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Abstract

Background: In Caenorhabditis elegans early embryo, cell cycles only have two
phases: DNA synthesis and mitosis, which are different from the typical 4-phase cell
cycle. Modeling this cell-cycle process into network can fill up the gap in C. elegans
cell-cycle study and provide a thorough understanding on the cell-cycle regulations
and progressions at the network level.

Methods: In this paper, C. elegans early embryonic cell-cycle network has been
constructed based on the knowledge of key regulators and their interactions from
literature studies. A discrete dynamical Boolean model has been applied in computer
simulations to study dynamical properties of this network. The cell-cycle network is
compared with random networks and tested under several perturbations to analyze
its robustness. To investigate whether our proposed network could explain biological
experiment results, we have also compared the network simulation results with gene
knock down experiment data.

Results: With the Boolean model, this study showed that the cell-cycle network was
stable with a set of attractors (fixed points). A biological pathway was observed in
the simulation, which corresponded to a whole cell-cycle progression. The C. elegans
network was significantly robust when compared with random networks of the same
size because there were less attractors and larger basins than random networks.
Moreover, the network was also robust under perturbations with no significant
change of the basin size. In addition, the smaller number of attractors and the
shorter biological pathway from gene knock down network simulation interpreted
the shorter cell-cycle lengths in mutant from the RNAi gene knock down experiment
data. Hence, we demonstrated that the results in network simulation could be
verified by the RNAi gene knock down experiment data.

Conclusions: A C. elegans early embryonic cell cycles network was constructed and
its properties were analyzed and compared with those of random networks.
Computer simulation results provided biologically meaningful interpretations of RNAi
gene knock down experiment data.
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Background
Biological networks have been studied extensively in recent decades. They are useful to

understand how genes and their interactions determine the functional organization in

the cell. In C. elegans, several networks have been constructed so far, such as, protein-

protein interaction (PPI) networks, genetic interaction (GI) networks, phenotypic

networks, transcriptional regulatory networks, post-transcriptional regulatory networks,

and other integrative networks [1]. However, the cell-cycle network of C. elegans has

not been reported although such networks or models have been already constructed

for other species, such as, the cell-cycle network of the budding yeast [2], the cell-cycle

network model of the fission yeast [3], a Boolean model for the control of the mamma-

lian cell-cycle [4], and mammalian cancer cell network during G1/S transition

(MGSTR network) [5].

Living organisms develop from one cell (zygote) to many adult cells including many

rounds of cell divisions. In each division, cells undergo sequential events, which regulate

one cell to split into two daughter cells. These ordered series of events consist of cell-

cycles, which is pervasively carried out in most species. Generally, cell-cycle includes

four different phases: G1 (Gap 1), S (Synthesis), G2 (Gap2), and M phase (Mitosis) [6].

The M phase is a process of mitosis where cells stop growing at this stage and divide

into two daughter cells. The other three phases, G1, S and G2, belong to the interphase.

Particularly, the S phase plays the role of DNA synthesis by duplicating genome

in nuclei. G1 and G2 phases are “Gap” phases, in which the G1 phase connects the end

of the M phase of last cell-cycle to the beginning of the S phase in present cell-cycle,

while the G2 phase ensures cell entering into the M phase correctly. Moreover, this

mechanism is controlled by several regulators, which are able to interact with each other

to achieve complex regulatory functions.

To model the biological processes, differential equation is commonly used which

could be applied to biological pathway modeling and complex networks modeling [3].

This method provides more information on time evolution of the system [3]. However,

timing is not a key factor in some robust designed biological networks [3]. Therefore,

for the simplicity of computation, Boolean function, which possesses less parameter,

has been used in some previous cell-cycle network models [2-5]. The variables in those

models are Boolean type, which can take the value of 0 or 1, representing genes or

proteins that are active or inactive respectively. This idea is attributed to the bistability

of molecules, which means genes or proteins can switch in a Boolean manner in a bio-

logical system [7]. Many molecular regulatory factors possess the binary property.

Boolean switches can also be observed frequently in some molecular circuits [8].

Although varying multistable behaviors exist in a biological system, it is found that

bistability is an optimal regime to describe the state of genes and proteins [9]. To

study the dynamics in genetic regulatory networks, a simple Boolean model is used to

simulate the cell-cycle process. The main objective of the Boolean functions is to

update the state of each node in the network as a function of time. For each node,

their values at next time point are determined by the values of interacting nodes at

present. The Boolean model is simple yet precise to describe dynamic properties of the

network. Despite the simplicity, the Boolean model could indeed provide meaningful

representation of the dynamics of the cell-cycle networks [2-5]. In our research, we

study whether this Boolean model can describe dynamic properties of our proposed
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C. elegans early embryonic cell cycles network well and whether the C. elegans early

embryonic cell cycles network is robust under noise conditions.

Methods
The C. elegans early embryonic cell cycle network

In C. elegans late embryo and larval stages, typical 4-phase cell cycles progress in body

development and cell proliferation [6]. However, in early embryo, cell cycles progress

by oscillations between S and M phases due to a rapid proliferation in cell numbers

[6]. Currently there are about 600 genes related to cell-cycles in C. elegans reported in

the Gene Ontology database. The core regulatory mechanism is related to the activity

of complexes of CDKs (cyclin-dependent kinase) and cyclins. Specific CDKs and

cyclins are responsible for controlling cells entering into or exiting from cell-cycle

phases. Activation, repression, and degradation of CDKs and cyclins should also be

considered. Based on literature studies of molecular regulatory interactions among the

key regulators, we have constructed a Boolean genetic network model for the control

of C. elegans early embryonic cell cycles, as shown in Figure 1. Interactions among

nodes, corresponding references and descriptions are shown in Table 1.

There are 8 nodes in the network, which are CDK/cyclin complex, inhibitors, and

degraders. We combine several genes or proteins into one node based on their biologi-

cal functions. The cdk-2 and cyclin E protein families are merged into one node since

their complexes regulate the S phase entry and progression [13,19]. Cdc-25.1 encodes a

phosphatase of the Cdc25 family, which activates CDKs by dephosphorylation [13,19].

Cul-1 and lin-23 encode proteins to form a Skp1-Cul1-F box (SCF) protein complex

for cyclins degradation [13]. Lin-35, efl-1 and dpl-1 encode the tumor suppressor pRb

and transcription factor E2F family, which form the Rb/E2F pathway for cell-cycle con-

trol [13]. Cdk-1 and cyclin B complexes promote the M phase entry and progression in

C. elegans cell-cycle [13,19]. Cki-1 encodes a type of Cyclin-dependent Kinase Inhibi-

tors pervasively exist from yeast to metazoan. CKIs act to inhibit cell-cycle progression.

They are rate limiting for the S phase entry in C. elegans [13]. Fzy-1 and fzr-1 are

substrates to the APC (anaphase-promoting complex) [13]. Therefore, the expression

Figure 1 The C. elegans early embryonic cell cycles network. Each node represents a regulator in cell
cycles. Green arrows and red edges represent ‘activate’ and ‘repress’ respectively. Yellow loop is a self-
degradation for that node.
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of fzy-1 and fzr-1 controls the activity of APC, whose function degrades the cyclin B

family for the M phase exit [13]. Cdc-14 plays a parallel role to Rb/E2F pathway in

C. elegans cell-cycle, which positively regulates the activity of cki-1 to inhibit entry into

the S phase [13]. Fzy-1, fzr-1 and cdc-14 encode orthologous proteins to Cdc20, Cdh1

Table 1 The rules of interactions in the C.elegans early embryonic cell cycles network.

Effector Effected Activation Inhibition

cdc-14/fzy-1 cdk-1/cyclinB fzy-1 is able to activate the APC
(anaphase-promoting complex), which
is for cyclin B degradation. -1 [10]

cdc-14/fzy-1 fzr-1 fzy-1 and fzr-1 encode orthologous
proteins to Cdc20 and Cdh1
respectively in S. cerevisiae. The
Interaction is inferred from the
yeast cell-cycle network. 1 [2]

cdc-14/fzy-1 cki-1 cdc-14 upregulates cki-1 for
accumulation. 1 [11]

cdc-25.1 cdk-2/cyclinE cdc-25.1 activates cdk-2 by
dephosphorylation. 1 [12]

cdc-25.1 cdk-1/cyclinB cdc-25.1 activates cdk-1 by
dephosphorylation. 1 [12]

cdk-1/cyclinB cdc-14/fzy-1 Cyclin B and cdc-14 are orthologous
to Clb1,2 and Cdc14, respectively.
Interaction inferred from the yeast
cell-cycle network. 1 [2]

cdk-2/cyclinE cul-1/lin-23 cul-1 and lin-23 encode a Skp1-
Cul1-F box (SCF) protein complex.
SCF will be turned on for cyclin E
degradation when exiting from S
phase. Here we infer that cdk-2/
cyclinE triggers SCF. 1 [13]

cdk-2/cyclinE lin-35/efl-1/dpl-1 Inhibits -1 [11]

cdk-2/cyclinE cdc-14/fzy-1 Cyclin E suppresses the expression of
cdc-14. -1 [14]

cki-1 cdk-2/cyclinE cki-1 encodes CDK inhibitory proteins
which is rate limiting for S phase
entry. -1 [13]

cki-1 cdk-1/cyclinB cki-1 encodes CDK inhibitory proteins.
Inhibit activity of cdk-1. -1 [15]

cki-1 cki-1 Add a self-degradation due to no
inhibitory interaction on this node. This
method was used in Li’s model. -1 [2]

cul-1/lin-23 cdk-2/cyclinE cul-1 and lin-23 encode a Skp1-Cul1-F
box (SCF) protein complex for cyclin
E degradation. -1 [13]

cul-1/lin-23 cdc-25.1 lin-23 negatively regulates the
abundance of cdc-25.1. -1 [16]

cul-1/lin-23 cul-1/lin-23 Add self-degradation. -1

cul-1/lin-23 lin-35/efl-1/dpl-1 A synthetic interaction between
lin-23 and lin-35. 1 [17]

fzr-1 cdk-1/cyclinB Loss of fzr-1 will decrease APC which
is for cyclin B degradation. -1 [17]

fzr-1 fzr-1 Add self-degradation. -1

fzr-1 cki-1 fzr-1 promotes accumulation of
cki-1. 1 [13]

lin-35/efl-1/dpl-1 cdk-2/cyclinE lin-35 negatively regulates cye-1. -1[11]

lin-35/efl-1/dpl-1 cdk-1/cyclinB efl-1/dpl-1 promotes expression of
cyclin B. 1 [18]

Columns 1 and 2 represent the parent nodes and daughter nodes in their interactions. 1 or -1 after the descriptions in
column 3 and 4 represent the weights for that interaction.
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and Cdc14 respectively in S. cerevisiae [2,13]. Here, we merge cdc-14 and fzy-1 into one

node because Cdc20 degrades an inhibitor of Cdc14 in Saccharomyces cerevisiae [2].

In Figure 1, red arrows represent deactivation, which includes inhibition, repression,

or degradation, while green arrows represent activation. We also add self-degradation

(yellow loops) for nodes, cul-1/lin-23, fzr-1 and cki-1, which are not repressed by others,

based on the method of Li et al. [2]. The cell-cycle begins when cdk-2/cyclinE is turned

on, which means cells enter into the S phase. Then cul-1/lin-23 is triggered to degrade

the cyclinE family for the S phase exit. Cul-1/lin-23 activates lin-35/efl-1/dpl-1, which

inhibits cdk-2/cyclinE. Efl-1/dpl-1 promotes expression of cyclin B, which represents the

M phase entry. Cdc-14/fzy-1 and fzr-1 is triggered to up regulate the APC for cyclinB

family degradation. At this stage, cki-1 is also activated for the inhibition of both cdk-2/

cyclinE and cdk-1/cyclinB. Thus, cells start at entering into the S phase and end at

exiting from the M phase, and wait for signals to enter into the next round of cell cycle.

The network and dynamic trajectories presented in this paper are obtained using

Cytoscape [20].

Dynamic model of the C. elegans early embryonic cell cycles network

Based on whether genes are expressed or not in a biological system, we assume that

every variable (node), in the network, will take a Boolean value. That means every

node has two possible states (on/off), which represents the activity of gene/protein.

(1 represents ‘on/active’ and 0 represents ‘off/inactive’). For each Boolean variable, its

value at next time point is determined by all interacting nodes at the present time

point via Boolean functions as follows:

Si (t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1,
∑
j

wijSj (t) > θi

0,
∑
j

wijSj (t) < θi

Si (t)
∑
j

wijSj (t) = θi

(1)

The update rule.

where wij represents the weights for input edges from node j to node i, Si (t) denotes

a state (S) of node i at any time t, and t + 1 represents the next time point. The threshold,

which is denoted by θi, is set to zero as default. The expression, wij = 1or − 1, represents

activation or inhibition between interacted nodes. The weight for self-degradation is set

to wii = −1. This Boolean model is an ideal model for real gene regulatory network in

C. elegans early embryonic cell cycles due to its binary properties. Moreover, it also

discovers the dynamic properties of the network based on its topological structure.

RNAi gene knock down experiment data

The RNAi gene knock down experiment data were produced in our biology laboratory.

Leica SP5 fluorescent confocal microscope was used to record the embryonic develop-

ment of C. elegans from two of four cell stages. The cell-cycle lengths were extracted

from their records. The detailed experiment methods were reported earlier [21,22].

The wild type and genes knock down of cki-1, efl-1 and cdc-14 experiment data are

available in the supplementary files of this paper.
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Results
Simulation of the C. elegans early embryonic cell cycle network

To study the dynamical properties of the C. elegans early embryonic cell cycle network,

we simulated the changing of each gene or protein’s value in the network by the Boo-

leans functions at different time points. Since genes switch between expressed and

non-expressed state in a biological system, each node has the same probability to

be either 0 or 1, which represents its two possible states, namely off or on. In the

C. elegans network, there were 28=256 possible initial states (8 nodes), in the state space.

For each initial state, the update rules computed the value of each node at the next

time point simultaneously. After several iterations, the state of the network would

reach a stable state, which was called an attractor or a fixed point. The number of

initial states that converged to an attractor was called the basin size (B) of this attrac-

tor. In our simulation, we found that all initial states would converge to five different

attractors, which represented the dynamical results of the C. elegans network model.

Moreover, it was observed that most initial states would converge to the largest attrac-

tor, where the basin size was found to be 219 or 85.5% of the state space (Table 2).

This result showed that the C. elegans early embryonic cell cycles network was robust

under different states of genes or proteins.

Biological pathway in cell-cycle progression

For the largest attractor, four nodes (’lin-35/efl-1/dpl-1’, ‘fzr-1’, ‘cdc-14/fzy-1’ and ‘cki-1’)

were turned on, indicating that cells exited from the M phase. They were at the M/S

transition state due to the functions of those genes or proteins (see Methods). At this

stable state, cells were waiting to start the cell-cycle process, similar to the checkpoint

mechanism in yeast cell-cycle networks [2]. When node ‘cdk-2/cyclinE’ turned on in the

simulation, cell entered into the S phase. To study how the cell cycle progressed when

node ‘cdk-2/cyclinE’ was turned on in the simulation, we ran the simulation by the

update rules to study the cell-cycle progression in C. elegans early embryonic cells. In

Table 3, it showed that the cell cycle began at time point 1 where the cell was in the S

phase. At time point 2, the node ‘cdk-2/cyclinE’ was turned off, indicating the cell exited

the S phase. Then, the cell entered the S/M transition state until time point 5 where the

node ‘cdk-1/cyclinB’ was turned on. Finally, the node ‘cdk-1/cyclinB’ was turned off after

3 time points which represented the cell exited the M phase. Interestingly, the state of

the cell at time point 8 was the largest attractor in the network model. Therefore, the

cell returned to its most stable state.

In Figure 2, the dynamic trajectories of all 256 initial states converged to the attrac-

tors. Each node represented an initial state. The red and blue nodes represented five

Table 2 Basin size of fixed points and their corresponding network states.

Basin
size

cdk-2/cyclinE cdc-25.1 cul-1/lin-23 lin-35/efl-1/dpl-1 cdk-1/cyclinB fzr-1 cdc-14/fzy-1 cki-1

219 0 0 0 1 0 1 1 1

16 0 1 0 1 0 1 1 1

12 0 0 0 0 0 1 1 1

5 0 1 0 0 0 1 1 1

4 0 0 0 0 0 0 0 0

Each row represents an attractor. The first column is the basin size of each attractor. The other 8 columns show the
node’s state of the attractor.
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Table 3 Temporal evolution of network states in network model.

Time cdk-2/
cyclinE

cdc-25.1 cul-1/lin-23 lin-35/efl-1/
dpl-1

cdk-1/cyclinB fzr-1 cdc-14/fzy-1 cki-1 Phase

1 1 0 0 1 0 1 1 1 S

2 0 0 1 0 0 1 0 1 S/M

3 0 0 0 1 0 0 0 1 S/M

4 0 0 0 1 0 0 0 0 S/M

5 0 0 0 1 1 0 0 0 M

6 0 0 0 1 1 0 1 0 M

7 0 0 0 1 1 1 1 1 M

8 0 0 0 1 0 1 1 1 M/S

The numbers in the first column do not reflect the actual time duration. The last column shows which phases the
cells stay in.

Figure 2 Dynamical trajectories of 256 initial states flowing to fixed points. Each node represents an
initial state. Red and blue nodes are five attractors, where the blue one is the largest attractor. Arrows
denote the transitions between states. The blue arrows represent the 8 steps in Table 3.
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attractors, where the blue node denoted the largest attractor. Each arrow indicated a

dynamic change from one state to another. The blue arrows represented the cell-cycle

sequential events (biological pathway) in Table 3. The biological pathway was a very

stable trajectory where other dynamic process of the states would converge to.

Comparison with random networks

To study how likely the largest attractor in C. elegans network could arise by chance,

we analyzed 1000 random networks with the same size. The numbers of nodes, activa-

tion edges and repression edges of the random network were same as in the C. elegans

network. We obtained the following findings from the simulation results. First, there

were more attractors (17.57) existed in the random networks than in the C. elegans

network (5). Second, in random networks, the basin size of the largest attractor (average

105.56) was smaller than that in the C. elegans network (219). Thus, a power law was

followed by the distribution of the basin size of attractors in the random networks

(Figure 3). In 1000 random networks, only 1.1% attractors own a larger basin size than

that in the C. elegans network (219).

Network perturbations

The basin size of attractors in a network is an important index to reflect the stability of

the network. The changes (�B/B) of the largest attractor’s basin size is used to measure

the network robustness. Several methods were used to test the robustness of the C. elegans

network and the random networks under perturbations. The perturbations included delet-

ing an interaction, adding an (activating or repressing) interaction, or switching an interac-

tion. The value of�B/B was measured as the results of perturbations. The distribution of

�B/B under several perturbations, both in the C. elegans network and the random

networks, were shown in Figure 4. The result showed that the changes of the largest

attractor’s basin size (�B/B) was small. They were close to 0 for most perturbations.

There was also a larger probability for the C. elegans network than for the random

network that the basin size of the largest attractor remained unchanged (Figure 4D).

Figure 3 Attractor basin size distribution of random networks. The basin sizes are calculated from
1000 same size random networks. P is the probability of the basin size. The blue triangle point represents
the attractor which owns same basin size of the largest attractor of the C. elegans network.
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Therefore, the C. elegans early embryonic cell cycles network possessed a high

homeostatic stability because the basin size of the largest attractor would not change

significantly under perturbations [23]. Such high robustness of the C. elegans early

embryonic cell cycle network was due to the topological structure (nodes and edges)

of the regulatory network.

Comparison with RNAi gene knock down experiment

Next, we used the RNAi gene knock down experiment data from our biology labora-

tory (see Methods) to test our network under gene knock down perturbations. In the

experiments, genes efl-1, cdc-14, and cki-1 were knocked down. Cells divided faster in

mutant than in the wild type (Figure 5). In the mutant, the average cell-cycle lengths

were 27.7, 25.4, and 27.1 mins with cki-1, cdc-14 and efl-1 gene knock down respec-

tively. The cell-cycle lengths in the mutants were shorter than that in the wild type

(40.3 mins). This could be attributed to the functions of these genes: efl-1 repressed

the activity of cdk-2/cyclinE complex, and cki-1 and cdc-14 inhibited the expression of

cdk-1/cyclinB. In our network model, we set the weights of these three nodes to 0

in turn in each simulation, indicating the genes were knocked down. During the

updates, the node that represented the knocked down genes would not affect other

interacting nodes. We used ‘cdc-14 test’, ‘efl-1 test’ and ‘cki-1 test’ to represent

the weights of node ‘cdc-14/fzy-1’, node ‘lin-35/efl-1/dpl-1’ and node ‘cki-1’ to 0 res-

pectively. The number of attractors decreased from 5 to 4 and 5 to 3 respectively in

‘cdc-14 test’ and ‘efl-1 test’. The network became more stable when the number of

attractors decreased, meaning that more initial states would converge to the same

Figure 4 The histogram of the relative changes of basin size. The change of the largest attractor’s
basin size under several network perturbations: (A) deletion, (B) addition, (C) switching and (D) average of
A to C. The histogram is generated from the C. elegans network and 1000 same size random networks. P is
the probability of �B/B.
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attractor. Moreover, a shorter (seven time points) biological pathway was observed in

‘cki-1 test’ (Table 5). We have shown the biological pathway in Table 3, which possessed

eight time points for an entire cell cycle. The node ‘cki-1’ was always inactive during the

simulation, leading to the loss of inactivation of the node ‘cki-1’ (Steps 3 and 4 in

Table 3). Therefore, the smaller number of attractors and the shorter biological pathway

could explain the observation of the cells that divided faster in the knocked down

experiment. Thus, the results obtained in our network model in computer simulation

matched with the biological experiment results.

Conclusions and discussion
Modeling the C. elegans early embryonic cell cycles is critical for understanding the

gene regulation in the cell-cycle process. We have constructed the C. elegans early

embryonic cell cycle network based on molecular interaction as reported in literatures.

We used the Boolean functions to simulate the cell-cycle progression to study the

dynamic properties of the network. The C. elegans network was then compared with

random networks and analyzed under several perturbations to examine the robustness

of our network. We have found that the number of attractors of the C. elegans net-

work was 5, which was less than one third of the average number of attractors which

was 17.57 in 1000 random networks. The largest attractor of the C. elegans network

contained a basin size of 219, meaning 85.5% of initial states have converged to this

attractor (Figure 2). This basin size was more than twice of the average basin size

which was 105.56. The basin size from previous cell-cycle network studies were 86% in

Li, et al. 2004 [2], 73% in Davidich, et al. 2008 [3], and 71.9% in Yang, et al. 2013 [5].

The basin size (85.5%) of our C. elegans early embryonic cell cycles network model is

Figure 5 The histogram of cell-cycle lengths. The cell-cycle lengths are computed for both the wild
type and the mutants: (A) gene cki-1 knock down, (B) gene efl-1 knock down and (C) gene cdc-14 knock
down. The results are obtained from the RNAi gene knock down data (see supplementary data file).
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comparable to others (Table 4). Moreover, the main trajectory represented a biological

pathway of the entire cell-cycle process. This trajectory simulated the cell cycle starting

from the most stable state and finally returning to the original stable state (Table 3).

The basin size of the largest attractor did not change under various perturbations. The

probability of unchanged basin size of the largest attractor was higher in the C. elegans

network than in the random networks. In addition, RNAi gene knock down experi-

ment results could be interpreted using our network model. All the above results

showed that network model proposed here will be useful for the study of the C. ele-

gans early embryonic cell cycles.

In our model, the update rule we used is a type of synchronous model. Synchronous

Boolean model for biological control has been used since 1969 in Kauffman’s work [7].

In synchronous update rule, all variables at the present time point are able to update

their values simultaneously for the next time point. Practically, there is a variety of

timescales for different genes/proteins which switch their states. For example, the reac-

tion speeds are different among interactions [24]. A node value changes after several

time points rather than at the next time point. Therefore, in contrast, a continuous

model, or asynchronous methods, will yield a more realistic temporal description of a

biological system [25]. For example, in Mangla, et al. 2010 [24], a timing robustness

model is applied, which is asynchronous, to analyze the previous networks in yeast

cell-cycle networks. Asynchronous methods will be further studied for a variety of

timescales for different genes/proteins.

The topology of a network will determine its dynamic consequence. The topological

structure demonstrates how the nodes and their interactions construct the network.

Therefore, regulators and their interactions play a key role in the cell-cycle network

construction. A lot of regulators participate in cell-cycle regulation in C. elegans.

However, some interactions between regulators, which participate in G1 and G2

Table 4 Comparisons between the C.elegans early embryonic cell cycles network and
other cell-cycle networks in different species

The C. elegans
network

Li, et al. 2004
[2]

Davidich, et al.
2008 [3]

Yang, et al.
2013 [5]

Nodes 8 11 10 8

Edges 21 33 27 21

Attractors 5 7 13 5

Initial states space 256 2048 1024 256

Basin size of the biggest
attractor

219 1764 762 184

85.5% 86% 73% 71.9%

Table 5 A biological pathway in ‘cki-1 test’

Time cdk-2/
cyclinE

cdc-25.1 cul-1/lin-23 lin-35/efl-1/
dpl-1

cdk-1/cyclinB fzr-1 cdc-14/fzy-1 cki-1 Phase

1 1 0 0 1 0 1 1 0 S

2 0 0 1 0 0 1 0 0 S/M

3 0 0 0 1 0 0 0 0 S/M

4 0 0 0 1 1 0 0 0 M

5 0 0 0 1 1 0 1 0 M

6 0 0 0 1 1 1 1 1 M

7 0 0 0 1 0 1 1 1 M/S
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phases, are still not well understood. Details of regulators and their interactions are

needed in the future to construct a more sophisticated network and to precisely

describe the cell cycle process.
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