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Abstract

Background: EMG-to-force estimation based on muscle models, for voluntary
contraction has many applications in human motion analysis. The so-called Hill model
is recognized as a standard model for this practical use. However, it is a
phenomenological model whereby muscle activation, force-length and force-velocity
properties are considered independently. Perreault reported Hill modeling errors were
large for different firing frequencies, level of activation and speed of contraction. It may
be due to the lack of coupling between activation and force-velocity properties. In this
paper, we discuss EMG-force estimation with a multi-scale physiology based model,
which has a link to underlying crossbridge dynamics. Differently from the Hill model,
the proposed method provides dual dynamics of recruitment and calcium activation.

Methods: The ankle torque was measured for the plantar flexion along with EMG
measurements of the medial gastrocnemius (GAS) and soleus (SOL). In addition to Hill
representation of the passive elements, three models of the contractile parts have been
compared. Using common EMG signals during isometric contraction in four able-
bodied subjects, torque was estimated by the linear Hill model, the nonlinear Hill model
and the multi-scale physiological model that refers to Huxley theory. The comparison
was made in normalized scale versus the case in maximum voluntary contraction.

Results: The estimation results obtained with the multi-scale model showed the best
performances both in fast-short and slow-long term contraction in randomized tests
for all the four subjects. The RMS errors were improved with the nonlinear Hill model
compared to linear Hill, however it showed limitations to account for the different
speed of contractions. Average error was 16.9% with the linear Hill model, 9.3% with
the modified Hill model. In contrast, the error in the multi-scale model was 6.1% while
maintaining a uniform estimation performance in both fast and slow contractions
schemes.

Conclusions: We introduced a novel approach that allows EMG-force estimation
based on a multi-scale physiology model integrating Hill approach for the passive
elements and microscopic cross-bridge representations for the contractile element.
The experimental evaluation highlights estimation improvements especially a larger
range of contraction conditions with integration of the neural activation frequency
property and force-velocity relationship through cross-bridge dynamics consideration.

Keywords: Muscle model, EMG, Muscle force estimation, Hill model, Multi-scale
physiology
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Introduction
Any human movement is produced by muscular and skeletal systems controlled by the
nervous system. Mechanism of the human body dynamics has been revealed by many
biomechanical researches. The general neuromusculoskeletal model of the whole body
and its dynamics computation package have been developed and reported [1]. How-
ever, the detailed neuromuscular activation system should still be closely analyzed and
modeled from microscopic to macroscopic scales. Macroscopic modeling, such as the
Hill-type muscle model, is a phenomenological model. Conversely, microscopic modeling
is based on muscle physiology, more specifically the dynamics of actin-myosin, allowing
it to display a richer response.
Neuromuscular modeling is important for neuroscience to understand how limb

movements are smoothly and effectively controlled [2,3]. It is also valuable for clinical
applications to be used for quantitative analysis on abnormal muscle activation patterns
such as spasticity induced by stroke or cerebral palsy [4]. Moreover, neuroprosthetic con-
trol such as functional electrical stimulation (FES) for paralyzed muscles [5,6] can be
improved through neuromuscular modeling to optimize the muscle activation control.
Surface electromyography (EMG) is widely used to assess the muscle status in a wide

range of clinical fields. The signal generated during a contraction is the summation of
the signals of all different recruited motor units (MU) at a given time. Each MU receives
information from the central nervous system in the form of action potentials, which are
transmitted from the alpha motor neuron to the muscle fibers via the neuromuscular
junction. During voluntary contraction, the EMG signal can be seen as the interference
pattern of all active MUs, with each MU firing at its own mean frequency with its own
timing [7]. The contributions of individual MU cannot be easily recovered from the EMG
signal. However, EMG signals still contain precious information about muscle activation
and could thus represents the entry of a muscle model. Indeed, the important advan-
tage of EMG usage is that it can account for a subject’s individual activation pattern to
estimate muscle force. Moreover, as the EMG signals can be considered for each individ-
ual groups of antagonist muscles with their own muscle models, co-contraction can be
captured and deeply investigated through the computation of individual force and stiff-
ness. On the contrary, numerical optimization techniques typically do not account for
muscular co-contraction.
EMG-basedmodels were already used inmany studies to estimate torques around joints

[8] or in musculoskeletal models [9,10]. Most of the muscle models used in such studies
are based on phenomenological models derived fromHill’s study [11] and summarized by
Zajac [12]. The Hill-type model is attractive in biomechanical simulations because of the
computational simplicity and easy to calibrate using experimentally measurable variables.
It tends to produce accurate estimation results, however in limited ranges of function.
However, recent work [13] performed the validation of Hill model under functionally

wider relevant conditions. The authors concluded that the modeling errors were substan-
tial for different firing frequencies and greatest at lowmotor unit firing rates that are most
relevant in normal movement conditions both in voluntary and FES muscle contractions.
They pointed out that this could be due to the Hill model assumption whereby mus-
cle activation, force-length and force-velocity properties are considered independently.
In their discussion, it was suggested that more physiological coupling between activation
and force-velocity properties can be demonstrated in crossbridge models incorporating
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dependence between physiologically based activation and cross-bridge attachment [13].
The important finding is that Hill modeling errors were large for different firing frequen-
cies and greatest at low motor unit firing rates. In [13], classical linear Hill model was
used. Especially for solving the problem of the mismatch at low muscle activation level,
a nonlinear conversion was proposed [14] and used by other researchers [9]. This can
solve partially the problem, however, there is a still the problem to correspond to the
estimations in different contraction speeds. Besides, in Hill-type modeling, the cut off
frequency should be carefully chosen depending on the type of task because the enve-
lope of the estimated force is almost defined by the low-pass filtering of the activation.
Thus, we aim at proposing multiscale muscle model, which can have more physiological
coupling between activation and force-velocity properties by incorporating microscopic
cross-bride and dual dynamics pathway for the recruitment / activation level and the cal-
cium triggering the contraction cycle. However, the whole passive structure is based on
Hill model as only the contractile element differs.
The first microscopic muscle model was proposed by Huxley [15]. He detailed the

interaction of the cross-bridges in a sarcomere in order to explain the force genera-
tion. The distinctions between microscopic and macroscopic levels are not absolute;
thus a sarcomere model can be used to represent a whole muscle, which is assumed to
be a homogeneous assembly of identical sarcomeres. Conversely, the Hill model, which
was originally developed for whole muscles, has been used to represent the dynam-
ics of individual sarcomeres within a fiber [16]. The distribution-moment approach
of Zahalak [17] is a model for sarcomeres or whole muscle, which is extracted via a
formal mathematical Gaussian approximation from Huxley cross-bridge model. This
model fills a gap between microscopic and macroscopic levels. Based on Huxley and
Hill-type models, Bestel-Sorine [18] proposed an explanation of how the beating of
cardiac muscle may take place, through chemical control input connected to the cal-
cium dynamics of cells in muscles. This chemical input triggers the contractile element
model.
Complete Huxley type physiological model have a greater repertoire of response, but

are computationally complex. Bestel-Sorine representation provides an efficient trade-off
between complexity and power of the model expression. It consists in an explicit compu-
tation of the first two moments reprenting stiffness and force of the contractile element,
triggered by the chemical input as regard the contraction start and stop. Starting with this
concept, we first adapted it to the striated muscle model to represent muscle responses
under FES [19]. The multi-scale muscle model was applied for voluntary contraction in
a preliminary work [20]. In this study, we aim at developing EMG-based muscle model
to study voluntary muscle contraction with this multiscale modeling approach compared
to Hill approaches, both linear and nonlinear. Indeed, in Hill approach, the dependency
on cut-off frequency choice prevents from good performances in a wide range of con-
traction types. The multiscale approach should improve the performances in particular
regarding fast and slow contraction patterns. In addition, we consider that it is of inter-
est to apply the same type of EMG-to-force estimation with a physiologically detailed
model and not only with a phenomenological Hill model because the internal biophysi-
cal dynamics could shed new light on neuromuscular activation. Using common data sets
of isometric muscle contractions, the force estimation results are compared between Hill
model approaches and newly proposed approach.
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Methods
Hill-type muscle model

The transformation from EMG to muscle activation is a dominant process because the
estimated muscle force is assumed to be proportional to the muscle activation.

EMG processing

The EMG processing method employed in this paper is summarized. For the details,
readers can refer to [8,9].

1. high-pass filtering of raw EMG using zero-lag 4th order Butterworth filter (30 Hz)
to remove motion artifacts

2. wave rectification
3. low-pass filtering with a 2 Hz cut-off frequency using zero-lag 2nd order

Butterworth filter
4. normalization with the peak of maximum voluntary contraction (MVC)

There is an alternative method instead of the low-pass filtering of the third step. It is
referred to as the mean absolute value (MAV) method. A moving average filter is applied
within a fixed time window, which is equivalent to low-pass filtering. The recommen-
dations of the SENIAM project indicate a time window of 0.25 to 0.5 seconds [21]. It
corresponds to the choice of cut-off frequency of the low-pass filter of 2 to 4 Hz. This
critical parameter choice depends on the task dynamics. Indeed, this choice of cut off
frequency is a trade off between how fast the fluctuations in amplitude can be and how
reliable the estimate of the amplitude is. A low cut off frequency gives a more reliable
estimate of the amplitude, but cannot capture fast changes, while higher cut off fre-
quency results in noisier output but captures fast contractions. The cut off frequency
mentioned in the SENIAM recommendations is 2 Hz for slow motions, and 6 Hz for fast
motions [21]. In Hill-type model, this cut off frequency should be carefully set depend-
ing on the type of task because the envelope of the estimated force is almost determined
by this low-pass filtering step. The normalized EMG is processed with the following acti-
vation dynamics, which mainly captures the delay from muscle activation to mechanical
output.

Activation dynamics

The process of transforming the normalized, rectified and filtered EMG, referred as e(t) to
neural activation p(t), is called the activation dynamics as shown in the Figure 1 flowchart.
When a muscle fiber is activated by a single action potential (AP), the muscle generates a
twitch response. This delayed response can be approximated by a critically damped linear

EMG

EMG processing

Activation Dynamics

e(t)
p(t)

Rectification Low-pass
Filtering (2Hz)

Low-pass
Filtering(30Hz)

Nonlinearization
a(t)

Hill-type Muscle Model

Multi-scale Physiological
Muscle Model

Chemical Input 
Generator u(t)

Force

Force

Normalization

Thresholding

Figure 1 A flowchart of EMG-force estimation by the Hill-type model andmultiscale physiological
muscle model.
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second-order differential system [8]. Its recursive discrete form is as follows in Eq. 1 to
calculate p(tk).

p(tk) = γ e(tk − d) − β1p(tk−1) − β2p(tk−2) (1)

where d is the electromechanical delay and γ , β1 and β2 are the coefficients that define
the second-order dynamics. To obtain a positive stable solution, a set of constraints are
employed, i.e. β1 = C1 +C2,β2 = C1C2 where |C1| < 1, |C2| < 1. In addition, the gain of
this filter should be maintained by ensuring γ − β1 − β2 = 1 as described in [8].

Nonlinearization ofmuscle activation for nonlinear Hill model

Many researchers assume that the above p(t) is a reasonable approximation of muscle
activation. However, a nonlinear relationship has been reported between individual mus-
cle EMG and the jointmoment for somemuscles, especially at lower forces [14]. In studies
on single motor units, multiple APs cause succesive twitch responses. If the time between
APs decreases, twitches start to merge and the muscle force increases steadily. However,
at high frequency we reachmaximal contraction, where force development saturates even
if the frequency increases. This induces a nonlinear relationship between the frequency
and force for single motor units [8].
This modification was thus recently introduced to correspond to the mismatch of Hill

model estimation at low activation levels. Indeed, in the classical linear Hill model, neural
activation p(t) is directly treated as muscle activation a(t) without the nonlinear conver-
sion. When we refer to the modified nonlinear Hill model, the following conversion from
neural activation p(t) to muscle activation a(t) is performed as in Figure 1. As a simple
and adequate solution, Lloyd and Besier [9] proposed the following formulation:

a(t) = eAp(t) − 1
eA − 1

(2)

where A is a constant parameter for the nonlinear shape factor allowed to vary between
-3 and 0, with A = −3 being highly exponential and A = 0 being linear.

Hill-type contraction dynamics

The muscle-tendon unit is modeled as a contractile element in series with an elastic ten-
don, as shown in Figure 2(A) as same as the general Hill model [12]. The tendon element
in series was modeled as having a linear stiffness kt of 180 N/mm [22] as the parameter in
human triceps surae muscle-tendon complex. φ is the pennation angle between the ten-
don and muscle fibers. Moreover, in this paper, we assess the EMG-force relationship in
isometric conditions. Then, only concentric contraction is considered where a contrac-
tile element is always shortening during contraction. The parallel elastic element is not
included, since its length does not change during isometric contraction, which is assumed
in this study. In addition, we would include the parallel element effect in joint level mod-
eling rather than the muscle level when we apply the proposed approach in non-isometric
condition. This common macroscopic structure as shown in Figure 2(A) is used for the
three types of modeling, only the contractile element dynamics change.
The Hill-type muscle model is used to estimate the force Fc(t) generated by the

contractile element with the general form:

Fc(t) = a(t)fl(εc)fv(ε̇c)Fm (3)



Hayashibe and Guiraud BioMedical Engineering OnLine 2013, 12:86 Page 6 of 18
http://www.biomedical-engineering-online.com/content/12/1/86

Contractile
Element

Tendon

Lt Lc cos

Ft Fc cos
φ

φ

φ

A

B

Figure 2 Muscle models. (A)Muscle-tendon macroscopic model. (B) Huxley sliding filaments model.

where εc is the strain of the contractile element, fl(εc) and fv(ε̇c) are the normalized force-
length and force-velocity relationships, respectively. Fm is themaximum isometricmuscle
force.
The force-length relationship shows a Gaussian curve around the optimal length for

which the muscle generates the maximum force [12]:

fl(εc) = exp
{
−

(εc
b

)2}
(4)

where b is a constant parameter. fv(ε̇c) represents the relationship between the velocity
and the normalized force. The muscle contracts at its maximum velocity vmax without
load and slows down as the load increases. In the case of concentric contraction, this
relationship can be formulated as follows:

fv(ε̇c) = Vsh(vmax + Lc0ε̇c)
Vshvmax − Lc0ε̇c

(5)

where Lc0 is the length of contractile element at rest position and Vsh is a constant param-
eter. The b and Vsh parameters were obtained from [23,24]. At each time step, the fiber
velocity should be solved and the muscle fiber length is computed by forward integration
using Runge-Kutta algorithm [8]. Since the value of εc changed, the calculation should
continue iteratively until the end of the input time series of a(t).
The muscle tendon parameters were adopted from Delp [25]. For gastrocnemius, the

parameters are averages for two heads (med/lat). Only EMG of the medial head is mea-
sured, but the force of both heads is estimated using the sum of maximum force of two
heads through Fm. Fm and pennation angle φ are also obtained from [25]. However, in
the following, the final result is normalized by the maximum contraction, so the effect of
these parameters is not relevant. Parameters of muscle model are detailed in Table 1.
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Table 1Muscle model parameters

Parameter Unit Value

b - 0.5

Vsh - 0.3

Lc0(GAS) cm 5.1

Hill Lt0(GAS) cm 40

Pennation φ(GAS) Degrees 14

Common Fm(GAS) N 1600

parameters Lc0(SOL) cm 3.0

Lt0(SOL) cm 26.8

Pennation φ(SOL) Degrees 30

Fm (SOL) N 2830

kt N/mm 180

A (subject1) - -1.7

Nonlinear A (subject2) - -1.2

Hill A (subject3) - -1.7

A (subject4) - -1.5

Uc 1/s 5

Physiological Ur 1/s 10

model km N/m Fm × 20

Only A parameter for nonlinear Hill model is identified for each subject.

Physiological muscle model

We breifly describe the main points of the multi-scale physiological muscle model. It inte-
grates the characteristics both of macroscopic and microscopic muscle dynamics. The
details of this modeling are given in [19]. This model was originally designed to repre-
sent the muscle response under FES and is applied to voluntary muscular force estimation
based on EMG in this paper.

Generation of chemical input

The physiological model is composed of two inputs as shown in Figure 1. One is the
recruitment rate α which determines the percentage of recruited muscle fibers. The
recruitment rate α has the same physiological meaning as the neural activation p(t) in
Hill-type model. Then normalized p(t) without the nonlinearization was directly used
for α. The second input for physiological muscle model is the chemical signal u. It rep-
resents the underlying physiological processes between the contraction and relaxation
states independent from recruitment. Muscle contraction is initiated by an AP along the
muscle fiber membrane, which goes deeply into the cell through T-tubules. It causes cal-
cium release which induces the contraction process when the concentration goes above
a threshold and is sustained until the concentration decreases below this threshold again
[26]. Hatze [27] gives an example of calcium dynamics [Ca2+] modeling. The contraction-
relaxation cycle is then triggered by the [Ca2+] to be defined, and associated with two
phases: i) contraction and ii) relaxation. We use a delayed model to take into account the
propagation time of the AP and an average delay due to the calcium dynamics. It corre-
sponds to the electromechanical delay for e(t) into p(t) conversion in Hill-type approach.
For chemical input generation, the rectified EMG was low-pass filtered with a 30 Hz cut-
off frequency. Then, the chemical input u(t) was created by thresholding the extracted
EMG signals as shown in Figure 3. The signal measured in EMG is the summation of the
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Figure 3 Generated chemical input. (A) Filtered rectified EMG signal. (B) Chemical input by thresholding
for SOL.

APs of all different MUs. However, as we are trying to deal with one muscle model for the
wholemuscle force estimation, the EMG signal was considered as a representative average
triggering signal. The thresholding can be assumed to reflect a muscle cell’s all-or-nothing
response corresponding to the above chemical nature of the muscle contraction process.
Thus, the chemical threshold consists basically in extracting the contraction time dura-

tion of the muscle and to indicating if the muscle is in contraction or not. The level of
activation itself is managed by recruitment rate which is classically used in EMG usage
for Hill model. Thus, especially for the low activation state, even if the chemical input is
inaccurately determined, its effect is low since the recruitment activation p(t) is very low
during this period. And for the higher activation state, the contraction period is accu-
rately captured by this method. As long as the threshold is taken little above the baseline,
the threshold is less sensitive as long as it gives the picture of contraction/relaxation state.
The parameters for chemical input generation was obtained from [18,28].

Sarcomere scale

All the sarcomeres are assumed to be identical, and the deformation of both sarcomere
and muscle is proportional. If S is the sarcomere length, we can write (S − S0)/S0 =
(Lc − Lc0)/Lc0 = εc.
Huxley proposed that a cross-bridge between actin filaments and myosin heads could

exist in two biochemical states, i.e. attached and detached states as in Figure 2(B). Fil-
aments sliding is the result of interactions between the myosin cross-bridges and the
thin actin filaments. The cross-bridges reversibly bind to actin and produce a mechanical
impulse, which in turn results in force transmission along the filaments. M and A in the
figure represents the myosin head and actin binding site respectively.
One myosin head can only attach to one actin site. Then the dynamics of the fraction

n(y, t) of the attached cross bridges is given by

∂n
∂t

+ S0
h

ε̇c
∂n
∂y

= f (y, t)
[
1 − n(y, t)

] − g(y, t)n(y, t) (6)

where h is the maximum elongation of the myosin spring, x is the distance and y the
normalized distance between the actin binding site and the myosin head: y = x

h . n(y, t)
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is a distribution function representing the fraction of attached cross bridges relative to
the normalized relative position y. To ensure a one way displacement, this attachment
is considered possible only when y is between 0 and 1. S0ε̇C represents the velocity of
the actin filament relative to the myosin filament. f and g denote the rate functions of
attachment and detachment, respectively.
Several f and g functions have been defined and recently a chemical input was intro-

duced by Bestel-Sorine [18] to modify the ability of the cross bridge to attach or not. They
also proposed that these rates depend on the relative velocity between actin and myosin.
Indeed, the higher the velocity is, the greater the probability to break bridges is. f and g
can thus be defined by:

During the contraction phase{
f (y, t) = Uc
g(y, t) = Uc + |ε̇c| − f (y, t)

(7)

During the relaxation phase{
f (y, t) = 0
g(y, t) = Ur + |ε̇c| (8)

Uc and Ur are the chemical kinetics levels under contraction and relaxation phases
respectively. That can be resumed as below

u(t) = �c(t)Uc + (1 − �c(t))Ur

�c(t) = 1 during contraction, 0 else

(f + g)(y, t) = u(t) + |ε̇c|
(9)

To complete the description at the sarcomere scale, we assume that the force gener-
ated by one attached cross bridge is modeled by a linear spring with constant stiffness. All
cross bridges are parallel so the global stiffness and force generated by the whole sarcom-
ere is proportional to the number of formed bridges. Let k0 (Nm−1) denote the maximum
stiffness obtained when all the available bridges are attached. Let ξ(y, t) denote the elon-
gation of a cross bridge due to the contribution of the global extension of the sarcomere,
where εc(0) is the initial value, and to the local distribution of elongations y:

ξ(y, t) = y + S0
h

(εc(t) − εc(0)) (10)

The stiffness and force generated by a muscle sarcomere is obtained by computing the
first and second moment of the distribution n(ξ(y, t), t) [17]. The two first moments are
defined as:

ks(t) = k0
∫ +∞

−∞
n(ξ(y, t), t)dy

Fs(t) = k0h
∫ +∞

−∞
ξ(y, t)n(ξ(y, t), t)dy

(11)

From Eq. 6, it can be rewritten as follows:

k̇s = − (
f + g

)
(y, t)ks + k0f (y, t)

Ḟs = − (
f + g

)
(y, t)Fs + ksS0ε̇c + 1

2
k0hf (y, t)

(12)

Contrary to Zahalak approximation, we do not make any assumption on the distribu-
tion, rather the chosen f and g functions allows for a straightforward computation of the
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stiffness and the force generated by the contractile element. It provides a computational
effective model that however relies on Huxley theory.

Myofiber andmuscle scale

This set of differential equations can be easily extended to the whole muscle fiber con-
sidering that each fiber is composed of identical sarcormeres in series. Then kf = ks S0

Lc0
and Ff = Fs. In addition, the maximum available cross bridges varied depending on the
relative length of the contractile element. This is known as the force-length relationship
(fl(εc)). Contrary to previous studies where this effect is introduced at the macroscopic
level, we take into account this relation at the microscopic scale [17]. Indeed, this relation
is directly linked to the maximum available actin and myosin sites [16]. For the stiffness
kf and the force Ff at the fiber scale including Eq. 9, we get:

k̇f = − (u + |ε̇c|) kf + S0
Lc0

k0�c(t)Ucfl(εc)

Ḟf = − (u + |ε̇c|) Ff + kf Lc0ε̇c + 1
2
k0h�c(t)Ucfl(εc)

(13)

Next, we introduced the recruitment process atmuscle scale. At each contraction phase,
the recruitment ratio is updated but remains constant during its phase itself. Let kc and
Fc denote the stiffness and the force for whole contractile element, and N the number
of all MUs. The recruited number is written as αN using recruitment ratio α. Finally the
complete model of contractile element can be written as a set of differential equations:

k̇c = −(u + |ε̇c|)kc + αkm�c(t)Uc

Ḟc = −(u + |ε̇c|)Fc + αFm�c(t)Uc + kcLc0ε̇c
(14)

where km = S0Nk0fl(εc)/Lc0, Fm = Nk0hfl(εc)/2. k0 (Nm−1) is the maximum stiffness
obtained when all the available bridges are attached.
Recruitment rate is thus mixed with the dynamics of the contraction relaxation cycle

providing a wider range of mechanical responses than Hill approaches. Compared to
Zahalak approximation, we provide a two input model with intricate dynamics due to
both internal muscle dynamics and recruitment rate dynamics in a straightforward way.

Computation of the whole dynamics

For the macroscopic representation, the same configuration with Hill models as in
Figure 2(A) is used including the muscle tendon parameters. The contractile element is
replaced with the above nonlinear differential equations.
The dynamics of the contractile element coupled with the tendon in series should also

comply with the following equation:

Ḟc = ktLt0ε̇t/cosφ = kt/cosφ(L0ε̇ − Lc0ε̇c) (15)

In order to have one solution for two equations of Ḟc, we must verify that: ktLc0/cosφ +
kcLc0 − Fc > 0. The differential of elongation εc is computed with the following equation:

ε̇c = ktL0ε̇/cosφ + Fcu − αFm�c(t)Uc
ktLc0/cosφ + kcLc0 − Sε̇cFc

(16)

Sε̇c is the sign of ε̇c. From the condition: ktLc0/cosφ + kcLc0 − Fc > 0, Sε̇c can be obtained
from the sign of these terms: ktL0ε̇/cosφ + Fcu − αFm�c(t)Uc. Then we can compute k̇c
and Ḟc with (14). The internal state vector of this system should be set as x =

[
kc Fc εc

]
.
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Experimental measurement and data processing

Four healthy volunteers (2 males and 2 females, age= 30.8±1.3 years, mass= 66.5±16.0
kg, and stature= 1.7±0.13 m) participated in the study after signing an informed consent
form. The study was approved by the Agence française de sécurité sanitaire des produits
de santé (Afssaps) committee for persons’ protection managed by CHRU Montpellier
(2011-A01033-38), dedicated to the study of the lower limb biomechanics within ANR
SoHuSim project.
The subjects were seated on a chair with their right foot attached to a Biodex

dynamometer (Biodex Medical Systems Inc., New York, USA) as shown in Figure 4. The
setting was 90° for the ankle joint and 110° for the knee joint, while straps were used
on the pelvis and shoulders to secure the subjects’ position on the chair. The axis of the
dynamometer was aligned with the ankle’s rotation axis. The torque around the ankle
joint was measured when it was voluntarily generated for the plantar flexion. For EMG
measurements, bipolar surface Ag/AgCl-electrodes were placed on themuscle belly of the
medial gastrocnemius (GAS) and soleus (SOL) with an inter-electrode distance of 20mm.
The reference electrode was placed on the left patella. Synchronous acquisition of the
force and differential EMG signal was performed with a sampling frequency of 2048Hz by
the EMG100C amplifier and Biopac MP100 system (Biopac Systems, Inc., Santa Barbara,
USA).
In this preliminary test, we focused on the isometric condition and tried to compare the

output force on a normalized scale against the output during MVC. The common param-
eters between three approaches were set at the same value as summarized in Table 1. In
order to maintain similar conditions, the common macroscopic model as in Figure 2(A)
was used for all the three approaches. Only the dynamics representation of the contrac-
tile element was replaced. A was the only parameter identified for each subject. A was
obtained by minimizing the root mean square difference between the measured and the

Figure 4 Appearance of the experiment. The torque around the ankle joint was measured along with EMG
of medial gastrocnemius (GAS) and soleus (SOL) during voluntary plantar flexion.
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model estimation at MVC. Other muscle parameters except A are taken from literatures
as explained in the model section.
The estimated muscle force is multiplied by the moment arm in order to obtain the

torque. The moment arm was estimated from the Hawkins data [29] from the joint angle
in the measured condition. The moment arms for MG and SOL are 0.0515 [m] and
0.0464 [m], respectively. The contribution ratio was calculated using the values reported
by Delp [25]. This was obtained as the maximum force by the moment arm consider-
ing the pennation angle. The resulting ratio is MG 0.41 vs SOL 0.59. The SUM in the
estimation result is plotted using the ratio as the sum of the two muscles.
The generated input command u(t) and activation rate α were given to the contrac-

tile element of the physiological model and the active stiffness kc and the muscle force Fc
were computed using Eq. 14. The same value for Fm for the three approaches were used.
km is proportional to Fm from the condition in Eq. 14. It was multipied by 20 times, as
shown in Table 1, based on the knowledge that the muscle active stiffness reaches the ten-
don stiffness at approximately maximum contraction [30]. However, this muscle stiffness
parameter does not influence much the force output in isometric condition.

Results
The predicted joint torque based on EMG signals was compared with the directly mea-
sured torque of the ankle joint for the plantar flexion. The comparison was made against
the case in MVC in normalized scale. Thus, we avoided the situation effected by the
subject-specific difference regarding muscle strength, which is significant for torque
estimation in absolute scale.
First, the normalized torques for 30% and 70% of MVC estimated by the nonlinear Hill

model and multi-scale model were computed as in Figure 5. The normalized data of mea-
sured torque (red), normalized estimated torque of SOL (green), normalized estimated
torque of GAS (magenta) and the sum of two muscles (blue) are plotted. The obtained
RMS errors for the first two subjects are given in Table 2 for both contraction levels and
by both estimation approaches. The estimation results of physiology based model show
the smooth transition compared to the estimation by Hill model keeping the realistic
torque development as in the measured torque. In addition, especially for low activa-
tion levels, RMS errors in the physiology based model showed better accuracy. Note that
the modified Hill model has already the nonlinearization conversion to correspond to
a low activation level. The proposed physiological model doesn’t include such empirical
modifications.
Next, in order to confirm the estimation ability for both fast-short and slow-long con-

traction, random contractions including these two types of contraction were requested
to all subjects. The generated chemical inputs are shown in Figure 3. Normalized torques
estimated by linear Hill model (A), nonlinear Hill model (B) and multi-scale physiology
based model (C.1) are depicted in Figure 6. In the physiological model, active stiffness
and strain of the contractile element are explicitly defined in differential equations, then
it can be estimated along with the muscle force. The active muscle stiffness kc is shown
at Figure 6(C.2). The results of linear Hill model is computed to show the contribution of
the nonlinear conversion. As we observe the difference between them in Figure 6(A,B),
nonlinear Hill model estimation is improved especially for low level contractions. How-
ever, the errors for fast-short contraction remained high. In contrast, the estimation result
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Figure 5 Normalized estimated torques for 30% and 70% of MVC. (red: measured, magenta: estimated
by the model of GAS, green: estimated by the model of SOL, blue: sum of both models) (A) result obtained
by the modified Hill model. (B) result obtained by the full physiology based model.

as in Figure 6(C.1) with the proposed method demonstrates the nice estimation for all
conditions of contractions.
The obtained RMS errors for the four subjects are given in Table 3 for both contrac-

tion types and by three estimation approaches. In addition, mean error of the peak torque
for fast-short contraction are given. Average results is also reported as mean ± standard
deviation over all the subjects. Average error was 16.9% with the linear Hill model, 9.3%
with the nonlinear Hill model. In contrast, the error in the multi-scale model was 6.1%
while maintaining the uniform estimation performance in both fast and slow contrac-
tion speeds. Mean peak error for fast-short contraction are 21.9% with the linear Hill
model, 17.6%with the nonlinear Hill model. In contrast, the error in themulti-scalemodel

Table 2 RMS errors between themeasured and estimated results in 30% and 70% of MVC

Nonlinear Hill Full physiology

Subject 30% 70% 30% 70%

1 0.0852 0.089 0.0365 0.0848

2 0.047 0.106 0.0307 0.0871

RMS errors of 0.1 correspond to 10% error.
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Figure 6 Normalized estimated torques for random contraction. (red: measured, magenta: estimated by
the model of GAS, green: estimated by the model of SOL, blue: sum of both models) (A) result obtained with
the linear Hill model. (B) result obtained with the modified nonlinear Hill model. (C.1) result obtained with
the multi-scale physiology based model. (C.2) The corresponding active muscle stiffness kc estimated with
the proposed model.

was 5.8%. In general, results estimated by physiology based model show the best perfor-
mance both in fast-short and slow-long contractions in these random tests, as reported
in Table 3.

Discussion
Hill-type muscle is a phenomenological model based on experimental facts with no link
to the microscopic physiology. First, even if the estimation performances are equivalent,
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Table 3 RMS errors between themeasured and estimated results in random contraction

Method Error type Subject1 Subject2 Subject3 Subject4 Mean ± SD
RMS (whole) 0.117 0.153 0.195 0.212 0.169 ± 0.043

Linear RMS (slow-long) 0.133 0.186 0.233 0.252 0.201 ± 0.053

Hill RMS (fast-short) 0.0508 0.0435 0.0706 0.0909 0.064 ± 0.021

Peak error (fast) 0.188 0.050 0.30 0.338 0.219 ± 0.129

RMS (whole) 0.063 0.0681 0.126 0.116 0.093 ± 0.032

Nonlinear RMS (slow-long) 0.0585 0.0795 0.0986 0.136 0.093 ± 0.033

Hill RMS (fast-short) 0.0806 0.0318 0.167 0.0682 0.087 ± 0.057

Peak error (fast) 0.274 0.0583 0.317 0.057 0.176 ± 0.138

RMS (whole) 0.0499 0.0373 0.0531 0.102 0.061 ± 0.028

Physiological RMS (slow-long) 0.0427 0.0418 0.0558 0.103 0.061 ± 0.029

model RMS (fast-short) 0.0742 0.0242 0.0472 0.101 0.062 ± 0.033

Peak error (fast) 0.0354 0.013 0.0536 0.131 0.058 ± 0.051

it is meaningful to understand and capture the muscle dynamics with a more detailed rep-
resentation. Indeed, the same kind of force estimation could be obtained with the newly
proposed physiological model using voluntary EMG signals.
Second, previous work by Perreault [13] reported that Hill modeling errors were large

for different firing frequencies and greatest at low MU firing rates. The classical lin-
ear Hill model was used. They suggested that more physiological coupling between
activation and force-velocity properties may help to deal with these issues [13]. Thus,
the aim of introducing new approach based on a physiologically detailed model [19]
was to develop EMG-force estimation with natural velocity dependency incorporating
microscopic cross-bridge dynamics on top of recruitment dynamics.
In general, the estimation accuracy of the proposed method is better than that of the

linear and nonlinear Hill-type approach as in the obtained result regarding RMS errors.
In addition, uniform accuracy was obtained for different types of contractions in the
proposed method. In particular, the proposed model is able to properly deal with both
slow and fast contraction speeds. When considering the Hill model results, Figure 6(A,B)
shows largest errors for the estimation of fast-short contractions. The reason of this error
could be explained as follows: the signal measured in EMG is the summation of the APs
of all different MUs. Even in the fast-short contraction, the amplitude of EMG itself does
not reflect differences except duration with the same level as for slow-long contraction.
However, the resulting fast-short contraction force is actually much less than that of slow-
long contraction. This means that there is sometimes hysteresis regarding the neural
command. In Hill approach, muscle activation a(t) is proportional to the resulting force.
It therefore does not include the effect of the time hysteresis in contraction [13], thus
Hill model can not accurately represent both short and long-term contractions simul-
taneously with only one choice of cut-off frequency in EMG low-pass filtering. In the
proposed approach, the derivative of the contraction force is directly given by the neural
command and it brings time hysteresis in force generation. It is interesting to note that
this kind of uniform accuracy for different types of contractions was appeared along with
the introduction of cross-bridge dynamics.
In addition, it is known that there is a nonlinear relationship between frequency dur-

ing contraction and force for single MUs [14]. In modified Hill model, this frequency
dependency is offset only by the nonlinear conversion. This nonlinearization was recently
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proposed to modify the classical Hill model. This process was originally not introduced
in the so-called Hill model. In fact, this modification brings much better estimation,
especially at lower forces. However, even with the modification, it is not a time func-
tion so it still can not correspond to the different muscle contraction speeds. In Hill-type
approach, neural activation p(t) is dominantly imposed by low-pass filtering with a
2–10 Hz cut-off frequency. The choice of cut-off frequency is very sensitive to the dynam-
ics of p(t). p(t) is more or less proportional to the resulting force. Therefore, it is advised
that the choice of cut off frequency should be carefully selected depending on the type
of task in Hill-type modeling. In this study, a 2 Hz cut-off frequency was used accord-
ing to the SENIAM recommendation. Sometimes by changing the cut-off frequency for
different types of contraction, better results can be obtained with Hill-type model. How-
ever, in any case, the expected motion by subject is unknown in advance for practical
use of EMG-force estimation, so it is difficult to have an appropriate cut-off frequency
in advance. Moreover it assumes that the subject stays in the same kind of motion
dynamics, that is not always the case. In the proposed model, the nonlinear activation
property coming from force-velocity dependency is internally integrated in the model
dynamics.
Furthermore, the physiological model satisfies the well established properties observed

for the muscle’s behavior: i) the force-length relation is included in the definition of
Eq. 13, ii) the force-velocity relationship can be expressed in isotonic and tetanic con-
ditions. Before isotonic contraction could occur, the muscle contracts in isometric
conditions until the force generated by the muscle balances the imposed one. Isotonic
contraction then becomes possible. Assuming Ḟc = 0 in Eq. 14, the following equation
may be formulated: Fc = (αFmUc + kcLc0ε̇c)/(Uc + |ε̇c|).
At the beginning of this phase (t= 0), kc(0) �= 0 but it depends on the initial isometric

contraction phase. If we define A(0) = Lc0kc(0)
UcαFm ,B = 1

Uc
, in concentric contraction where

ε̇c < 0, we get a Hill type force-velocity relation:

Fc = αFm
1 + A(0)ε̇c
1 − Bε̇c

(17)

This correspondence can be found in Eq. 5. It can be verified that our physiological
muscle model integrates the force-velocity relation naturally when considering the actin-
myosin cross bridge. Finally, this improvement in estimation accuracy is in line with the
suggestion put forward in a previous work [13] on introducing crossbridge model.
Future study will be focused on simulations with multiple sets of the proposed model

corresponding to multiple MUs in one muscle considering size principal, fast/slow fibers.
However, for the application of voluntary EMG-force estimation, we should keep the
simplicity as Hill-type model. Future work will also focus on increasing the number of
experimental tests and we should develop an algorithm to statistically determine if a
muscle is turned on/off regarding the chemical thresholding. In addition, the further
interpretation of neuromuscular system both in voluntary and FES activations should be
pursued. We have already performed the study on the identification and validation of the
physiological model in in-vivo rabbit experiment [31] and in paraplegic subjects includ-
ing non-isometric situation under FES [32]. In order to be applied to a broader range
of clinical situations, further investigations in isokinetic and isotonic cases should be
carried out.
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Conclusion
In this paper we presented a method that allows estimation of muscle force from EMG
signals with a multi-scale physiology based model with a link to underlying microscopic
filament dynamics. The experimental results highlight the feasibility of the torque esti-
mation and its comparison with Hill-type models using the same EMG signals. This is the
first report on EMG-force estimation based on amulti-scale physiologymodel integrating
Hill-type and microscopic cross bridge representations. The proposed method features:

• a novel physiologically detailed model for EMG-force estimation in the place of a
phenomenological Hill-type muscle model,

• the estimation improvement especially for different types of contraction
incorporating dual dynamics of recruitment and microscopic cross-bridge formation
toward coupled activation-velocity relationship.
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