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Abstract

Background: Respiratory effort belt measurement is a widely used method to
monitor respiration. Signal waveforms of respiratory volume and flow may indicate
pathological signs of several diseases and, thus, it would be highly desirable to
predict them accurately. Calibrated effort belts are sufficiently accurate for estimating
respiratory rate, but the respiratory volume and flow prediction accuracies degrade
considerably with changes in the subject’s body position and breathing style.

Methods: An improved calibration method of respiratory effort belts is presented in
this paper. It is based on an optimally trained FIR (Finite Impulse Response) filter
bank constructed as a MISO system (Multiple-Input Single-Output) between respiratory
effort belt signals and the spirometer in order to reduce waveform errors. Ten healthy
adult volunteers were recruited. Breathing was varied between the following styles:
metronome-guided controlled breathing rate of 0.1 Hz, 0.15 Hz, 0.25 Hz and 0.33 Hz,
and a free rate that was felt normal by each subject. Body position was varied between
supine, sitting and standing. The proposed calibration method was tested against these
variations and compared with the state-of-the-art methods from the literature.

Results: Relative waveform error decreased 60-70% when predicting airflow under
changing breathing styles. The coefficient of determination R2 varied between 0.88-0.95
and 0.65-0.79 with the proposed and the standard method, respectively. Standard
deviation of respiratory volume error decreased even 80%. The proposed method
outperformed other methods.

Conclusions: Results show that not only the respiratory volume can be computed
more precisely from the predicted airflow, but also the flow waveforms are very
accurate with the proposed method. The method is robust to breathing style changes
and body position changes improving greatly the accuracy of the calibration of
respiratory effort belts over the standard method. The enhanced accuracy of the belt
calibration offers interesting opportunities, e.g. in pulmonary and critical care medicine
when objective measurements are required.

Keywords: Calibration, Regression, Respiration, Spirometer, Flow, Rib cage, Chest,
Abdomen
Background
Respiratory effort belts are a convenient way to monitor respiration noninvasively, un-

obtrusively and continuously. This is especially important for examination of different
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kinds of respiratory disorders, like airway obstructions and impending respiratory fail-

ure in critical care patients. Respiratory effort belts are often used, for example, to

monitor the respiration in sleep, in children and infants, and to detect the functional

disorders of the respiratory system and the respiratory muscle dysfunctions [1-3].

Respiratory effort belts are elastic belts that are placed around the rib cage and abdo-

men of the subject to measure dimensional changes during breathing. After calibration

to spirometer or pneumotachograph signal they can be used quantitatively to measure

respiratory volume and flow [3,4]. The relation between breathing and belt dimensional

changes can be determined by modeling the respiratory system as two degrees of free-

dom system with two moving parts: rib cage and abdomen [5]. The volumetric changes

of the respiratory system can be predicted as the weighted sum of the dimensional

changes of the rib cage and abdominal compartments. Consequently, the respiratory

volume measured at the mouth is related to the sum of the volume changes of the rib

cage and abdomen, while the derivative of the respiratory volume yields respiratory

flow. This concept of two degrees forms the basis of various computational techniques

that can be used to calibrate the respiratory effort belts, e.g. isovolume [6,7], least-

squares [7,8], and multiple linear regression techniques [7,9-11].

It would be highly desirable to predict respiratory volume and flow signal waveforms

accurately during tidal breathing as, because they contain pathological signs, for ex-

ample, of asthma [12], airway obstruction [13-15], cystic fibrosis [16], and chronic ob-

structive pulmonary disease [17]. However, the respiratory volume and respiratory flow

accuracy are degraded with subject body position or breathing style change due to the

change of calibration factors [18]. Another element that may impair the prediction ac-

curacy of the respiratory volume by respiratory effort belts is the thoracoabdominal

asynchrony (TAA) that is often observed in many respiratory disorders and/or respira-

tory muscle dysfunctions. TAA refers to the non-coincident motion of the rib cage and

the abdomen and is characterized by a time lag between motion of the rib cage and the

abdomen. TAA is clinically assessed as a sign of respiratory distress and increased work

of breathing [2]. The asynchrony disturbs the relationship between the thoraco-

abdominal movement and the respiratory volume, and thus, makes accurate calibration

difficult [19].

Respiratory rate and tidal volume accuracy have been studied extensively, but the

ability of the calibration methods to derive waveform of respiratory flow signal or vol-

ume signal has been studied much less. The exact waveform shape is a requirement for

the estimation of the two most referenced tidal breathing parameters: the ratio of the

time to peak tidal expiratory flow to the total expiratory time (tPTEF/tE) and the ratio of

the respiratory volume at the peak tidal expiratory flow to the expired tidal volume

(VPTEF/VE) [20]. Noninvasive respiratory volume signal waveform has been compared

with the pneumotachograph flow signal using respiratory inductive plethysmograph in

a few published articles [11,21,22].

The multiple linear regression technique with two predictor variables has been used

commonly since the 1980’s for calibration of respiratory effort belts. However, this

method yields only crude predictions of the waveforms in the airflow signal. If the

breathing style changes from the calibration breathing style, predicted airflows get even

worse [18]. To improve the accuracy of airflow prediction, efforts to modify the original

two degree of freedom model have been made by adding parameters to the regression
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model. These parameters include for instance the parameter relating lung volume

changes from the start of the inspiration or expiration to the rib cage and abdominal

excursions from initiation of respiratory motion [11]; an interaction term between the

rib cage and abdominal compartments [23]; and eleven features directly or indirectly

related to ventilation such as volume, frequency and body size features [24]. However,

challenges with the accuracy still remain.

Here, we present an improved calibration method of respiratory effort belts which is

an extension to the multiple linear regression method with two predictor variables: rib

cage and abdominal respiratory effort belt signals. The method is based purely on the

belt signals and does not use any other information source for calibration. In this study,

we concentrate on challenging situations where the breathing style or body position

changes. We assessed changing breathing styles, including metronome guided breathing,

free breathing in different body positions, free breathing in dynamically changing body

positions, and thoracoabdominal asynchrony with metronome guided breathing. The

proposed method was compared with two reference methods: the standard multiple lin-

ear regression method and with a recent method of Liu et al. [24]. The performance

was assessed, firstly, using a subject-specific approach, where the method was trained

and tested for each subject separately, and secondly, using a subject-independent ap-

proach in which all data, expect that of a test subject, were used for model training.

Methods
Proposed calibration method

The relationship between the respiratory airflow from spirometer and the dimensional

changes of the respiratory effort belt signals is conventionally modeled by applying the

method of multiple linear regression [7]. The relationship is established by fitting the

following model to the time-synchronized signals:

y ¼ β1x1 þ β2x2 þ ε ¼ xTβ þ ε ð1Þ

where y denotes respiratory airflow from spirometer, the respiratory effort belt signals

x1 and x2 from the rib cage and abdomen, respectively, are the predictor variables, βi:s

are regression coefficients and ε is a zero-mean Gaussian error. Superscript T denotes

matrix transpose in the formula. In this standard model, one sample of each predictor

variable is used at a time to predict the response variable.

Our proposed method is based on the MISO (Multiple-Input Single-Output) system

model consisting of a polynomial FIR (Finite Impulse Response) filter bank and a delay

element, see on the left in Figure 1. The proposed model extends the standard one in

two important ways: (1) it uses a number N of consecutive signal samples and linear fil-

tering for each prediction and (2) it is based on polynomial regression to model differ-

ent transfer functions between the input and output. In the model representation,

vector notation (bold letter type) is used below to denote that N consecutive signal

samples of each predictor variable are included as components, and that the parame-

ters are now vectors of dimension N. The model can be established as follows:

y ¼ f x; βð Þ þ ε ð2Þ
where f denotes the non-linear transfer function between the respiratory effort belts

and spirometer. The transfer function is realized by the polynomial filter bank.



Figure 1 Proposed method depicted as a MISO system. (Left) Polynomial FIR filter bank for modeling
the transfer function between respiratory effort belt and spirometer signals. (Right) A simplified structure for
piezo-based and inductive-based respiratory effort belts. Here, FIR1 and FIR2 represent the filters FIR12 and
FIR22 on the left, respectively.
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The rationale behind using the FIR filtering and polynomial regression is as follows:

The standard prediction method essentially makes the assumption that the signal wave-

forms from the respiratory effort belts and spirometer are the same and takes a

weighted average of the two inputs in order to make a prediction. However, the respira-

tory effort belts measure the thoracoabdominal movements and the spirometer mea-

sures airflow, and they use different kinds of sensor technique. For this reason, their

signal waveforms are different. In addition, there are different kinds of commercial re-

spiratory effort belt sensors such as piezo-based and inductive-based which produce

further unpredictability to the accuracy. The FIR filters perform optimal linear trans-

forms of the belt signal waveforms in order to match them to the spirometer signal

waveform, which makes the result of the prediction much more accurate than with the

standard method. In addition, with such sensors where the linear transform is not suffi-

cient to correct the waveforms, selected nonlinear components can be included in the

system, as depicted on the left in Figure 1. Another source of nonlinearity is the rela-

tionship between the cross-sectional areas of the effort belts and the actual lung vol-

ume. These additional filters input, e.g. intercept term, higher order polynomial terms

and cross-product terms of the thoracoabdominal signals.

We recently observed that the addition of extra terms in the standard regression

model did not improve results further when using our piezo-based or inductive-based

respiratory effort belts [25]. This confirmed results published earlier [11,23]. In

addition, these extra terms did not improve performance of our proposed method ei-

ther [25]. Thus, the following model provides sufficient performance with our belts:

y ¼ βT1 x1 þ βT2 x2 þ ε ð3Þ

Where βT and βT denote the N tap coefficients of filters FIR1 and FIR2 on the
1 2

right in Figure 1, respectively. x1 and x2 are vectors including N consecutive
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samples from the rib cage signal and abdomen signal, respectively: x1 = [x11, x12,…, x1N]
T

and x2 = [x21, x22,…, x2N]
T.

The spirometer signal and the respiratory effort belt signals are input to the regres-

sion analysis which yields optimal tap coefficients and minimal prediction error for

both filters. During the calibration, tap coefficients βT
1 and βT2 are estimated with the

method of least-squares from the available data. The least-squares estimator of β is

given by

β̂ ¼ XTX
� �−1

XTy ð4Þ

where y is an n × 1 vector of observations from the spirometer signal, β is a

(2 × N) × 1 vector of the tap coefficients and X is an n × (2 × N) matrix of observa-

tions from the respiratory effort belt signals. Variable n is the amount of observations

used to the calibration (in this study 3000 samples with 1 minute signal and sampling

frequency 50 Hz). The parameter vector β is established as β ¼ βT
1 ; β

T
2

� �T
. Matrix X is

formed as follows:

X ¼
x11 x12 ⋯ x1N x21 x22 ⋯ x2N
x12 x13 ⋯ x1 Nþ1ð Þ x22 x23 ⋯ x2 Nþ1ð Þ
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
x1n x1 nþ1ð Þ ⋯ x1 nþN−1ð Þ x2n x2 nþ1ð Þ ⋯ x2 nþN−1ð Þ

2
664

3
775 ð5Þ

The vector of predicted airflow ŷ is now given by
ŷ ¼ Xβ̂ ð6Þ

which is, thus, the spirometer signal predicted from the respiratory effort belt signals

through the FIR filter bank.

There is a small delay between the respiratory effort belts signals and spirometer sig-

nal due to two reasons. One reason for the delay is that the spirometer signal is mea-

sured from the mouth and respiratory effort belt signals are measured from the rib

cage and abdomen. Another reason is that there is the internal delay in each measuring

device. For these reasons, the delay element z-D is included at the output, see Figure 1.

The delay was estimated by sliding the spirometer signal in relation to the respiratory

effort belt signals within predetermined time limits sample by sample and at each step

solving the regression problem. The minimum error ε in the respiratory flow prediction

determined the optimal delay value.

In our previous study, the 0.3 sec time window of the FIR filters was found to pro-

duce the best respiratory airflow prediction when stable measurement data were used

[25]. Thus, we used the same window size for the FIR filters also in this study. In

addition, we tested the window size of 0.15 sec to find out whether the reduction of the

trained parameters (tap coefficients) helps avoiding possible overtraining when the re-

gression model is established with one breathing style and tested with others. With the

used sampling frequency of 50 Hz, the number of tap coefficients was 16 and 8,

respectively.

Measurement devices

For calibrating the respiratory effort belt signals, the respiratory airflow signal was

recorded with a spirometer (SpiroStar USB M9460, Medikro Oy, Kuopio, Finland). The
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sampling rate of the spirometer was 100 Hz. Respiratory effort belt signals were

recorded with the Embletta Gold recorder (Embletta Gold, Denver, Colorado, USA),

which had inductive respiratory effort belts for rib cage and abdomen and sampling

rate of 50 Hz. All the signals were resampled at a common rate. The sampling rate of

the Embletta Gold recorder was the lower one, 50 Hz, and was chosen as the basis rate.

Consequently, the spirometer signal was decimated from 100 Hz to 50 Hz.

Subjects and measurements

In planning and performing the study, the ethical principles regarding human experimenta-

tion were followed according to the Declaration of Helsinki. All the patients provided writ-

ten informed consent and the study protocol was approved by the Oulu University

Hospital ethics committee (reference number 83/2011). Ten healthy non-smoker adult vol-

unteers (four females and six males) were recruited. The mean (SD) age of the subjects was

32 (4) years and they all were free of medications and had no heart or lung diseases. Volun-

teers gave a written informed consent and, additionally, brief background information was

gathered using a questionnaire. Before the actual measurement session, subjects were not

allowed to have caffeine products (coffee, tea, energy drinks) for the preceding 12 hours, al-

cohol for the preceding 24 hours, nor heavy meal and sport in the measurement morning.

All measurements were done between 8 and 12 A.M. Rib cage belt was placed on the

xyphoid process and the abdominal belt was placed near the umbilicus. After that, subjects

had a resting period of fifteen minutes in supine position before the actual measurements.

During the measurement, respiratory effort belt signals were recorded along with the spirom-

eter signal. The measurement protocol consisted of thirteen steps (Table 1). Breathing was

varied between the following styles: metronome-guided controlled breathing rate of 0.1 Hz,

0.15 Hz, 0.25 Hz and 0.33 Hz, and a free rate that was felt normal by each subject. Body pos-

ition was varied between supine, sitting and standing (Figure 2). The length of each measure-

ment step was one minute during which the subject was instructed to stay put and not to

move their limbs. There was always a 2–3 minute resting period between the steps. In this

study, the protocol steps 1–12 were used. We made cross testing between different steps
Table 1 Measurement protocol

Step Body position Breathing style Frequency [Hz]

0 Stabilization – supine Free

1 Supine Free

2 Supine Free

3 Sitting Free

4 Standing Free

5 Sitting Free

6 Sitting Controlled 0.25

7 Sitting Controlled 0.15

8 Sitting Controlled 0.33

9 Sitting Controlled 0.10

10 Sitting Free

11 Active standing up (30 s sitting, 30 s standing) Free

12 Active standing up (20 s sitting, 20 s standing, 20 s sitting) Free

13 Sitting Free



Figure 2 Measurement setup with spirometer and respiratory effort belts. Body positions from left to
right: supine, sitting and standing.
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using the measurement data of one step to train the prediction model and that of some other

step to test the prediction model. We made tests using a subject-specific approach and also

in some cases a subject-independent approach. In the latter approach, one subject’s data is

left out at a time, the data of all other subjects is used for training of the model, and the left-

out observation is used for testing. This is also called leave-one-out validation.

Statistics

The spirometer signals and predicted airflows from respiratory effort belts were com-

pared by computing R2 and RMSE (Root Mean Square Error) values. R2 is the coeffi-

cient of determination between the spirometer signal and the predicted airflow. The

coefficient of determination is calculated from R2 = 1 − SSres/SStot [26], where SSres is

the sum of squares of residuals between the spirometer signal and predicted airflow,

and SStot is the total sum of squares calculated from the spirometer signal. RMSE is a

measure of the difference between the spirometer signal and the predicted airflow.

Relative RMSE [%] is the proportion of RMSE from RMS (Root Mean Square) of the

spirometer signal. Furthermore, Bland-Altman plots were drawn to illustrate the differ-

ence between the proposed method and the standard one.
Results and discussion
In the following subsections, the subject-specific approach is used unless otherwise

stated in the subtitles. The proposed method was evaluated with different breathing

styles and body positions. In accordance with that, the results were divided in the fol-

lowing subsections: (1) free breathing with unchanged body positions (sitting, supine);

(2) metronome guided different breathing styles in sitting position; (3) subject-

independent model with free breathing and metronome guided breathing in sitting pos-

ition; (4) free breathing in different body positions (sitting, supine, standing); (5) free

breathing with dynamic body position change (sitting, standing); (6) thoracoabdominal

asynchrony of respiratory effort belts; and (7) subject-independent models with three

different calibration methods.
Unchanged body position

At first, prediction performance of free breathing in sitting and in supine position was

assessed. In sitting position, data from step 5 was used to train the model and data

from step 10 was used to test the model. In supine position, step 1 was used to train
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the model and step 2 to test the model. One subject’s rib cage belt signal contained so

much of disturbances that we had to exclude that subject from supine position testing.

Thus, there were data of ten subjects in sitting position testing and data of nine sub-

jects in supine position testing. Table 2 summarizes the results from these tests. It is

clearly seen in Table 2 that the proposed method (PM) with the FIR filter tap coeffi-

cients (N) 8 and 16 improved results greatly over the standard method (SM). In both

body positions, R2 improved, relative RMSE decreased and relative respiratory volume

error decreased. Additionally, standard deviation reduced in all cases indicating better

predictability of the modeling error. Table 3 presents the relative improvements when

predicted airflows produced with the different sizes of FIR filters were compared with

the standard method. In both cases, R2 increased about 20% approaching 0.94 and rela-

tive RMSE decreased almost 50% when N values 8 and 16 were used. Additionally, the

N value of 16 slightly increased R2 and decreased relative RMSE compared to the N

value of 8.

Figure 3 depicts a short segment of example signals from both body positions. The

predicted airflow with the N values 8 and 16 followed much more accurately the spir-

ometer signal than that with the standard method. Predicted airflows with the N values

of 8 and 16 are almost completely overlapping visually.

The results were consistent with our earlier findings indicating the proposed method

improves the calibration accuracy greatly in the case of stable breathing and body pos-

ition [25]. In the rest of the section we present results with the more challenging cases:

changing breathing styles and body positions.
Different breathing styles

To study the effect of different breathing styles, the protocol steps 5–10 were used.

The model was trained with the data of each step at a time and tested with all the other

steps containing different breathing styles. An average was taken over all combinations

of the steps for each subject. Results from these tests are presented in Table 4. It is

clearly seen that FIR filter size 8 and 16 improved results even more dramatically than

in the stable body position cases above. However, the average of R2 values was negative

for airflows predicted with the standard method, because in several of those cases, the

residual was so large that R2 received negative values. Negative values may occur if the

residuals between the spirometer signal and predicted airflow contain very large values

(see section Statistics). This may happen when a regression model fails completely to

predict data from very different body positions or breathing styles. When the predicted
Table 2 Results (average value ± SD) of the calibration with the standard method (SM)
and proposed method (PM) with N values of 8 and 16 in unchanged body positions

Body position Method R2 Relative RMSE [%] Relative volume error [%]

Sitting

SM 0.789 ± 0.050 45.7 ± 5.5 −9.2 ± 22.9

PM(N=8) 0.935 ± 0.017 25.4 ± 3.4 −6.5 ± 10.4

PM(N=16) 0.948 ± 0.011 22.7 ± 2.7 −4.1 ± 11.0

Supine

SM 0.792 ± 0.070 45.2 ± 7.0 1.8 ± 19.3

PM(N=8) 0.937 ± 0.026 24.6 ± 5.3 −0.3 ± 7.3

PM(N=16) 0.945 ± 0.027 22.7 ± 5.9 −0.4 ± 7.2



Table 3 Comparison of the standard method and proposed method in unchanged body
positions

Body position Compared methods ΔR2 Δ(relative RMSE)

Sitting

SM→PM(N=8) 18.9 ± 7.7 −43.8 ± 9.1

SM→PM(N=16) 20.6 ± 7.2 −50.0 ± 6.6

PM(N=8)→PM(N=16) 1.4 ± 1.1 −10.4 ± 5.8

Supine

SM→PM(N=8) 19.1 ± 10.5 −45.3 ± 10.7

SM→PM(N=16) 20.3 ± 10.6 −49.6 ± 11.8

PM(N=8)→PM(N=16) 0.9 ± 0.5 −8.4 ± 5.3

The relative improvement of R2 and relative RMSE (average value ± SD, in [%]) between predicted airflows with the
standard method and proposed method with N values of 8 and 16. The notation ´a→b´ denotes a performance
improvement when changing from method ´a´ to method ´b´.
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airflow was produced with the N values of 8 and 16, the R2 (average ± std) was 0.92 ±

0.024; and 0.93 ± 0.024, respectively. The relative RMSE decreased 61.5% when com-

paring the predicted airflow produced with the standard method to that of produced

with the FIR filter size 8. Relative error of respiratory volume decreased from 17.1 ±

72.0% to −4.3 ± 13.1%, respectively. Corresponding values when comparing the pre-

dicted airflow produced with the standard method to that of produced with the N value

of 16 were: the relative RMSE decreased by 63.8% and relative error of respiratory vol-

ume decreased from 17.1 ± 72.0% to −2.1 ± 13.1%. Thus, the standard deviation of re-

spiratory volume error decreased 81% with proposed method indicating much better

predictability of the respiratory volume. In addition, the relative RMSE decreased by

6.3% when comparing the predicted airflow produced with the N value of 8 to that of

produced with the N value of 16.

Figure 4 depicts short segments of example signals from two subjects. The predicted

airflows were computed with the standard method (red line), N value of 8 (blue line) and

N value of 16 (green line). In the upper subfigure, the model was trained with the data of

step 9 (breathing cycle 9.9 sec and respiratory volume 2.72 l) and tested with the data of

step 8 (breathing cycle 3.0 sec and respiratory volume 1.58 l). In the lower subfigure, the

model was trained with the data of step 8 (breathing cycle 3.0 sec and respiratory volume
Figure 3 Short segments of example signals in sitting (upper) and supine (lower) body positions.
Spirometer signals (black) and the predicted airflows (red: the standard method, blue: proposed method
with N=8, green: proposed method with N=16).



Table 4 Results (average value ± SD) of the calibration with the standard method and
proposed method with N values of 8 and 16 for each subject

Subject

SM PM(N = 8) PM(N = 16)

Relative
RMSE [%]

Relative
volume
error [%]

Relative
RMSE [%]

Relative
volume
error [%]

Relative
RMSE [%]

Relative
volume
error [%]

1 78.6 ± 51.5 36.6 ± 81.4 29.2 ± 4.9 −5.6 ± 12.4 25.6 ± 4.7 1.2 ± 12.8

2 82.5 ± 50.1 20.7 ± 90.4 31.2 ± 11.4 −5.6 ± 7.2 29.5 ± 12.3 −4.5 ± 7.1

3 71.1 ± 37.7 25.4 ± 76.8 29.0 ± 4.0 −2.8 ± 11.8 26.3 ± 4.2 1.8 ± 14.1

4 73.0 ± 38.5 11.9 ± 74.1 29.7 ± 6.6 −3.6 ± 15.2 28.3 ± 5.5 −3.3 ± 14.5

5 73.0 ± 35.0 2.1 ± 64.0 26.6 ± 3.5 −5.0 ± 13.8 25.8 ± 4.4 −3.8 ± 13.7

6 64.6 ± 29.8 14.0 ± 66.2 21.7 ± 2.2 −2.2 ± 8.8 19.7 ± 1.9 −0.8 ± 8.7

7 70.6 ± 27.9 20.0 ± 66.5 22.2 ± 5.6 −0.4 ± 7.5 21.1 ± 4.8 1.1 ± 8.3

8 64.6 ± 33.1 11.9 ± 60.7 33.7 ± 10.9 −9.7 ± 25.9 32.6 ± 11.2 −8.1 ± 25.9

9 74.8 ± 43.0 16.0 ± 70.7 24.4 ± 6.1 −4.4 ± 13.2 22.7 ± 6.7 −0.1 ± 13.3

10 64.0 ± 32.9 12.0 ± 69.4 27.3 ± 4.0 −3.6 ± 15.3 26.2 ± 4.4 −4.7 ± 12.2

Average 71.6 ± 38.0 17.1 ± 72.0 27.5 ± 5.9 −4.3 ± 13.1 25.8 ± 6.0 −2.1 ± 13.1

The training and testing were performed using different breathing styles.
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1.73 l) and tested with the data of step 7 (breathing cycle 6.7 sec and respiratory volume

1.56 l). Predicted airflows with the N values of 8 and 16 clearly follow original spirometer

signal much more accurately than that of with the standard method.

Bland-Altman plots in Figure 5 depict the effect of the proposed method with different size

of FIR filters for the calibration. In all subfigures, the spirometer signal is on the horizontal

axis and the prediction error signal (spirometer signal minus predicted airflow) is on the ver-

tical axis. In this case, the training was done with step 8 (0.33 Hz) data and after that the pre-

dicted airflow was computed with the data from step 9 (0.1 Hz). The data was gathered from

all ten subjects. By comparing the plots for the standard method and proposed method with

N values 8 and 16, a clear distinction can be seen: the plots with the N values of 8 and 16 are

much more compact and they have clearly less structure. This indicates the superiority of the

calibration method proposed here.
Subject-independent models

Ten-fold cross-validation was applied in the subject-independent approach: data from mea-

surements of nine subjects were used to train the prediction model and the testing of the

model was done by using the data of one subject that was excluded from the training set. The

average performance was finally calculated over all test subjects. Two tests were done: (1) free

breathing with step 10 (training) and step 5 (testing); and (2) controlled breathing with step 8

(0.33 Hz breathing, training) and step 7 (0.15 Hz breathing, testing). An average was taken

over all ten combinations in both tests. Results from these test cases are presented in Table 5.

Proposed method with the N values 8 and 16 improve results greatly in both test cases. Espe-

cially the results from controlled breathing indicate radical improvements. In this case, the

average of R2 values was negative for airflows predicted with the standard method, because in

the most of those cases, error was so large that R2 received negative values. The relative

RMSE decreased by 70.7% and 69.8% when comparing the predicted airflow produced with

the standard method to that of produced with the N values of 8 and 16, respectively. Add-

itionally, relative respiratory volume error and its standard deviation changed from 99.5 ±



Figure 4 Short segments of example signals from two different breathing styles. Spirometer signals
(black) and the predicted airflows (red: the standard method, blue: proposed method with N=8, green:
proposed method with N=16).
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51.3% (the standard method) to −0.2 ± 24.0% (N value of 8) and −1.2 ± 24.7% (N value of

16). Figure 6 depicts short segments of example signals. Calibration with the standard method

produced much worse predicted airflow than with the proposed method.

Bland-Altman plots in Figure 7 and Figure 8 depict the effect of the proposed method for

the calibration. In both cases, by comparing the plots for the standard method, N

values of 8 and 16, the superiority of the proposed method is clear: the plots with the N

value of 8 and that of 16 are more compact and they have less structure. Distinction is

even more evident when controlled breathing is used.

Different body positions

The effect of different body positions was tested by using the supine (step 2), sitting

(step 3) and standing (step 4) positions. The prediction model was trained with the data

of one step and it was tested with the other two steps. An average was taken over all
Figure 5 Bland-Altman plots from calibration with the different breathing styles. Spirometer signal is
on the horizontal axis and the prediction error signal is on the vertical axis. Prediction error signals are
computed for the predicted airflows with the standard method (top), proposed method with N=8 (middle)
and proposed method with N=16 (bottom).



Table 5 Results (average value ± SD) of the calibration with the standard method and
proposed method with N values of 8 and 16 using the subject-independent model

Breathing Method R2 Relative RMSE [%] Relative volume
error [%]

Free

SM 0.694 ± 0.152 53.8 ± 13.5 14.7 ± 40.8

PM(N=8) 0.890 ± 0.065 31.8 ± 10.0 −6.5 ± 21.9

PM(N=16) 0.900 ± 0.056 30.3 ± 9.2 −0.3 ± 23.2

Controlled

SM −0.259 ± 0.768 107.2 ± 35.1 99.5 ± 51.3

PM(N=8) 0.894 ± 0.061 31.4 ± 9.2 −0.2 ± 24.0

PM(N=16) 0.889 ± 0.055 32.4 ± 8.2 −1.2 ± 24.7
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three combinations and ten test subjects. Results showing clear improvements are

presented in Table 6. The R2 increased, relative RMSE decreased and the relative re-

spiratory volume error decreased when values 8 and 16 for N was used. Additionally,

standard deviations decreased in every case.
Changing body position

Data from step 11 and 12 in which the body position changed during the step, were

used to test the prediction model trained with the data from step 10 (sitting). An aver-

age was taken over all results of ten subjects in both cases. Results from these cases are

presented in Table 7. The relative RMSE values were now larger than in the previous

cases but the values and their standard deviations were smaller with the N values 8 and 16.

Figure 9 depicts example signals from one subject from step 12. At the beginning

when the subject was sitting, all predicted airflows follow the original spirometer signal

quite well. All predicted airflows deviate from the spirometer signal at the time when

body position changed (20 sec and 40 sec points in Figure 9) and proposed method

with the FIR filter sizes 8 and 16 overestimate the flow for a short time period. How-

ever, the standard method overestimates the flow in a still longer time window. The
Figure 6 Short segments of example signals from free breathing (upper) and controlled breathing
(lower). Spirometer signals (black) and the predicted airflows (red: the standard method, blue: proposed
method with N=8, green: proposed method with N=16). Predicted airflows are computed with the
subject-independent model.



Figure 7 Bland-Altman plots from calibration with the free breathing style and with subject-
independent model. Spirometer signal is on the horizontal axis and the prediction error signal is on the
vertical axis. Prediction error signals are computed for the predicted airflows with the standard method
(top), proposed method with N=8 (middle) and proposed method with N=16 (bottom).

Seppänen et al. BioMedical Engineering OnLine 2013, 12:97 Page 13 of 17
http://www.biomedical-engineering-online.com/content/12/1/97
predicted airflows produced with the proposed method then continue to follow the

spirometer signal much more accurately than with the standard method.
Thoracoabdominal asynchrony of respiratory effort belts

Thoracoabdominal asynchrony of respiratory effort belt signals was observed only in

one subject’s measurement in step 9. In this step, the subject was breathing by metro-

nome guidance in the speed of 0.10 Hz, which is considered unnaturally slow for most

subjects. The training of the prediction model was performed with the data from the

steps with synchronic belts signals: steps 5, 6, 7, 8 and 10. The testing of the model was

performed with the data from step 9. An average was taken over all five combinations.

Results from these cases are summarized in Table 8. Both relative RMSE and relative
Figure 8 Bland-Altman plots from calibration with the controlled breathing and with subject-
independent model. Spirometer signal is on the horizontal axis and the prediction error signal is on the
vertical axis. Prediction error signals are computed for the predicted airflows with the standard method
(top), proposed method with N=8 (middle) and proposed method with N=16 (bottom).



Table 6 Results (average value ± SD) of the calibration with the standard method and
proposed method with N values of 8 and 16 in different body positions

Method R2 Relative RMSE [%] Relative volume error [%]

SM 0.654 ± 0.057 58.4 ± 15.4 −10.0 ± 15.9

PM(N=8) 0.876 ± 0.041 33.8 ± 8.3 −6.2 ± 5.6

PM(N=16) 0.885 ± 0.034 32.4 ± 9.6 −3.1 ± 7.4
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respiratory volume error decreased dramatically when proposed method with N values

8 and 16 were used. Yet, again the average of R2 values was negative for airflows pre-

dicted with the standard method. When N values of 8 and 16 were used, the R2 values

were as high as over 0.9. The relative RMSE decreased by 81.6% and 83.1% when com-

paring the standard method and the proposed method with the N values of 8 and 16,

respectively. Error in respiratory volume decreased from 154.4% (the standard method)

to small fractions when N values 8 and 16 were used. Also, the standard deviations of

relative RMSE and relative respiratory volume error decreased dramatically.
Comparison to reference methods with subject-independent model

The accuracy of the proposed method was compared with the one from Liu et al. [24]

and the standard method of calibration [5]. Liu et al. have recently developed modified

multiple linear regression models for estimating the minute ventilation of test subjects

from data measured from rib cage and abdomen movements by sensor belts. They de-

veloped five models involving a combination of 11 features. Their results indicated that

the inclusion of breathing frequency and the use of percentile points over 60 s data in

the multiple linear regression model gave the most accurate results for their data. Thus

the predictor variables used in our comparison are the best ones from their study:

(1) the 10th percentile of an abdomen respiratory signal; (2) the 90th percentile of

an abdomen respiratory signal; (3) the 10th percentile of a rib cage respiratory sig-

nal; (4) the 90th percentile of a rib cage respiratory signal; and (5) breathing fre-

quency. Regression coefficients were estimated with the method of least-squares

from the available data in all methods.

The subject-independent approach with the protocol steps 5–10 was used with one-

subject-out cross-validation procedure. Data from nine subjects were used to train the

prediction model and the testing of the model was done by using the data of one sub-

ject that was excluded from the training set. The regression coefficients were estimated

with each of the method and the minute ventilation was predicted for each one-minute
Table 7 Results (average value ± SD) of the calibration with the standard method and
proposed method with N values of 8 and 16 in body position change

Step Method Relative RMSE [%] Relative volume error [%]

11

SM 88.0 ± 40.7 18.6 ± 40.5

PM(N=8) 68.2 ± 20.7 −9.8 ± 9.4

PM(N=16) 62.2 ± 19.1 −4.9 ± 7.2

12

SM 123.5 ± 47.1 83.4 ± 75.2

PM(N=8) 92.5 ± 32.8 −5.3 ± 13.2

PM(N=16) 86.6 ± 31.5 3.6 ± 12.3



Figure 9 Example signals from step 12 with body position changes. Spirometer signal (black) and the
predicted airflows (red: the standard method, blue: proposed method with N=8, green: proposed method
with N=16).
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signal. The minute ventilation error [%] was then computed for all 60 cases from the pre-

dicted and measured (spirometer) minute ventilation. Results are presented in Table 9. It

is clearly seen in the table that the average, standard deviation, median and MAD (Median

Absolute Deviation) of minute ventilation error were the smallest when the proposed

method was used. The standard method achieved a surprisingly small error on average

but the variance of the error was large. A further advantage of the proposed method over

the one from Liu et al. is that it can produce an accurate prediction of the breathing signal

while the latter one is specialized in predicting the minute ventilation only.

Real-timeliness considerations

The methods were implemented in MATLAB® R2012b technical computing environment

(MathWorks Inc., Natick, Massachusetts, U.S.A.). Average computing time (Intel® Core™2

Duo CPU P8600, 2.4 GHz) for the regression coefficients was 110 msec with the method

from Liu et al. 120 msec with the standard method, 330 msec with the proposed method

with filter size 8 and 880 msec with the proposed method with filter size 16.

Average computing time for the airflow prediction from one minute spirometer sig-

nal and respiratory effort belt signals was 0.2 msec with the standard method. Accord-

ingly, average computing times for the proposed method with the filter size 8 and 16

were 1.1 msec and 1.7 msec, respectively. Average computing time for the prediction of

minute ventilation was 0.01 msec with the method of Liu et al. 0.3 msec with the

standard method and 1.1 msec with the proposed method with filter size 8. Computing

time for all methods was only a fraction of a second for one minute measurement data

which makes them suitable for real time applications.
Table 8 Tests with asynchronous belt signals

Method R2 Relative RMSE [%] Relative volume error [%]

SM −2.090 ± 2.241 165.8 ± 65.4 154.4 ± 83.2

PM(N=8) 0.906 ± 0.023 30.5 ± 3.6 −12.1 ± 4.9

PM(N=16) 0.920 ± 0.026 28.0 ± 4.4 0.8 ± 3.7

Results (average value ± SD) of the calibration with the standard method and proposed method with N values of 8 and 16.



Table 9 Comparison of the proposed method to the reference methods

Method Average SD Median MAD

Liu et al. 25.9 61.0 16.8 33.6

SM 3.6 74.8 −6.5 51.1

PM(N=8) 3.5 40.5 −3.4 25.9

Minute volume error [%] of the calibration with the method from Liu et al. [24], the standard method and proposed
method (with N=8).
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Conclusions
Here, we presented an improved calibration method that is an extension of multiple linear

regression method. The method uses an optimally trained FIR filter bank and Multiple-

Input Single-Output system model. The standard multiple linear regression method

makes the assumption that the signal waveforms from the respiratory effort belts and spir-

ometer are the same and takes a weighted average of the two inputs in order to make a

prediction. However, the belts measure the thoracoabdominal movements and the spir-

ometer measures airflow, and they use different kinds of sensor technique. For this reason,

their output signal waveforms are different. In addition, there are different kinds of com-

mercial belt sensors such as piezo-based and inductive-based which produce further un-

predictability to the accuracy. Our FIR filters perform optimal linear transforms of the

belt signal waveforms in order to match them to the spirometer signal waveform, which

makes the result of the prediction much more accurate than with the standard method.

We demonstrated that the proposed method outperformed other compared methods

with the prediction of minute ventilation. More importantly, the proposed method im-

proves greatly the accuracy of the airflow prediction over the conventionally used one.

The results showed that the improvement of the prediction accuracy is significant when

the volunteers breathed freely in a stable body position. More importantly, when the

different breathing styles were used, the prediction accuracy improved even more. In

both cases, the predicted airflow computed with the proposed method followed much

more accurately the original spirometer signal than the standard method. Conse-

quently, not only the respiratory volume can be computed more precisely, but also the

respiratory flow signal waveforms are very accurate. This offers an excellent opportun-

ity to use respiratory effort belts for long term breathing measurements and produce

more accurate waveform of respiratory volume and flow signals. This improvement

may be particularly useful in the fields of pulmonary and critical care medicine.
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