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Abstract

Automatic and accurate identification of elbow angle from surface electromyogram
(sEMG) is essential for myoelectric controlled upper limb exoskeleton systems. This
requires appropriate selection of sEMG features, and identifying the limitations of
such a system.
This study has demonstrated that it is possible to identify three discrete positions of the
elbow; full extension, right angle, and mid-way point, with window size of only 200
milliseconds. It was seen that while most features were suitable for this purpose, Power
Spectral Density Averages (PSD-Av) performed best. The system correctly classified the
sEMG against the elbow angle for 100% cases when only two discrete positions (full
extension and elbow at right angle) were considered, while correct classification was
89% when there were three discrete positions. However, sEMG was unable to accurately
determine the elbow position when five discrete angles were considered. It was also
observed that there was no difference for extension or flexion phases.

Keywords: EMG signal, Pattern recognition, Feature extraction, Angular position, Arm
flexion/extension
Background
Exoskeleton systems of the arm have number of applications such as support for the

elderly, defense personnel, and people with skeletal injuries [1-3]. For effective applica-

tion of these devices, the user should be able to control them naturally and intuitively.

While there are number of options for commanding such systems such as the use of

mechanical sensors, brain computer interface and use of surface electromyogram

(sEMG) of the associated muscles, sEMG provides a natural and intuitive interface for

the user [3-9]. This can also offer the user with proportional control where the exo-

skeleton device can follow the body movement. However, the difficulty with such

sEMG based controlling strategies is the poor sensitivity and specificity, leading to

poor reliability.

The angle of the elbow is an important command of the exoskeleton of the upper

limb. To obtain this from sEMG recording requires the appropriate selection of sEMG

features which then have to be classified to identify the elbow angle. Different re-

searchers have used different features [10-14]. However, none of the researchers have

performed a comparative between all of these features.

Proportional control requires the system to identify the position of the body based

on the sEMG of the effective muscles. While some simple systems provide binary
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resolutions such as flexion and extension commands, this does not offer proportional

control, and is not intuitive [15-18]. There is the need for higher resolution where the

user is able to give finer commands to the exoskeleton device for performing the upper

limb actions. Higher resolution requires the classification system to have larger number

of classes. However, there is a tradeoff between the number of classes and the system

accuracy and reliability, and there is the need for determining the relationship between

the number of classes and the system accuracy.

The aim of this research was to determine the relationship between the classification

system sensitivity, specificity and accuracy for different resolutions of the elbow angles

(number of classes or number of arm positions), and determine the feasibility of high

resolution identification of the elbow angle. A comparison was performed between the

commonly used features of sEMG to select the most suitable feature set for the

proposed classification system. The accuracy, sensitivity and specificity of each of these

features in the recognition of the elbow angle were obtained. The relationship between

resolution (number of classes) and the accuracy, sensitivity and specificity of recogni-

tion of the position of the arm was studied.
Methods
The experimental protocol was approved by the Research Ethics Committee from São

Judas University, São Paulo, Brazil, by letter; COEP-USJT-No.076-2010, and in accordance

with the Helsinki accord (modified 2004). Seven able-bodied volunteer subjects (4 men

and 3 women), average age 34.6, participated in the experiment. They were verbally and in

writing explained the purpose of the experiments and the experimental protocol, and

experiments were performed after obtaining their verbal and written informed consent.

Before recording the data, the participants were allowed sufficient time to familiarize

themselves with the equipment and the protocol. Multiple trial runs were performed till

the volunteers were comfortable with the experiment.

Experiments

Equipment

A custom-made elbow angle monitoring device (Figure 1) was used to monitor elbow

angular position. This device restricts the movement of the arm at the elbow in the

horizontal plane and is fixed at the height of shoulder of the subject. A goniometer

records the angle between the upper arm and the forearm at the elbow. The users were

given visual feedback of the elbow angle on the screen throughout the experiment.

Two channel sEMG signals were recorded using Powerlab (AdInstruments), using

disposable pre-gelled bipolar surface electrodes (Noraxon). The ground electrode was

placed on the acromion point. The electrodes, for recording the biceps sEMG, were

placed above the motor point of the short head, on the line between the acromion and

the fossa cubit, at 1/3 from the fossa cubit. And the electrodes, for the lateral head of

the triceps, were placed on the middle of the line between the posterior crista of the

acromion and the olecranon at two finger widths lateral to the line. The inter-electrode

was maintained at 20 mm (center to center). The signal was sampled at 1000 Hz/channel

and filtered using eighth-order, switched-capacitance, Bessel type filter, range 20–500 Hz

and notch at 60 Hz.



Figure 1 Custom made elbow angle monitoring device.
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Experimental protocol

During the experiments, the angle of the elbow along with the sEMG from the biceps

brachii and triceps brachii was recorded. The participants were given continuous visual

feedback of the angle of the elbow.

During the experiment, the participant performed graded flexion/extension movements

with 10° shifts every 3 s, going from full extension position (0°) to 90° of flexion and

returning to the full extension position in the same way (Figure 2). The participants were

provided with audio cues for timing the movement. This procedure was repeated 3 times

for each volunteer, with 5 minutes rest period between experiments to ensure there was

no fatigue.

Signal processing

There are two possible techniques for determining the position of the arm from sEMG

recordings of the biceps and triceps muscles; dynamic or static. The dynamic relates to

the sEMG recorded when the arm is in motion and the muscle is producing the

motion, while the static is when the arm is not moving and the muscle activity is

isometric. In this situation, contractions above certain threshold are usually used, being

stronger than those used in dynamic movement without load [5,8,9].



Figure 2 Graded movement for arm flexion/extension showing elbow angular position as a
function of time.
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Segmentation

Good classification of the signal requires high signal to noise ratio. While isometric

contraction during relaxed, maintained position of the arm has very low muscle activity

because of which the signal to noise ratio becomes very poor, sEMG during the move-

ment is significantly higher, with higher signal to noise ratio. Thus, dynamic contrac-

tion phase during arm movement was selected for the purpose of signal analysis.

Researchers have identified delays need to be less than 250 ms for user satisfaction.

Analysis of the signal also showed that first 200 ms of each step movement [10] is con-

sistent and hence was considered for analysis. The signal was segmented; the 200 ms at

the start of each 10° shift movement was selected forming one of the data vectors in

each data class, and is indicated by two examples shown by the red regions in Figure 2.

The signal was normalized based on the maximum value in this range. It was then

labeled based on the angle of the elbow such as Bf10 being the 200 ms segment of

sEMG of the biceps obtained at the completion of the 10° flexion. Experimental class

set ups were defined in Table 1.

Feature extraction

Appropriate section of features to represent the sEMG signal is essential for accurate

identification of actions and movements [11,19]. While researchers have tested the effi-

cacy of number of features, few publications have compared the accuracy, sensitivity
Table 1 Angular interval variation for each class set up, for each movement phase

Number
of classes

Angular variation during Angular variation during

Flexion phase Extension phase

2-class set up 0° − 10°; 80° − 90° 90° − 80°; 10° − 0°

3-class set up 0° − 10°; 40° − 50°; 80° − 90° 90° − 80°; 50° − 40°; 10° − 0°

5-class set up 0° − 10°; 20° − 30°; 40° − 50°; 60° − 70°; 80° − 90° 90° − 80°; 70° − 60°; 50° − 40°; 30° − 20°; 10° − 0°
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and specificity of different features. In this work, 9 commonly reported features were

extracted. These are briefly described in Table 2, where, xk is the kth sample of a total

of N, in the window i of a total of I number of windows [10,12-14].

Linear discriminant analysis as classifier

Linear Discriminant Analysis (LDA) is a statistical method based on linear transforma-

tions of the data set, projected onto the directions that achieve the best class separabil-

ity. The goal is to maximize the between-class scatter matrix while minimizing the

within-class scatter matrix [20,21].

Wlda ¼ argmaxW
WTSbW

WTSwW
ð1Þ

According to Fisher criterion, the solution for the Equation 1, that defines the projec-

tion matrix Wlda, can be achieved as a typical problem of eigenvectors, which the solu-

tion are the eigenvectors and the eigenvalues of SbS−1w , with at most (g − 1) nonzero

eigenvalues, where g is the number of classes [20,21].

However, in practical applications, the within-class scatter matrix Sw can be singular.

This comes from the fact that, in general, the number of patterns in the training set Ni is

much smaller than the dimensionality d of the data set [20,21]. To deal with this singular-

ity problem, one of the methods in the literature, known as Regularized LDA (RLDA),

adds a constant α to the diagonal elements of the pooled matrix Sp (defined by Equation 2),
Table 2 Feature definition

Features Equations

Mean Absolute Value
MAVi ¼ 1

N

XN
k¼1

xkj j

Root Mean Square RMSi ¼
ffiffiffi
1
N

q XN
k¼1

x2k

Waveform Length WLi ¼
XN
k¼1

xk−xk−1j j

Willison Amplitude
WAMPi ¼

XN−1
k¼1

f xk−xkþ1j jð Þ

f xð Þ ¼ 1 x > xth
0 otherwise

� �

Zero Crossings
f k ¼ 1 xk xkþ1 < 0

0 otherwise

� �

ZCi ¼
XN−1
k¼1

f k

Autoregressive Model (AR)
yn ¼ −

Xp
k¼1

akxn−k þ wn

In this study, p = 6.

Power Spectral Density PSD fð Þ ¼ 1
N

XN
k¼0

xke−j2πf
�����

�����
Power Spectral Density Averages

PSDAvi ¼ 1
f k−f k−1

Z f k−1

f k

PSD fð Þdf

Power Spectral Density Moments PSDMoiy ¼
Z w

0
f yPSD fð Þdf

In this study, w = 250 Hz and y = 1,2,3
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where α is known as the regularization parameter. In this work, α ranged from 10-9 to 0.9,

interval defined in a previous study for class separability purposes [22].

SP ¼ Sw
N−g

ð2Þ

The analysis was first done when all the subjects were pooled together during train-
ing and testing. However, the results from the leave one out technique were very poor,

and this approach was discarded. Subsequently, the training was repeated for each sub-

ject individually, and these results have been shown in this paper. This also demon-

strates that there is significant variation between subjects, and indicates that it is

important for the classifier to be trained for each user.

Each feature (Table 2) applied over the 200 ms segment produced a vector correspond-

ing to each of the two muscles; biceps and triceps. These feature vectors were the input to

the LDA. Leave One Out method was used to validate the system, where the data set was

divided in groups of 2 samples for each class and each subject for training the LDA, while

the remaining sample was used for testing for each subject. This was repeated three times

to ensure there was no bias. The average of the three trials was obtained and is indicative

of the ability for the system to determine the elbow angle, taking into account the differ-

ences between multiple samples and the considered class set ups.

Results
The average accuracy, sensitivity and specificity achieved by each feature, for each

movement phase, and for each resolution (class set up) are shown in Table 3. From this

table it is observed that for resolution = 2 classes, PSD has the highest accuracy,
Table 3 Performance metrics (Se – sensitivity%; Sp – specificity%; Acc – accuracy%)

2-class set up 3-class set up 5-class set up

Se Sp Acc Se Sp Acc Se Sp Acc

PSD-Av
Flex 95 95 95 89 94 89 64 91 64

Ext 100 100 100 84 92 84 62 90 62

PSD
Flex 100 100 100 89 94 89 48 87 48

Ext 100 100 100 76 88 76 52 88 52

MAV
Flex 81 78 93 79 87 79 48 87 48

Ext 100 86 98 86 89 86 65 88 65

WL
Flex 100 78 95 76 88 76 50 88 50

Ext 100 86 100 79 90 79 51 88 51

RMS
Flex 85 79 88 62 81 78 51 87 51

Ext 100 86 100 75 87 79 62 88 62

AR
Flex 86 90 88 81 90 81 45 86 45

Ext 100 95 98 73 87 73 55 89 55

PSD-Mo
Flex 100 88 93 68 84 68 41 85 41

Ext 100 100 100 63 82 64 38 85 38

WAMP
Flex 59 50 64 46 72 46 27 82 27

Ext 75 73 79 57 76 57 27 82 28

ZC
Flex 75 68 81 52 73 52 33 82 33

Ext 45 45 50 41 67 41 24 81 24
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sensitivity and specificity for both movement directions (flexion and extension), while

ZC has the lowest.

From this table it is also observed that PSD-Av also has high sensitivity, specificity

and accuracy for classification of 2 (full extension and 90° flexion) and 3-class (inclu-

ding a half-way position class) set ups. However, for the configuration using 3 classes,

during extension phase, the accuracy is 84%, sensitivity = 84%, and specificity = 92%.

Such a system may not be suitable for applications where any error in recognizing the

command may cause injury to the user.

The results also show that the response of the system to classify 5-class set up decreases,

which shows that no sEMG feature of the biceps and triceps is suitable for accurately

identifying the elbow angle for exoskeleton control for higher resolutions. The results

were also confirmed by the Kappa based comparative statistics [23] to show the interob-

server variation and reported in Table 4. Based on the Cohen’s Kappa statistic value from

Table 4 and the study by Viera and Garret [23] it is shown that the Kappa value above

0.60 suggests the substantial agreement with the predicted and actual observation.

The scatter plots of the normalized PSD-Av of the triceps vs biceps are shown in Figure 3.

PSD-Av is a feature which consists of 16 parameters for each muscle, and was selected

because statistical analysis confirmed it to have the lowest error.

Figure 3(a) is a plot for 3 classes; 0°-10°, 40°-50° and 80°-90° while, Figure 3(b) is a plot

for 5 classes; 0°-10°, 20°-30°, 40°-50°, 60°-70° and 80°-90°. From these plots, it is observed

that there are significant differences in the 0°-10°, 40° -50° and 80°-90° classes, but there is

significant overlap when two additional classes; 20°-30°, and 60°-70° are added. This

demonstrates the limitation of such an approach for myoelectric exoskeleton systems.
Table 4 Kappa statistic results

Cohen’s Kappa statistics

2 class 3 class 5 class

PSD-Av
Flex 0.90 0.83 0.55

Ext 1.00 0.76 0.60

PSD
Flex 1.00 0.83 0.35

Ext 1.00 0.64 0.40

MAV
Flex 0.59 0.60 0.37

Ext 0.85 0.67 0.40

WL
Flex 0.74 0.64 0.38

Ext 0.85 0.69 0.41

RMS
Flex 0.73 0.42 0.33

Ext 0.84 0.62 0.42

AR6
Flex 0.76 0.71 0.31

Ext 0.95 0.60 0.43

PSD-Mo
Flex 0.86 0.53 0.26

Ext 1.00 0.45 0.23

WAMP
Flex 0.09 0.17 0.08

Ext 0.48 0.29 0.08

ZC
Flex 0.43 0.19 0.12

Ext 0.10 0.01 0.05



Figure 3 Example of scatter-plots of normalized PSD-Av data values during the flexion movement
phase for: (a) 3-class set up and (b) 5-class set up.
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Discussion and conclusions
The results show that sEMG system can be used effectively to identify the flexion and

extension of the elbow when we consider two state situations; arm at full extension,

and arm at 90° flexion. This work has also shown that when the number of classes of

classification increased to 3 classes, the system accuracy dropped, with sensitivity = 84%

and specificity = 92%. Such a system may be suitable for limited applications due to the

relatively low sensitivity, which could cause injury to the user.

When the number of classes was increased to 5-class set up, the error was higher com-

pared with the situation of 2 and 3-class set ups, with sensitivity = 64%, and specificity

= 91% in the best case. This indicates that sEMG classification is suitable for the identifi-

cation of small number of elbow positions but unsuitable for being used for high

resolution conditions. Poor sensitivity will frustrate the user and make the system non-

functional. One reason for poor sensitivity may be due to the narrow window of 200 ms.

However, this is essential because earlier studies have identified that delays greater than

250 ms causes observable delays to the user, and can be the cause of errors. The other

reason is the similarities between consecutives positions due to its discretization.

The results also showed that at small number of elbow positions, the performance of

most features was similar, but as the number become higher, none of them achieved

reasonable results. While relating sEMG with angles in between the extreme flexion

and extension did not give good results, however, it should be noted that nil error in

detecting full flexion and extension levels is not comparable with relatively higher er-

rors during the in-between steps. But the relatively large error highlights the relatively

limited applications of such an approach.

There are other options that may be considered as an alternate to a classification of

small number of sEMG channels; high density myoelectric recordings, mechanical

sensor system, a hybrid system, or the use of an intelligent myoelectric system where

model based approach may be used. While mechanical sensor systems have number of

shortcomings, the hybrid system that combines the sEMG with the mechanical sensors

may reduce the errors while providing the user with natural and intuitive control.
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Another approach, where the mechanical sensing may not be possible, is to develop an

intelligent system modeling the movement, such as is trained to estimate the speed of

the action of the user. In this approach, the system would be trained to estimate the

time of the action for an individual and assuming the movement to be continuous.

Such a system could provide an alternate for a myoelectric based proportional controller

system also known as tracking systems.
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