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Abstract

Background and purpose: There are no published studies on the parameterisation
and reliability of the single-leg stance (SLS) test with inertial sensors in stroke patients.
Purpose: to analyse the reliability (intra-observer/inter-observer) and sensitivity of inertial
sensors used for the SLS test in stroke patients. Secondary objective: to compare the
records of the two inertial sensors (trunk and lumbar) to detect any significant
differences in the kinematic data obtained in the SLS test.

Methods: Design: cross-sectional study. While performing the SLS test, two inertial
sensors were placed at lumbar (L5-S1) and trunk regions (T7–T8). Setting: Laboratory
of Biomechanics (Health Science Faculty - University of Málaga). Participants: Four
chronic stroke survivors (over 65 yrs old). Measurement: displacement and velocity,
Rotation (X-axis), Flexion/Extension (Y-axis), Inclination (Z-axis); Resultant displacement
and velocity (V):

RV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vx2 þ Vy2 þ Vz2ð Þ

p

Along with SLS kinematic variables, descriptive analyses, differences between sensors
locations and intra-observer and inter-observer reliability were also calculated.

Results: Differences between the sensors were significant only for left inclination
velocity (p = 0.036) and extension displacement in the non-affected leg with eyes open
(p = 0.038). Intra-observer reliability of the trunk sensor ranged from 0.889-0.921 for the
displacement and 0.849-0.892 for velocity. Intra-observer reliability of the lumbar sensor
was between 0.896-0.949 for the displacement and 0.873-0.894 for velocity. Inter-
observer reliability of the trunk sensor was between 0.878-0.917 for the displacement
and 0.847-0.884 for velocity. Inter-observer reliability of the lumbar sensor ranged from
0.870-0.940 for the displacement and 0.863-0.884 for velocity.

Conclusion: There were no significant differences between the kinematic records
made by an inertial sensor during the development of the SLS testing between two
inertial sensors placed in the lumbar and thoracic regions. In addition, inertial sensors.
Have the potential to be reliable, valid and sensitive instruments for kinematic
measurements during SLS testing but further research is needed.
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Introduction
Stroke is the most common cause of severe disability and the third-leading cause of

death in the western world which increases with age [1]. Imbalance is one of the major

resulting symptoms of stroke survivors [2]. Imbalance is defined as body instability

(static and dynamic) [2]. It increases the difficulty of daily activities for stroke patients

and thus reduces their independence [3].

Within the clinic, diverse functional tests are used to measure the balancing cap-

ability of subjects [4,5]. A balance test, known as the single-leg stance test (SLS), is

widely used for diagnosis and monitoring of patients in research and clinical settings.

Owing to its simplicity, high-reliability and low cost [6-8]. SLS tests have been used

to assess balance and postural control in patients that have had a stroke [9-11]. How-

ever, the main result of this test (seconds) is greatly enriched if supplemented with

kinematic records, which analyse objectively the subject movement during the test.

Inertial sensors are frequently-used instruments for kinematic analysis of positions

and movements [3,12,13]. Inertial sensors which are portable, non-invasive, highly-

accurate instruments and without side-effects can be used to measure the kinematic

parameters of gestures [12,13]. They have a range of validity of 0.657–0.998 [12] and

reliability of 0.84–0.97 [3]. These features have favoured its used in basic and clinical

research.

The parameterisation of simple functional tests via the insertion of instruments

into everyday devices such as smartphones and watches, could have enormous cli-

nical potential in the diagnosis, assessment and monitoring of patients with chronic

diseases [12,14,15].

Some common locations for placing the inertial sensors are: the centre of mass

[16,17], or trunk [18-20]. However, there are no published studies analysing which of

the two places is best for kinematic recording during SLS testing. Furthermore, no

study has been found that analyses the reliability of parameterisation of SLS testing in

stroke patients.

The main objective of this study was to analyse whether there are significant differ-

ences in kinematic records between two inertial sensors (one positioned on the trunk

and another placed in the lumbar region) during an SLS test. In addition, a second ob-

jective of the study was to analyse the reliability (intra-observer/inter-observer reliabil-

ity) and sensitivity of inertial sensors used for the SLS test and to specify parameters

for the SLS test when it is conducted using inertial sensors in stroke patients. We

hypothesised that there would be significant differences between kinematic data from

the two different sensor locations (trunk and lumbar region) during the SLS test. More-

over, inertial sensors would prove to be a reliable tool when used for the kinematic ana-

lysis of postural control in stroke patients.

Methods
Design and participants

This study was a cross-sectional study that involved four participants that had previ-

ously had a stroke. Inclusion criteria for participants were: age ≥65 years; more than

6 months post diagnosis of stroke; capable of walking at least 15 m without the aid of

a walker; capable of following verbal instructions and able to stand for >30 seconds

without assistance. Exclusion criteria for participants were: people with severe hemi-
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neglect; history or current diagnosis of other neurological or musculoskeletal impair-

ment or pain. No racial/ethnic-based differences were present.

Ethical approval for the study was granted by the Ethics Committee of the Faculty of

Health Sciences, University of Malaga. The study complied with the principles laid out

in the Declaration of Helsinki.

Before the SLS test, each participant was given an information sheet and provided in-

formed consent for participation. Participants were informed that participation was volun-

tary and they could withdraw at any point. They were also assured that their personal

data would be treated in accordance with the Organic Law of Protection of Personal Data.

Inertial sensors

The inertial sensors (IS) used in this study were the InertiaCube3 model (InterSense

Inc., Bedford, MA, USA) with a sampling frequency of 180 Hz. The InertiaCube3 is a

small sensor (26.2 mm × 39.2 mm × 14.8 mm), based on micro-electro-mechanical

systems (MEMS) technology and does not incorporate castors, which might generate

noise, inertial forces and increase the risk of mechanical failure. The InertiaCube3

measures nine physical properties simultaneously, namely: angular rates, linear accele-

rations and magnetic field components along the three axes (yaw, pitch and roll).

Miniature vibrating elements are used to measure all angular velocities and linear

accelerations.

Two inertial sensors were placed in the trunk (T7– T8) and in lumbar (L5–S1) regions

to collect kinematic data whilst the patient was performing the test (Figure 1). The IS

were fixed to the skin using double adhesive and reinforced with inextensible tape
Figure 1 Localization of the inertial sensors.
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surrounding the entire diameter of the trunk or the lumbar region of each participant.

Movement recording started 3 s before the patient started the SLS and finished 3 s

after the patient had completed the test to allow the identification of the start and the

end of the test in the kinematic record.

Sensors were positioned so that the origin of the coordinates was in the postero-

inferior left corner (Figure 2).

After data collection had been completed we extracted kinematic data (direct and in-

direct) offline from all the graphs generated during the SLS test by all of the parti-

cipants (Figure 3).

Procedure: single-leg stance (SLS) test

To perform the SLS test, each participant must remain supported on one leg, arms

resting on the hips. The test is timed (in seconds) from the moment the participant

gets into the test position, until the other foot touches the ground or until the arms are

separated from the hips [21].

Slight modifications to the protocol were made to standardise the implementation of

the test for all participants. To ensure the safety of participants (who all had a dimi-

nished sense of balance) two researchers stood in front of and behind each patient to
Figure 2 Origin of the coordinates in the inertial sensors.



Figure 3 Example of graphs generated during the SLS.
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ensure safety in the event of serious instability which might result in a fall. Although

the patient stood on the floor, he or she was surrounded by mats to minimise the

negative effects of any fall. The time record began when the opposite foot of leg

support was lifted from the floor until the foot touched the other leg or the ground,

losing the balance [22,23]. At the start of the test the patient was instructed to lift

one leg with a knee flexion of 90 degrees, and to retain this static single-leg stance

for 30 seconds [22-24].

The SLS test was carried out three times for each condition and in the following

order: non-affected leg, eyes open; non-affected leg, eyes closed; affected leg, eyes open

and affected leg, eyes closed. The resting time between each repetition was 150 seconds

and they were allowed to sit during rest period. Patients were given the opportunity to

practise as many times as they wanted to in order to make sure they understood how

to perform the SLS test.

Before the test, patients stood in a relaxed position on two legs. We explained and

demonstrated the test to help patients understand what was required of them. It has

been reported that the reliability of the SLS test is 0.89 and 0.86 with eyes opened and

closed, respectively, in elderly people [25].

Each participant performed the same protocol twice on two different days. The raters

that supervised the protocols were different on the first and second day.

Variables

The variables measured in the present study were 136 variables in total (72 displacement

variables and 64 velocity variables); 9 displacement variables in each condition (4 condi-

tions) in each inertial sensor (lumbar and trunk) and 8 velocity variables in each condition

(4 condition) in each inertial sensor (lumbar and trunk).

Displacement: Rotation (left/right side): maximum positive displacement (right) and

negative displacement (left) relative to the X-axis. Flexion/extension: maximum positive

displacement (flexion) and negative displacement (extension) relative to the Y-axis.
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Inclination (left/right side): maximum positive displacement (right) and negative (left)

relative to the Z-axis. Mean displacement: mean displacement of each axis (X, Y, Z).

Velocity: Rotation (left/right side): maximum positive velocity (right) and negative

velocity (left) relative to the X-axis. Flexion/Extension: maximum positive velocity

(flexion) and negative velocity (extension) relative to the Y-axis. Inclination (left/right

side): maximum positive velocity (right) and negative velocity (left) relative to the Z-

axis. Resultant velocity: the resultant velocity (V) vector was calculated using the

formula:

RV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vx2 þ Vy2 þ Vz2ð Þ

p

Data analysis

We analysed anthropometric measurements and the data obtained from various self-

report questionnaires designed for use in patients with neurological impairments. We

also made a descriptive analysis of the kinematic data from the two inertial sensors

(trunk and lumbar).

The Kolmogorov-Smirnov (K-S) test was used to assess the distribution of kinematic

data. Following this we compared data from the trunk and lumbar sensors the normally

distributed data was analysed using the parametric student t-test and non-normally dis-

tributed data was analysed using the non-parametric Wilcoxon’s test. A significance

threshold of p ≤ 0.05 was used.

Reliability measures were calculated by analysing the internal consistency (intra-class

correlation coefficients (ICC 3,1) were calculated for intra-observer and inter-observer

reliability) of the measures with 95% confidence intervals for each outcome variable.

Reliability was classified as follows: excellent (ICC > 0.80), good (0.80 > ICC > 0.60),

moderate (0.60 > ICC > 0 .40), or poor (ICC < 0.40) [26].

Data analysis was performed with SPSS (version17.0 for Windows; SPSS Inc., Illinois,

and USA).

Results
The sample was 4 participants. The mean age of the participants was 76.7 (±3.44) years.

The values of the various functional tests that the participants completed are also given.

These were intended to identify the degree of balance impairment suffered by the

participants as a consequence of their stroke (Canadian Neurological Scale: 8.5 ± 0.41;

Barthel index 92.5 ± 6.46 and Stroke Impact Scale-16, 67 ± 7.83).

The ICCs were higher than 0.847 (95% CI: 0.836–0.860) for all variables. Intra-

observer reliability of the trunk sensor ranged from 0.889-0.921 for the displacement

and 0.849-0.892 for velocity. Intra-observer reliability of the lumbar sensor was be-

tween 0.896-0.949 for the displacement and 0.873-0.894 for velocity. Inter-observer re-

liability of trunk sensor was between 0.878-0.917 for the displacement and 0.847-0.884

for velocity. Inter-observer reliability of the lumbar sensor ranged from 0.870-0.940 for

the displacement and 0.863-0.884 for velocity. Other values for reliability of the vari-

ables are presented in Table 1.

Tables 2 and 3 show mean values for displacement and velocity. Results are shown as

a function of the sensor location (trunk or lumbar), supporting leg (affected or non-

affected leg) and test performed (SLS test, eyes open: Table 2; SLS test, eyes closed:
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Table 3). The tables show differences between inertial sensors. There were significant

differences in leftward inclination velocity (p = 0.036) and extension displacement for

the non-affected leg (p = 0.038), eyes open condition.
Discussion
The objectives of this study were to analyse the reliability of inertial sensors during the

parameterisation of SLS tests in stroke survivors and to compare data from two diffe-

rent sensor locations (trunk and lumbar) in terms of the kinematic variables measured

in the SLS test. Our hypotheses were partially confirmed; inertial sensors proved to be

reliable, instruments for the measurement of kinematic data during the SLS test. How-

ever, of the 68 kinematic variables analysed, only two (extension displacement and left-

ward rotation displacement in the non-affected leg, eyes open condition) showed

significant differences between the sensor locations. That result tends to disprove our

second hypothesis, that there would be differences in the kinematic data related to the

location of the sensor.
Table 1 Intra-observer and inter-observer reliability of variables measured directly
during single leg stance test (SLS)

Trunk Lumbar

Intra-observer Inter-observer Intra-observer Inter-observer

Variable ICC IC (95%) ICC IC (95%) ICC IC (95%) ICC IC (95%)

Min. Max. Min. Max. Min. Max. Min. Max.

Left rotation
Displacement (°)

0.912 0.891 0.928 0.908 0.887 0.920 0.927 0.905 0.948 0.915 0.901 0.927

Right rotation
Displacement (°)

0.903 0.882 0.914 0.900 0.892 0.911 0.922 0.910 0.933 0.909 0.900 0.917

Rotation Mean
Displacement (°)

0.921 0.907 0.931 0.917 0.907 0.926 0.937 0.920 0.955 0.928 0.909 0.941

Flexion Displacement (°) 0.889 0.870 0.903 0.879 0.840 0.901 0.897 0.879 0.915 0.889 0.878 0.903

Extension Displacement (°) 0.902 0.884 0.919 0.892 0.883 0.900 0.913 0.896 0.930 0.903 0.892 0.918

F/E mean Displacement (°) 0.893 0.880 0.899 0.878 0.867 0.899 0.896 0.886 0.908 0.870 0.861 0.884

Right inclination
Displacement (°)

0.908 0.901 0.925 0.901 0.886 0.908 0.933 0.929 0.941 0.926 0.909 0.941

Left inclination
Displacement (°)

0.915 0.902 9.31 0.903 0.891 0.923 0.949 0.923 0.960 0.940 0.927 0.958

R/L mean inclination
Displacement (°)

0.909 0.898 0.927 0.898 0.883 0.910 0.928 0.910 0.940 0.907 0.896 0.919

Left rotation Velocity (°/s) 0.873 0.865 0.880 0.862 0.854 0.879 0.892 0.879 0.909 0.884 0.868 0.911

Right rotation Velocity (°/s) 0.863 0.852 0.870 0.860 0.849 0.874 0.888 0.873 0.901 0.880 0.870 0.891

Flexion Velocity (°/s) 0.881 0.870 0.902 0.874 0.861 0.886 0.879 0.863 0.892 0.863 0.852 0.871

Extension Velocity (°/s) 0.892 0.881 0.903 0.884 0.870 0.896 0.890 0.881 0.903 0.882 0.870 0.903

Right inclination
Velocity (°/s)

0.855 0.843 0.867 0.849 0.831 0.862 0.873 0.861 0.887 0.869 0.855 0.878

Left inclination
Velocity (°/s)

0.849 0.840 0.861 0.847 0.836 0.860 0.881 0.869 0.897 0.879 0.863 0.892

Resultant Velocity Right
Side (°/s)

0.860 0.848 0.871 0.857 0.849 0.867 0.890 0.882 0.905 0.879 0.866 0.895

Resultant Velocity
Left Side (°/s)

0.873 0.865 0.884 0.869 0.860 0.880 0.894 0.876 0.911 0.882 0.870 0.899



Table 2 Mean values of the kinematic variables during one single leg stance test
(eyes open)

Non-affected leg Affected leg

Lumbar
(sd)

Trunk
(sd)

Difference
(sd)

p
value

Lumbar
(sd)

Trunk
(sd)

Difference
(sd)

p
value

Left rotation
Displacementa (°)

13.74
(±12.54)

5.92
(±2.00)

7.82
(±7.33)

0.352 11.54
(±11.90)

7.52
(±7.97)

4.03
(±8.02)

0.421

Right rotation
Displacementa (°)

2.72
(±4.75)

−0.79
(±3.06)

−1.94
(±3.26)

0.067 21.44
(±21.23)

13.24
(±3.81)

−8.20
(±12.69)

0.276

Rotation Mean
Displacementa (°)

7.70L 46.61R −38.91 0.318 7.07R 2.08L −4.99 0.392

(±10.12) (±73.97) (±43.10) (±25.30) (±7.26) (±15.38)

Flexion
Displacementa (°)

3.28
(±9.83)

2.06
(±6.29)

1.22
(±6.74)

0.513 2.18
(±4.31)

5.65
(±2.58)

−3.53
(±2.84)

0.441

Extension
Displacementa (°)

2.63
(±2.86)

3.14
(±1.79)

5.77*
(±1.95)

0.038 3.78
(±3.47)

1.85
(±2.09)

−1.94
(±2.29)

0.129

F/E mean
Displacementb (°)

1.80F
(±3.58)

0.46F
(±4.51)

4.34
(±3.32)

0.462 0.49E
(±2.93)

0.06F
(±3.41)

−0.54
(±2.39)

0.295

Right inclination
Displacementb (°)

4.55
(±6.75)

8.12
(±2.94)

−3.57
(±4.25)

0.378 14.93
(±6.20)

8.46
(±5.13)

6.48
(±4.65)

0.221

Left inclination
Displacementa (°)

7.55
(±2.36)

−2.25
(±0.59)

−5.30*
(±1.41)

0.083 3.86
(±9.60)

0.45
(±9.32)

−3.41
(±6.41)

0.349

R/L mean inclination
Displacementa (°)

0.45R
(±4.22)

2.45R
(±3.59)

−2.00
(±3.20)

0.471 16.77R
(±20.27)

2.17R
(±5.78)

14.59
(±12.31)

0.319

Left rotation
Velocityb (°/s)

44.17
(±26.91)

37.25
(±14.22)

6.93
(±17.34)

0.403 41.65
(±18.28)

38.22
(±25.45)

3.43
(±16.37)

0.177

Right rotation
Velocityb (°/s)

44.46
(±22.68)

36.06
(±13.48)

−8.40
(±14.91)

0.377 45.81
(±17.43)

41.13
(±22.62)

−4.68
(15.02)

0.512

Flexion Velocitya

(°/s)
30.85
(±15.36)

32.56
(±20.36)

−1.71
(±13.39)

0.279 30.69
(±23.91)

41.72
(±25.30)

−11.04
(±18.69)

0.451

Extension Velocitya

(°/s)
31.78
(±22.38)

36.72
(±25.62)

4.94
(±18.12)

0.227 21.86
(±18.44)

34.74
(±34.19)

12.88
(±19.79)

0.286

Right inclination
Velocityb (°/s)

37.75
(±19.90)

36.52
(±24.97)

1.22
(±16.85)

0.186 25.07
(±9.32)

41.06
(±22.51)

−15.99
(±12.19)

0.313

Left inclination
Velocityb (°/s)

30.2
(±13.70)

27.73
(±16.14)

−2.47
(±11.25

0.036 41.68
(±51.46)

61.69
(±25.59)

21.02
(±32.82)

0.315

Resultant Velocity
(°/s) Right Sidea

66.37
(±33.96)

63.13
(±30.55)

3.24
(±24.93)

0.483 60.21
(±23.76)

77.77
(±7.40)

−17.56
(±14.51)

0.229

Resultant Velocity
(°/s) Left Sidea

62.28
(±28.37)

61.71
(±22.64)

0.57
(±20.03)

0.384 69.67
(±50.68)

88.76
(±23.97)

−19.09
(±18.50

0.293

a:parametric variables.
b:non-parametric variables.
Bold: main values of the variables.
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Inertial sensors are tools frequently used in clinical practice and research [13]. They

are validated tools [27] and easily accessible because they are commonly found in quo-

tidian devices such as smartphones for example [12,14,15]. These features increase the

potential for their use in clinical research, such as the study presented here [12]. Due

to the features of the sensors it could be to identify cut points to implement assessment

and monitoring in people with stroke.

Moreover, the measurements made with inertial sensors allowed us to analyse the

motion in angular displacement, velocity and acceleration. These results are well-

aligned with the clinical need to define balance sub-divisions: stability and sway [28].

The main values of the kinematic variables could be used to define the first balance



Table 3 Mean values of the kinematic variables during one single leg stance test
(eyes closed)

Non-affected leg Affected leg

Lumbar
(sd)

Trunk
(sd)

Difference
(sd)

p
value

Lumbar
(sd)

Trunk
(sd)

Difference
(sd)

p
value

Left rotation
Displacementa (°)

24.7
(±15.15)

12.56
(±2.61)

12.15
(±9.05)

0.364 22.66
(±11.42)

25.19
(±20.27)

−2.53
(±13.66)

0.271

Right rotation
Displacementa (°)

1.07
(±5.27)

−2.75
(±3.95)

3.82
(±3.66)

0.198 24.39
(±7.73)

18.55
(±15.54)

−5.84
(±10.02)

0.156

Rotation Mean
Displacementa (°)

13.61R
(±9.87)

9.89R
(±5.58)

3.73
(±6.43)

0.252 2.71L
(±8.84)

3.58R
(±4.37)

−6.29
(±6.97)

0.304

Flexion Displacementa

(°)
10.21
(±2.24)

11.56
(±4.50)

−1.35
(±2.55)

0.235 6.40
(±2.39)

12.56
(±5.69)

−6.16
(±3.49)

0.227

Extension
Displacementb (°)

1.73
(±4.04)

0.58
(±2.90)

1.15
(±2.77)

0.185 6.38
(±2.30)

5.47
(±0.88)

−0.91
(±1.47)

0.241

F/E mean
Displacementb (°)

7.19F
(±1.08)

5.16F
(±2.37)

2.03
(±1.31)

0.401 1.10F
(±1.53)

2.87F
(±2.83)

−1.77
(±1.88)

0.463

Right inclination
Displacementa (°)

3.42
(±4.16)

1.98
(±3.79)

1.44
(±3.07)

0.311 19.29
(±8.39)

15.73
(±4.17)

3.56
(±5.67)

0.315

Left inclination
Displacementa (°)

13.52
(±12.29)

10.36
(±8.02)

−3.16
(±8.24)

0.106 18.23
(±20.76)

22.63
(±22.44)

4.40
(±19.48)

0.085

R/L mean inclination
Displacementb (°)

5.01L
(±7.32)

7.19L
(±6.24)

2.18
(±5.28)

0.245 3.56R
(±7.05)

4.96L
(±16.31)

8.52
(±10.07)

0.144

Left rotation
Velocitya (°/s)

45.57
(±20.90)

50.93
(±20.39)

−5.37
(±15.81)

0.315 24.27
(±8.80)

20.91
(±1.33)

3.36
(±6.60)

0.217

Right rotation
Velocitya (°/s)

34.81
(±8.16)

36.69
(±10.84)

1.88
(±7.12)

0.315 47.28
(±43.14)

30.81
(±11.75)

−16.47
(±32.74)

0.279

Flexion Velocityb (°/s) 23.89
(±12.31)

40.81
(±34.54)

−16.93
(±18.21)

0.189 23.50
(±3.44)

32.19
(±8.23)

−8.69
(±5.04)

0.241

Extension Velocityb (°/s) 40.45
(±40.23)

44.52
(±38.84)

4.07
(±30.31)

0.401 37.33
(±15.02)

62.29
(±50.56)

24.96
(±28.90)

0.199

Right inclination
Velocitya (°/s)

54.15
(±65.3)

50.44
(±52.02)

3.71
(±46.09)

0.316 49.44
(±23.75)

48.20
(±23.41)

1.24
(±21.58)

0.337

Left inclination
Velocitya (°/s)

23.61
(±12.57)

29.42
(±10.58)

5.81
(±9.02)

0.176 41.79
(±16.00)

55.83
(±4.50)

14.04
(±12.16)

0.294

Resultant Velocity (°/s)
Right Sideb

171.84
(±244.1)

111.04
(±42.30)

60.80
(±145.85)

0.092 60.85
(±21.84)

62.16
(±21.97)

−1.31
(±19.97)

0.131

Resultant Velocity (°/s)
Left Sideb

61.13
(±37.42)

66.63
(±34.11)

−5.20
(±27.60)

0.285 76.66
(±39.85)

93.23
(±34.97)

−16.56
(±34.96

0.341

a: parametric variables.
b: non-parametric variables.
Bold: main values of the variables.
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sub-division (stability), while the peak of the kinematic variables could be useful to esti-

mate the second balance sub-division (sway).

Differences between sensors

Analysis of the data recorded by sensors in both locations revealed significant location dif-

ferences in only 2 of 68 measured variables which are: displacement in extension and left-

ward rotation for the non-affected leg, eyes open condition. one might therefore argue

that the exact location of the sensor does not matter for recording kinematic data during

the SLS test. These results are consistent with previously published studies [29-31]. The

consistency in angular measurement has been observed across several conditions: using

an angular displacement sensor to test static balance (present study), semi-static
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functional testing [29], dynamic movement [30] and for angular velocity, where there was

no difference between the stem, lumbar, thorax or foot insole sensors [31].

In different studies consulted, the location of the inertial sensors used to analyse differ-

ent kinematic variables, has been very uneven, placing sensors in the thorax and foot in-

soles [31], foot and thigh [30] and lumbar and trunk (present study). However, the

consistency in recording kinematic variables is maintained regardless of sensor location.

We therefore conclude that there is no significant difference in kinematic data re-

corded in the lumbar and trunk regions when recordings are made with a single inertial

sensor in either of these two locations for the purposes of the SLS test.

Reliability

We observed excellent reliability in kinematic parameters measured during the SLS test

using inertial sensors placed in the trunk and lumbar regions. The reliability values we

obtained are consistent with other studies that used inertial sensors in different loca-

tions and tests [12,17,32].

Reliability values in this study are consistent with the results in other studies [12],

but the detailed analysis revealed some points of interest. Lugade and colleagues [17]

reported that the intra-observer reliability of measurements in the standing position

was 0.96 (95% CI: 0.86–0.99); a range that is in line with the results presented in the

present study, where the maximum displacement value ranged from 0.849 (intra-obser-

ver reliability for mean left inclination velocity: trunk sensor), to a maximum value of

0.949 (intra-observer reliability for left inclination: lumbar sensor). However, the reli-

ability values reported by Lugade and colleagues [17] for transition velocity are different

from the values observed in the present study (minimum ICC = 0.847 for inter-

observer reliability in left inclination: trunk sensor). One explanation for the discrep-

ancy between these findings related to the characteristics of the test used. The SLS test

required the subject to maintain balance, thus variations in movement and velocity are

constrained by this requirement which narrows the range of these variables consider-

ably; whereas Lugade and colleagues analysed movements in various conditions (walk-

ing, jogging, stair-climbing, recumbent).

Although both reliability (intra-observer and inter-observer) was excellent for both

displacement and velocity, there was a decline in reliability of velocity with respect to

displacement, with a maximum displacement reliability of 0.949 (intra-observer reliabil-

ity in left rotation: lumbar sensor) compared to 0.847 (inter-observer reliability in left

inclination: trunk sensor) for velocity. Our data about the reliability of displacement

measurements are consistent with previous findings [32]. In this study, velocity reliabil-

ity was higher than displacement reliability (0.985 vs. 0.90), whereas in our study the re-

liabilities were similar. In the present study the lowest reliability was observed for inter-

observer reliability in left inclination at the trunk sensor (0.138).

The reliability values observed in this study demonstrate that inertial sensors are suit-

able for the measurement of kinematic variables, such as velocity and angular displace-

ment, in a static equilibrium test. These results complement those published from a

previous study [33], which reported that inertial sensors reliably measured kinematic

parameters during well-defined gestures (left and right trunk rotation; flexion and ex-

tension; inclination), which required the subject to maintain a semi-static balance

position.
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Strengths and weaknesses

One of the strengths of this study is that it provides the first report of instrumental

measurement in the SLS test, a balance test widely used in clinical practice. Stroke pa-

tients were a suitable population in which to assess the sensitivity of inertial sensors in

this type of functional test, as this population is known to display balance impairments.

Replication of these findings with a larger sample would confirm our results.

Conclusions
Clinicians and researchers criticize measuring balance from above the centre of gravity.

The data obtained in the present study suggests that measuring at thoracic level is con-

sistent with measuring at lumbar, so to measure kinematic variables during SLS testing,

the location of the IS between trunk and lumbar region is not relevant. In addition, the

present study shows that inertial sensors have the potential to be reliable, valid and sen-

sitive instruments in the context of the SLS test but further research is needed to con-

solidate the results presented in this paper.
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