,, = x|, — xl,, can be defined as the difference in time delay, seen in
Figure 1(d).

Symbolic dynamics of ARR,,

The purpose of employing symbolic dynamics is to describe the dynamic behav-
ior of ARR, with respect to xk,. Symbolic dynamics encodes the information as a
variation of RR, to a series with fewer symbols, with each symbol representing an
instantaneous state. The implemented thresholds can be defined as: threl = xh,, x 24
(with threl = xh, >> 4 ), thre2 = xh, x 273 (with thre2 = xh, >> 3 ), thre3 =
threl + thre2, thred = xh, x 272 (with thred = «xh, >> 2) and thre5 =
thred + threl. The mapping function of the symbol transform can therefore be

defined as,
if ARR,, < —thre4
else if ARR,, < —thre3
else if ARR,, < —thre2
else if ARR,, < —threl
else if ARR,, < threl
$Yn = (4)

else if ARR,, < thre3
else if ARR,, < thre4

0

1

2

3

4

5 elseif ARR, < thre2
6

7

8 elseif ARR, < thre5
9

other cases
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The raw RR sequence x,, is then quantified into symbol sequence sy, with specific sym-
bols from the predefined “alphabet” in Eq. (4) (i.e., O to 9). Recalling Figure 1(a)-(d) and
scanning the distribution of calculated symbols in Figure 1(e), we confirm that most of
normal beats are defined as zero symbols, and possible abnormal beats (arrhythmias, e.g.,
AF) are defined as non-zero symbols by the transform Eq. (4).

To facilitate the analysis of sy, the widely used 3-symbol template (i.e., a word consists
of 3 successive symbols) is applied to examine entropic properties. The word value can
then be calculated by a novel operator as defined below,

Wy = (yp—2 X 28) + (sy—1 x 2%) + sy, (5)

where, sy,_2 X 28 and SYu—1 X 2% are implemented with sy,_» << 8 and sy,—1 <<
4, and 0 < wv, < 2457. Figure 2 briefly elucidates the transformation of the symbol
sequence with the template and the corresponding word, while Figure 1(f) depicts the
word sequence of sy, shown in Figure 1(e).

Shannon entropy

Shannon entropy (SE) is a statistical tool that quantifies a time series in terms of the

information size. For the sake of completeness, we define the discrete probability space

of a dynamic system as A = (A|P) . The total number of elements in A is N. The

characteristic elements can then be defined as A = {ay,- - - ,ax}, as well as the relevant

probability set P = {p1,- - - , pr}(1 < k < N). Each element a; has probability p; = N;/N
k

(0 < pi <1,) pi = 1), where N; is the total number of the element 4; in A. Thus, the SE
i=1
of A is defined as [26],

k
H(A) =—) pilog, pi (6)
i=1

By Jensen’s inequality, we can prove H(A) < log, k < log, N with equality if p; = 1/N
and k = N for all i. Then, a uniform distribution of 7 (A) can be expressed as,

k
, 1
A)=——— i 1 i 7
B =15 ;p 0g, pi ?)
Symbol sequence(sy,): | syi—7 3 syi

2 4 2 4 2 4 4 3 8 4

424
242
Word transform : l

Vv h g hd Vv

578 | 1060 | 578 | 1060 | 580 | 1091 | 1080 | 900

Word sequence (wv,,): T wv;_7 T wy;

Figure 2 Schematic illustrating the symbol definition and the word transformation by Eq. (5).
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where, if N = 1, make log, N = 1. Eq. (7) is also referred to as the normalized entropy,
since the entropy is divided by the maximum entropy log, N. A coarser version of H'(A)
can be defined as,

k
, k
H'(A) = —WZpilogzpi (8)
i=1

Currently, the dynamic A consists of all 127 consecutive word elements from wv,_12¢
to wyy, (the bin size in this case is N = 127). By determining the characteristic set A and
the relevant probability set P with these elements, we can thus calculate the SE ' (A).
The presence of AF is then detectable, with the rhythm labeled AF if H'(A) exceeds a
discrimination threshold, and otherwise non-AF, which can be seen in Figure 1(g). We
utilize the training database to determine the optimal discrimination threshold by investi-
gating various threshold settings which lie within the range [0.0, 1.0]; the best performing
threshold of 0.353 is thus derived and employed for the performance assessment using
different testing databases.

Key issues of online processing

From Eq. (1)-(5) and (8), outwardly, this AF detection technique poses computational
challenges. However, these challenges can be overcome by implementing clever recursive
algorithms with beat-by-beat, real-time processing.

A. Pseudo-recursive median filtering

The median filter in Eq. (1) can be implemented with a so-called pseudo-recursive
method: for input x;, we define S = {s, 1: 1 < r < 2w + 1} as a sorted array of successive
elements from x;_3,_1 to x;_1, where the output y; is obtained by following steps @-@
below,

@ A Binary search technique is used to seek out the position m of the sample x;_2,—1
which will depart from the window (i.e., s, = x;_2y—1. Simultaneously, x; will get
into the window);

®  The Binary search technique is applied again to search for the position t at which
the input x; needs to be set (i.e., s < x; < S¢4+1);

® From positions m to t, the current s, is replaced with the adjacent s, 11 (the s’
indicates where the element is taken from the right or left, with the "y " and "_’
symbols representing the element to the right and left, respectively);

® Replace the element s; with x;;

® Median 5,41 of the updated S becomes output y;.

For the following input x;11, we repeat steps @ to ® and obtain the new output s,41
(i-e., ¥i+1), as shown in Figure 3, where the sorting utilizes the Binary search technique
twice. Comparing our technique with the traditional median filter, the computational
complexity can be decreased from approximately O(n?) to O(n).

B. Recursive implementation of integer filters
The recursive implementation (also referred to as the “difference equation”) of the filter
Hj(z) can be expressed as,

xly = xl,1 + Yn — Yu—16 9)
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S= 51 | Sme1 | Smo | Smel | e | S St | Se1 |t | S2wd
o TGAE sm = xi2w—1)
2 TGAf s <x <spp1)
(3) for (r=m; r<t; r++)
Sr = Sr+15
(4] S; = X;
(5] Output: sy,
i++ :

Figure 3 Schema of the pseudo-recursive median filtering (the rightward case).

The above equation, Eq. (9) includes 1 integer addition, 3 integer subtractions as well as
1 integer right-shift operation, when xl,, >> 4 (as Gainl = 2%) to offset the gain of H;(z).
The filter Hj,(z) can then be computed recursively using

xhy, = (xhy—1 X 2) —xhy_o
(10)
+ xly — xly—_32 — xly_6a + xly_96

where, xh,_1 x 2 is implemented with xk,_; << 1. The above equation, Eq. (10)
consists of 2 integer additions, 8 integer subtractions, 1 integer left-shift operation and
1 integer right-shift operation, when x/,, >> 11 (as Gain2 = 2'!) to offset the gain
of Hy(2).

C. Mapping the definition of — mp,— log, pi

Investigating the dynamic A, we immediately see that each characteristic symbol of each
bin N may have the probability p; = i/N (1 < i < N, ie, 1/N < p; < 1). Along these
lines, a probability array PiMap can be pre-calculated,

Cons
log, N

PiMap[127] {p1 log, p1,- -+, pe3 log, pes,

Pealogy pess - -+, p127 10%217127} (11)

,_
[

{7874, - -+ ,71790,71291, - - - , 0}

where, Cons = 1000000 is a constant such that decimal floating points can be con-

verted into integers and N = 127, and Y indicates to take the integer part of

Cons
each — log, NP log, p:.

Notably, for each cardiac cycle screened, this predefined PiMap permits the sole oper-

ation by picking the straightforward integer (i.e., PiMap[i]) from the set PiMap in
accordance with the index i rather than calculating —@pi log, p; using arithmetic
and logarithmic operations. The use of this predefined calculation significantly decreases
calculation times.

Page 7 of 18
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D. Recursive implementation of " (A)

We define a buffer array nu,,, (wv; < 2457) to store the number of the ith characteristic
element wv; in space A. For the input wv,, it will get into A (i.e., wv, will be the right-
most element), and simultaneously the leftmost element wv,_127 will depart from A, see
Figure 2 for clarity. It is obvious that a variation of SE H (A)is purely determined by nu,,,,
and nuy,y,_,,, in dynamic A. Therefore, H'(A) is calculated recursively by the algorithm
below,

® if wv,, = wv,_127 then sh; _ Sh/n,l

@ else
{ te_in = nuyy,;
te_out = nuyy, 1475
AUwy, 197 — 5
AUy, + +;

if nuyy,_,,, <0 then nuy,, ,, = 0;

shy, = sh,_,+
(PiMap| nuyy,] —PiMap| te_in] )+

(PiMap| nuyy,_,,,] —PiMap| te_out])

ifte in=0

{ if te_out > 1 orte_out =0 thenk + +; }

else
{ if nuwy, ,, =0andte out =1 thenk — —; }
}
Ol sh” = Lsh’
" 127000000

where sh/n and sh:l represent ' (A) and H' (A), respectively; * indicates that PiMap| i] =
0 is fixed for the case i = 0; and 127000000 = N * Cons = 127 x 1000000. For the next
input wv,11, steps @-@ are again executed to obtain sh;; 41- From an online processing
perspective, the time delays of sh:, are 64 and 126.5 samples with respect to x/, and x,,
respectively.

An architecture of the overall logic of the recursive realization can be seen in Figure 4.
By using recursive algorithms, this AF detector consists of several basic operations, such
as integer addition/subtraction, integer comparison and integer shifting. In effect, the
calculation of sh:l and distinguishing the current beat x,,, only needs to include 1 multi-
plication and 1 division lying within m -, together with 1 floating-point comparison
between sh; and a threshold. Consequently, a useful computational efficiency can be
achieved.
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Figure 4 Flowchart of the recursive realization of this detector for beat-by-beat assessing AF.

Materials and evaluation

Clinical ECG data sets

Performance of this new AF detection method is evaluated using four popular sets of clin-
ical ECGs (the Long-Term AF Database [LTAFDB], the MIT-BIH AF Database [AFDB],
the MIT-BIH Arrhythmia Database [MITDB], and the MIT-BIH Normal Sinus Rhythm
Database [NSRDB]) [27]. The LTAFDB database is used as the initial training set, while
the other three databases are used as the testing sets. The contents of these databases are
summarized in Table 1. All reference annotations of the four databases are examined in
this study.

Table 1 Four publicly-accessible sets of clinical data are selected for evaluation

Databases fs Total beats  Brief description
(Hz)  (AF beats)
8996056 [t consists of 84 long-term (typically 24 to 25 hours) ECG

LTAFDB 128
(5326145) recordings of subjects with paroxysmal or sustained AF.
It contains 25 long-term (10 hours) ECG recordings of subjects
1221574 with AF (mostly paroxysmal). Of which raw ECG data of two
AFDB 250 (519687) records (“00735" and “03665") are not available, and two
records (“04936" and “05091") include many incorrect reference annotations
109590 Itis a collection of 48 half-hour two-lead recordings which were
MITDB 360 (11496) arrhythmia obtained from 47 subjects and contains affluent
information, such as AF and AFL
1799523 Itincludes 18 long-term records of subjects. Each recording is
NSRDB 128 about 24 hours in duration. These records had no significant

©)
arrhythmias detected in this database
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Performance metrics
The performance of our newly developed algorithm and existing methods are investigated
in terms of sensitivity (Se), specificity (Sp), positive predictive value (PPV), and overall

accuracy (ACC),
TP TP
Se=————, PPV = ——,
TP + FN TP + FP (12)
TN TP + TN
Sp=———, ACC = +
TN + FP TP + TN + FP + FN

where, for a specific data set, TP (true positive) is the number of beats in AF which are
correctly detected as AF, TN (true negative) is the number of beats in non-AF which
are correctly detected as non-AF, FP (false positive) is the number of beats in non-AF
which are incorrectly detected as AF, and FN (false negative) is the number of beats in
AF which are incorrectly detected as non-AF. The proportion of beats in true AF which
are correctly identified as AF is represented by Se, while Sp represents the proportion
of beats in true non-AF which are correctly identified as non-AF, PPV represents the
proportion of algorithm results that are true positive, and ACC represents the overall
accuracy of our method. We consider Se and Sp as the main metrics, while PPV and ACC

are complementary.

Results and discussion

The values of SE H' (A) for AF (519687 beats) and non-AF (701887 beats) annotations
in the AFDB database (a total of 1221574 beats for all of the 25 records) can be seen in
Figure 5. It is apparent that #H"(A) discriminates AF well.

The receiver operating characteristic (ROC) curves are widely used in the medical field
to determine the optimal discrimination threshold for clinical tests. In this work, the
LTAFDB database is used as the training set to obtain the optimal threshold for our algo-
rithm. The threshold is tested from 0.0 to 1.0 in increments of 0.001 for the training set,

[ Non-AF (701887 beats)  [[] AF (519687 beats)

25k
400k

20k

300k " k

k
A)=——" Y pilog, pi
H(A) NlogzNi;p'ngp

15k

200k

Beat counts
Beat counts

10k

100k
Sk

sh, (a.u.)

Figure 5 Histogram distribution of the /" (A) for annotated AF and non-AF beats of the AFDB
database.
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and the values of Se, Sp, 1 — Sp, PPV and ACC are calculated for each threshold setting.
Thus we obtain the ROC curve, as shown in Figure 6. In the ROC space of Figure 6, « is
the point of the perfect classification, at which the Se and Sp are both equal to 100% and
b is the point of the best performance of our method on the ROC curve, at which it has
the shortest distance to a. We can thus determine the parameters at position b, where the
discrimination threshold is 0.353, and the values for Se, Sp, PPV and ACC are 96.72%,
95.07%, 96.61% and 96.05%, respectively. We therefore take the best performing thresh-
old value of 0.353 for quantitative assessment when our method is applied to other three
testing databases.

For our newly presented method, the statistical results from the testing sets AFDB,
MITDB and NSRDB databases are summarized in Table 2. Specifically, for the AFDB set,
the calculated Se, Sp, PPV and ACC parameters are 96.89%, 98.25%, 97.62% and 97.67%,
respectively. Examining the AFDB' set (" indicates records “00735” and “03665” omit-
ted), the parameters are 96.82%, 98.06%, 97.61% and 97.50%, respectively. For the AFDB*
set (* indicates records “04936” and “05091” omitted), the parameters are 97.83%, 98.19%,
97.56% and 98.04%, respectively. For the MITDB data set, the parameters are 97.33%,
90.78%, 55.29% and 91.46%. It is important to recognize that for MITDB data set, the PPV
value (55.29%) is low which indicates that many of the positive results are detected as
false positives using this testing procedure. Calculating the combined values from these
databases, the parameters are 96.89%, 98.27%, 92.30% and 98.03%, respectively for the
AFDB+NSRDB set, and 97.53%, 98.26%, 90.09% and 98.16% for the AFDB*+NSRDB set.
For the NSRDB set, the only calculated parameter Sp is 98.28%, as there is no manual AF
annotation in the NSRDB database.

The existing algorithms for the AF detection are also investigated using the same
databases (i.e., the same records and the same reference annotations), and using the
same evaluation metrics. Table 3 shows a collection of latest published results from prior

/ a: the perfect classification

1004 —~ ——ROC curve

\ b: the best performance """"" Random guess

80

At b:

60 -
Th* =0.353

Se  =96.72%

Se (%)

40 Sp =95.07%
' PPV =96.61%

20 ACC =96.05%

* indicates Threshold

T T T T T T
0 20 40 60 80 100

1—58p (%)
Figure 6 ROC curve of the training set of LTAFDB database when our method was applied with the

various threshold values from 0.0 to 1.0 in increments of 0.001. Based upon the results portrayed here,
the best performing threshold of 0.353 is used for performance assessment.
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Table 2 Statistical results of this method for three testing databases (at the threshold of

0.353)
X Results
Method Features Year Database Key techniques
Se(%) Sp(%) PPV(%) ACC(%)
AFDB 96.89 9825 97.62 97.67
AFDB' , 9682 9806 9761 9750
[ Nonlinear
AFDB* filter + integer 97.83 98.19 97.56 98.04
Thismethod — RRI 2013 MITDB , 9733 9078 5529 9146
——filters 4 symbolic
NSRDB ) NA 98.28 NA NA
- dynamics+SE
AFDB+NSRDB 96.89 9827 9230 98.03
AFDB*+NSRDB 97.53 98.26 90.09 98.16

*Records “00735” and “03665” omitted.
*Records “04936" and “05091” omitted.
‘NA" indicates not applicable because there is no beat with AF reference annotation in this database.

literature. The list is not intended to be exhaustive, and more complete investigations are
available in [19,28].

We first introduce the methods based on the variability of RR intervals (RRI)
[10,11,13,21-23,25].

Kikillus, et al [10] conducted a Markov modeling (MM) technique to identify AF. The
calculated test results of Se and Sp were 94.1% (+2.79%, values in parentheses are the
differences between our results and the reported results, hereinafter the same) and 93.4%
(+4.87%) for the AFDB+NSRDB database.

The method introduced by Dash, et al [11], relies on the combination of the root mean
square of successive differences (RMSSD), the turning points ratio (TPR) and SE. The
presence of AF using this method was considered if given conditions based on thresh-
olds were satisfied. For the AFDB¥ database, the calculated Se and Sp values were 94.4%
(+3.43%) and 95.1% (+3.09%), respectively; and 90.2% (+7.13%) and 91.2% (-0.42%) for the
MITDB set, respectively. When compared to our method with respect to the MITDB set,
the Sp is slightly better than our method, however, there is an unacceptably lower rate of
AF identification Se.

Tatento, et al [13] presented a novel technique using the Kolmogorov-Smirnov test. By
choosing the AFDB data set for evaluation, the calculated Se, Sp and PPV values were
94.4% (+2.49%), 97.2% (+1.05%) and 96.0% (+1.62%), respectively. Other researchers’ re-
investigated corresponding values were 91.20% (+5.69%), 96.08% (+2.17%) and 90.32%
(+7.30%) [19], respectively.

Lian, et al [21] developed an AF detector with its basis centered on the Map of RR
intervals versus change of RR intervals (RdR). For the AFDB and MITDB sets, the Se and
Sp values were 95.8% (+1.09%) and 96.4% (+1.85%), 98.9% (-1.57%) and 78.8% (+11.98%),
respectively. The calculated Sp for the NSRDB database was 90.0% (+8.28%) . By compar-
ison, when tested on the MITDB set, the Se is slight higher than that of our new method;
there is, however, a markedly lower rate of non-AF detection Sp.

An attractive approach to AF detection was initiated by Huang, et al [23]. It utilized a
histogram of ARR,, and standard deviation (SD) analysis. The calculated Se and Sp were
96.1% (+0.79%) and 98.1% (+0.15%), when the AFDB set was assessed. The calculated Sp
was 97.9% (+0.38%) for the NSRDB database. It provided the closest performance to that
of this newly proposed method, as can be seen in Tables 2 and 3.



Table 3 Overview of published results of the existing methods using the same databases

Result:
Method Features Year Database Key techniques esults
Se(%) Sp(%) PPV (%) ACC(%)
Lee, etal [25]" RRI 2013 AFDB*+NSRDB Sample entropy 97.26 9591 - 96.14
AFDB Al Nl - -
Huang, et al [23] RRI 2011 e Histogram+SD analysis+... % %8
NSRDB NA 979 NA NA
Lake, et al [22] RRI 2011 AFDB COSEn 91 94 - -
AFDB 95.8 96.4 - -
Lian, etal [21]" RRI 2011 MITDB Map of RdR 98.9 78.8 _ _
NSRDB NA 90.0 NA NA
Parvaresh, et al [20]" AR 2011 AFDB? LDA classifier 96.14 93.20 90.09 -
RRI/AA 2011~ 87.27* 9547* 92.75* -
Babaeizadeh, et al [16] / - AFDBT Markov
(FSA) 2009 92 - 97 -
RRI/AA 2011 96.58* 82.66* 78.76* -
Couceiro, etal [15] / - AFDB? Neural network classifier
(PWA/FSA) 2008 938 96.09 - -
RRI/AA 2011*
Schmidtetal [14] / _— AFDBT Markov+Templete matching+... 89.20* 94.58* 91.62* -
(PWA/FSA) 2008
* * 1.20* 08* .32* -
Tatento, etal [13] RRI 720} W AFDB Kolmogorov-Smirnov test o120 o608 203
2001 944 97.2 96.0 -
AA 2011*
Slocum, etal [12] [ AFDBT Power percentage 62.80* 77.46* 64.90* -
(PWA/FSA) 1992
AFDB* 944 95.1 - -
Dash, etal [11] RRI 2009 - RMSSD+TPR+SE
MITDB 90.2 91.2 - -
Kikillus, et al [10]" RRI 2007 AFDB+NSRDB Histogram+DIFF.+pNN200 94.1 934 - -

"The authors proposed several methods, in which, the method with the best performance is presented here.

*Records “00735” and “03665" omitted.

*Records “04936" and “05091" omitted.

*Reinvestigated in [19].

“'indicates without report. ‘NA’ indicates not applicable because there is no beat with AF reference annotation in this database. See text or relevant literature for abbreviation.
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Lee, et al [25] investigated three statistical techniques to determine the presence of
AF, and the best performance achieved when Sample entropy was employed. Using the
AFDB*+NSRDB data set, the calculated Se, Sp and ACC were 97.26% (+0.27%), 95.91%
(+2.35%) and 96.14% (+2.02%), respectively.

Parvaresh, et al [20] evaluated three classifiers for AF screening by using autoregressive
modeling (AR). Within this method, AR coefficients of 15-second segments of ECGs were
taken as features. When tested with the AFDB' set, the best performance occurred at
the so-called LDA classifier: the calculated Se, Sp and PPV were 96.14% (+0.68%), 93.20%
(+4.86%) and 90.09% (+7.52%), respectively.

Slocum, et al [12] published a method based on the reference of AA. The frequency
spectrum analysis (FSA) of the remainder generated by canceling the ventricular activity
from the surface ECG was applied for differentiating rhythms. Due to the lack of a con-
stant phase relationship between the atrial and ventricular activities, the performance of
this type of technique is not high. The AF detection method based only on AA showed
inferior performance as can be clearly seen from the Table 3: evaluated on the AFDB'
set, the calculated Se, Sp and PPV values were 62.80% (+34.02%), 77.46% (+20.60%) and
64.90% (+32.71%), respectively [19].

Other methods that take advantage of multiple character traits (i.e., RRI/AA and FSA/PWA)
have also been developed [14-16], and were re-investigated in [19]. Recent data consistently
indicates these techniques have relatively lower performance, as can be seen in Table 3.
The accuracy of multi-feature (or only AA feature) based techniques have been limited
by practical challenges encountered in the reliable determination of AA (and/or PWA).
Currently, a common rule of thumb is that, as a whole, the sole RRI based techniques
are likely to yield better results than those rely on making inferences from multi-feature
(or only AA feature) of the surface ECG, since the R-wave peak is the most prominent
characteristic trait of an ECG recording and the least susceptible to various kinds of noise.

It can be frequently difficult to determine a perfect discrimination threshold for AF
episode classification, and it is therefore worth performing further analysis to determine
whether the varying discrimination threshold settings significantly influence the per-
formance of our method. For the testing databases, the performance of our method is
investigated at various threshold settings. Discrimination threshold values from 0.20 to
0.50 in increments of 0.001 are tested for each of the data sets. Plots of the corresponding
results can be seen in Figure 7, where we clearly see that our new method is, preferably
performed with the threshold ranging from 0.30 to 0.36. It is sufficient to select a random
threshold in this range to investigate the performance of this method. Therefore, the cal-
culated best performing threshold value (i.e., 0.353), derived from the ROC curve of the
training set (i.e., LTAFDB database), is appropriate for performance evaluation.

In summary, the results of this study demonstrate that the combination of nonlinear/
linear integer filters, symbolic dynamics and SE yields a robust detector. This new detec-
tor exhibited a higher detection rate than previous methods. This could possibly lead to
incorporation into computerized ECG interpretation systems to improve the reliability of
arrhythmia classification.

A special issue on computational complexity
The computational time of our method is also investigated. Our technique is imple-
mented using the C++ programming language. Table 4 displays the computation time
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Figure 7 Distributions of Se, Sp, PPV and ACC with respect to various threshold settings when our
method was applied to different testing sets. (a) Results of the AFDB set; (b) Results of the AFDBT
database (" indicates records “00735" and “03665" omitted); (€) Results of the AFDB¥ database (* indicates
records “04936" and “05091" omitted); (d) Results of the MITDB database; (e) Results of the NSRDB database;
(f) Results of the AFDB+NSRDB database and (g) Results of the AFDB¥+NSRDB database.

Table 4 The computation time of the processing of this method

Databases Signal duration (sec) Computation time (sec)®
LTAFDB 6970560 (1936.27 hours) 11.09
AFDB 917052.96 (254.74 hours) 1.445
AFDB' 843688.72 (234.36 hours) 1353
AFDB* 843688.72 (234.36 hours) 1.406
MITDB 86666.67 (24.07 hours) 0.116
NSRDB 1574976 (437.49 hours) 1.825
AFDB+NSRDB 2492028.96 (692.23 hours) 3.258

*Records “00735” and “03665” omitted.

*Records “04936” and “05091” omitted.

SDesktop test environment: (a) hardware: Intel Pentium(R) Dual-Core E5800(3.20GHz)/DDR3 RAM (2GBytes,800MHz)/
HDD(7200rpm); (b) software: WINDOWS XP Professional/mingw32-g++/C++. The computation times are the average values
of 100 trials, and they include the time consumption for importing raw data from the HDD into the RAM.
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taken by our method while testing with the available databases. Detailed information of
the Desktop test environment can be seen in the footnote of Table 4. The computation
time of our method is significantly less than the total duration of all records in each
database, which indicates that the time consumption is negligible: typically about 0.116
seconds per 24 hours of data processed. Larburu, et al [19,28] investigated a variety of
existing methods processed on a computer server and they concluded that the method
proposed by Cerutti, et al [29] had the lowest computation time of approximately 0.36
seconds per 1 hour of data processed (using the AFDB set, the relevant Se, Sp and PPV
were 96.10% (+0.72%), 81.55% (+16.51%) and 75.76% (+21.85%) [19], see [19,28,29] for
details). This implies that our method is especially suitable in real-time, long-term ECG
monitoring. In addition, Big data is coming of age; our newly developed method shows
promise to be of practical use.

Benefits and limitations

In this study, we use a discrimination threshold of 0.353 for AF classification. Of note,
from Figure 7, increasing in threshold value improves Sp but decreases Se. By contrast, the
decreasing in threshold values improves Se but decreases Sp. A compromising solution is
thus necessary, and this makes it easy for one to apply specific threshold settings to the
concrete application. In spite of this, comparing the latest detection methods when testing
with each database, we confirm that a discrimination threshold of 0.353 is adequate to
permit better performance of this new method under various situations.

It is commonly asserted and accepted that there is a great deal of time-consuming rou-
tines involved in the assessment of AF due to the statistical analysis of irregular/chaotic
arrhythmia characteristics. Dramatic benefits can be achieved with the implementation
of this AF detector through properly designed recursive algorithms as well as a novel pre-
defined set —@pi log, p; for the calculation of " (A), which may markedly reduce
computational complexity.

The bin size N was set to 127 in this study because a small quantity of words inside a
small bin (« N), in general, might indeed reduce the accuracy of estimating the word
wy,, probability distribution [30]. However, for sporadic AF episodes of relatively short
duration (e.g., ten seconds), it might incur false negative detection, and this may be a
potential limitation. In this regard, it is an inherent technical difficulty that needs to be
overcome in the future, though AF episodes of very short duration are rare in practice.
Nevertheless, it is essential to remember this limitation.

Once again, as stated in the previous section, a small PPV calculated from the MITDB
database implies that this newly proposed approach needs to be further refined towards
a universally applicable method.

Conclusions

As currently available techiniques are only modestly effective in AF episode screening, we
developed a fully automated detection method which aims to fulfill two essential needs:
(i) earlier real-time identification of AF, and (i) higher reliability of detection. There-
fore, with a method available elsewhere for real-time R-wave detection [31], this newly
proposed method could be used in intensive care units. The online realization is easy
to implement and is computationally attractive as it consists of only several basic opera-
tions such as integer addition/subtraction, integer left/right -shifting, integer comparison,
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and multiplication and (/i/ivision lying only within m" as well as 1 floating-point
comparison between H (A) and the threshold for the rhythm classification. Several
state-of-the-art methods have been briefly reviewed, along with their methodologies and
detection accuracy. Our new method is evaluated and compared with these existing meth-
ods using the LTAFDB, AFDB, NSRDB, and MITDB databases under various situations.
We have also presented explicit tables for quantitative assessment of the performance and
computation times. Collectively, our results suggest that this AF detector outperforms
the existing methods with respect to the performance metrics Se, Sp, PPV and ACC. It is
also worth emphasizing that a few reference annotations of these data sets are themselves
imprecise, just as in the AFDB set. Therefore, extensive sets of exact reference annotations
are still needed for investigation.

Appendix

Please visit the “https://onedrive.live.com/?gologin=1&mkt=zh-CN#cid=498 A9A3CCEE
3B366&id=498A9A3CCEE3B366%21132” for the compiled C++ dynamic link library files
or contact the author for them.
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