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Abstract

Background: In a previous study (Vaghefi et al. 2012) we described a 3D computer
model that used finite element modeling to capture the structure and function of
the ocular lens. This model accurately predicted the steady state properties of the
lens including the circulating ionic and fluid fluxes that are believed to underpin the
lens internal microcirculation system. In the absence of a blood supply, this system
brings nutrients to the core of the lens and removes waste products faster than
would be achieved by passive diffusion alone. Here we test the predictive properties
of our model by investigating whether it can accurately mimic the experimentally
measured changes to lens steady-state properties induced by either depolarising the
lens potential or reducing Na+ pump rate.

Methods: To mimic experimental manipulations reported in the literature, the
boundary conditions of the model were progressively altered and the model
resolved for each new set of conditions. Depolarisation of lens potential was
implemented by increasing the extracellular [K+], while inhibition of the Na+ pump
was stimulated by utilising the inherent temperature sensitivity of the pump and
changing the temperature at which the model was solved.

Results: Our model correctly predicted that increasing extracellular [K+] depolarizes
the lens potential, reducing and then reversing the magnitude of net current
densities around the lens. While lowering the temperature reduced Na+ pump
activity and caused a reduction in circulating current, it had a minimal effect on the
lens potential, a result consistent with published experimental data.

Conclusion: We have shown that our model is capable of accurately simulating the
effects of two known experimental manipulations on lens steady-state properties.
Our results suggest that the model will be a valuable predictive tool to support
ongoing studies of lens structure and function.

Keywords: Computational modelling, Ocular lens, Microcirculation, Finite element,
Physiological perturbations
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Background
In the absence of blood supply it appears that the ocular lens operates an internal

microcirculation system [1,2]. This system ensures that the transparency and optical

properties of the lens are maintained by delivering nutrients, removing wastes and pre-

serving its ionic homeostasis [Figure 1A] [3,4]. This circulation is thought to be driven

by a circulating flux of Na+ ions that enters the lens via the extracellular space between

fiber cells, before eventually crossing fiber cell membranes, and then flowing from cell-

to-cell towards the surface, via an intracellular pathway mediated by gap junction chan-

nels [Figure 1B] [1,5,6]. The gap junction coupling conductance in the outer shell of

differentiating fibers is concentrated at the equator [7,8]. Hence, the intracellular

current is directed towards the equatorial epithelial cells, where the highest densities of

Na+/K+ pumps are located to actively transport Na+ out of the lens [9]. Thus, the intracellu-

lar current effluxes are highly concentrated at the equator, causing the measured net current

flow in this region to be outward [10,11]. At the poles, there is very little intracellular

current so the measured net current is predominantly inward, along the extracellular spaces

[Figure 1B] [12,13]. The driving force for these fluxes is hypothesized to be the difference in

the electromotive potential of surface cells that contain Na+/K+ pumps and K+-channels,

and inner fiber cells which lack functional Na+/K+ pumps and K+-channels and whose per-

meability is dominated by non-selective cation and Cl- conductances [14]. This electrical

connection together with the different membrane properties of the surface and inner cells

causes the standing current to flow. In this model, it is proposed the circulating currents

measured at the lens surface drive a net flux of ions within the lens that in turn generates

fluid flow. The extracellular flow of water in turn convects nutrients towards the deeper

lying fiber cells, while the intracellular flow removes wastes and creates a well-stirred intra-

cellular compartment [Figure 1A] [14].

While the experimental evidence in favour of this model is accumulating [5],

[11,15,18-29] it is still somewhat controversial [30,31]. In an attempt to improve our

understanding of lens structure and function we have developed a 3D computer model

that utilises finite element modelling (FEM) to encapsulate structural features of the

lens such as fiber cell orientation, extracellular space dimensions and gap junction dis-

tribution, plus functional information on the spatial differences in membrane perme-

ability between the surface and inner lens cells that are thought to drive the circulating

currents [17,26,28]. Using a series of experimentally derived boundary conditions

[32-34] to solve the model, we showed that our model is not only capable of accurately

predicting experimentally measured steady state lens properties, but also generates cir-

culating ion and water fluxes as predicted by the microcirculation model [17,26].

In this paper, we report on further testing of our computer model of lens structure

and function, and show that it is capable of predicting experimentally measured

changes in the lens steady state properties and circulating fluxes, induced by either

membrane depolarization or inhibition of the Na+ pumps [2,15,16,19,33]. We have fur-

ther complemented our modelling approach by performing a series of experimental

measurements of the effect of elevated extracellular K+ on lens voltage. The ability of

our model to accurately predict the effects of published experimental perturba-

tions on lens function shows that our model has the potential to offer insights

into how changes in lens physiology can lead to changes in lens transparency and

ultimately cataract.



Figure 1 (See legend on next page.)
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Figure 1 Lens structure and function. A: Schematic diagram of an axial view of the lens showing a model of
solute penetration into the bovine lens. The anterior surface of the lens is covered by a single layer of epithelial
cells which divide at the equator (EQ) to produce the elongating differentiating fiber cells. These cells eventually
lose their nuclei and cellular organelles to become mature internalized fiber cells in the lens core. Fiber cells
from adjacent hemispheres meet at the anterior (AP) and posterior (PP) poles to form the sutures. Arrows in the
diagram represent the direction of ion and water fluxes. These fluxes have been directly measured outside the
lens (red arrows) [2,15,16], but their position and direction inside the lens are to date purely theoretical (blue
arrows) [1,17]. B: An equatorial cross section of the lens showing a cellular view of ion and water movement in
the lens. Water and solutes are proposed to flow into the lens via the extracellular space, cross fiber cell
membranes, and flow outward via an intracellular pathway mediated by gap junction channels.
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Methods
Computer model

The expansion of the equations that govern ion and fluid dynamics in the lens

[2,5,14,35-38] to 3D, and their subsequent implementation into a finite element mesh

that encapsulates the known structural and functional parameters of the mouse lens

has been fully described in a previous publication [17]. The assumptions and a sum-

mary of the major equations used in formulating the model are briefly listed below.

Fluid fluxes

The Stokes equations, a simplified version of the Navier–Stokes equations, which are

derived from the conservation of mass, momentum, and energy [39], were used to

model lens fluid fluxes. To simplify the non-linear Navier–Stokes equations to Stokes

equations, it was assumed that water in the lens is an incompressible Newtonian fluid

with a spatially constant viscosity at steady state; such that it can be described as a

“creeping” (low-Reynolds number) flow with ignorable turbulence [40]. Using these as-

sumptions the general Navier–Stokes equations were simplified to the following linear

equations [Equation 1, Equation 2] the parameters and units of which are listed in Table 1.

∇:u ¼ 0 ð1Þ

−∇pþ μ∇2uþ pf ¼ 0 ð2Þ

The above equations were used to calculate the extracellular, trans-membrane and

intracellular fluid fluxes that described the flow of water across fibre cell membrane be-

tween the extracellular and the intracellular spaces. To represent these fluxes the fibre

cell membrane was considered as a semi-permeable membrane [26,38] through which

fluid passed due to a combination of hydrostatic and osmotic pressure gradients [41].

We used the following equation to calculate the velocity of the trans-membrane water

fluxes [26,38,41].

um ¼ −LpΔp−σLPRTΔOs ð3Þ

The parameters and their units are listed in [Table 1].
Ion fluxes

Ionic fluxes in the lens are governed by diffusion, electro-diffusion and advection

and were modelled using the Nernst-Plank equation with an added advection term

[Equation 4, Table 1] [28,38].



Table 1 Glossary of symbols used in this manuscript

Symbol Description Units

C Concentration mM

D diffusion coefficient m2/s

e electron charge C

j fluid flux mol/(m2s)

kB Boltzmann constant J/K

p Pressure Pas

T Temperature K

f body force N/Kg

z Valence -

α solute species -

μ dynamic viscosity N.s/m2

ρ mass density Kg/m3

φ Potential V

Lp intercellular hydraulic permeability m3/(N.s)

Os Osmolarity Osm/L

σ membrane reflectance -

g conductivity per membrane area S/m2

F Faraday constant C/mol

u Velocity m/s
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ja ¼ −Da∇Ca−zae
Da

kBT
∇φ:Ca þ Ca ð4Þ

This equation was used to model the ionic intracellular and extracellular fluxes which
were linked by implementation of a trans-membrane flux [1,26,38] described by the

following equations [Equation 5–7].

ja ¼
ga
F

Vm−Eað Þ ð5Þ

Ea ¼ −
kBT
zae

ln
Ca2

Ca1

� �
ð6Þ

Vm ¼ φi−φe ð7Þ

The parameters and their units are listed in [Table 1]. In the above equations, E is
the Nernst potential. The modelled ions (i.e. Na+, K+ and Cl-) accompanied the trans-

membrane water fluxes into the cells. The membrane conductivity for each modelled

ion had been calculated based on experimental data [5,31,35,42] which we used for

various modelled trans-membrane ion fluxes.

Finite element mesh creation

All water and ion flux equations were implemented on a representative finite element

mesh constructed of the mouse lens to create an interlinked system of equations that

could be solved using a set of boundary conditions that represented the ionic con-

centrations at the lens surface [Table 2]. An anatomically accurate scaffold of an

adult mouse lens with an equatorial radius of 0.125 cm, a posterior thickness of



Table 2 Initial conditions at outer lens boundary for the present model, under
“normal” conditions

Species Description Quantity Units

Naeo Extracellular sodium concentration 110 mM

Keo Extracellular potassium concentration 8 mM

Cleo Extracellular chloride concentration 115 mM

Naio Intracellular sodium concentration 7 mM

Kio Intracellular potassium concentration 100 mM

Clio Intracellular chloride concentration 10 mM

T Temperature 310 K
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0.1 cm and anterior thickness of 0.085 cm was created to implement our modelling

approach [Figure 2A] [43]. A cylindrical polar coordinate system (r, θ, z) and Cubic

Hermite basis function were used to create a smooth 3D computational mesh of the

mouse lens. The computer meshing algorithm put an ellipsoid volume (representing

the outer regions of the mice lens) on the top of a spherical centre (representing its

core). In our other in-vitro experiments, we have observed that the nucleus of the

lens is almost completely spherical, while the outer layers add to the final elliptical

shape of the lens. In our model, the transition between the spherical core and elliptical

outer region happened at the r/a = 0.5.

A bi-domain modelling approach [38,44,45] was adopted in which every element in

the mesh represented a cluster of many fiber cells and enclosed extracellular space to

reflect the relationship between the intra- and extra-cellular spaces. Solute and fluid

flow equations were coupled in the FEM mesh using the C++ programming language.

The model was solved using an experimentally derived set of starting boundary condi-

tions [Table 2]. To mimic depolarization of the lens potential, or reduction Na+ pump

activity these starting boundary conditions were altered as described in the text; and

the model resolved for each set of novel conditions.
Figure 2 Visualization of modelling results. A: 3D quarter section view of finite element mesh on which
the model is solved. Points of reference are labelled on these diagrams, (Ap) Anterior pole, (Pp) Posterior
pole and (Eq) the equator. B: Rotated view of (A) with the quarter-view facing out to illustrate how 2D plots
of radial voltage and concentration gradients and circumferential surface plots of current density were
extracted from the 3D model. Values for voltage and concentration were plotted against normalised lens
radius (r/a) where 0 indicates the core and 1 the lens periphery. Surface currents were plotted against the
angle from the equator, with the equator defined as 0, the posterior and anterior poles were –PI/2 and PI/2
radians, respectively.
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Model solution

An adaptive and iterative Euler method capable of achieving a converged steady state

solution [38] was used to solve the model for each of the different boundary conditions.

Each iteration of the adaptive Euler method utilised several steps to solve the coupled

solute and fluid transport equations, followed by a solution update step as described

previously [17,28,38]. The model was stable under the simulated conditions and con-

verged on a singular set of answers. An in-house graphical interface, utilizing text for-

matted files of different fields, linked via JAVA programming language format to

CMGUI (www.cmgui.org), was used to create a 3D representation of the model, from

which quarter views were extracted for visualisation [Figure 2]. In order to facilitate

comparison of the calculated parameters with those generated experimentally, field

values across the equatorial radius of the lens were extracted from the 3D model and

plotted against normalized radial distance (r/a), in order to generate conventional 2D

plots [Figure 2B]. Furthermore, fields such as net current densities (Inet) are visualized

here on the surface of the computer mesh. For those visualizations we have used plots

across the outer boundary of the mesh, marked on [Figure 2B], where the posterior

pole is at –PI/2, anterior pole is + PI/2 and equator is assigned to 0 radians.
Experimental measurements of lens potential

To obtain an experimental data set in the rat lens that could be compared to our model,

microelectrode measurements were performed in extracellular solutions of varying K+

concentration.

Animals

All animals used in this study were treated in accordance with institutional guidelines and

the ARVO Resolution on the Use of Animals in Research. All chemicals were obtained

from Sigma (Sigma Chemical Company, St. Louis, MO) unless stated otherwise. Wistar

rats 3–4 weeks of age were sacrificed by CO2 asphyxiation and cervical dislocation using

protocols approved by the University of Auckland Animal Ethics Committee (AEC R188).

Eyes were extracted and the lenses were then dissected and placed in temperature con-

trolled Artificial Aqueous Humour (AAH: 124 mM NaCl, 0.5 mM MgCl2, 4 mM KCl,

10 mM NaHCO3, 2 mM CaCl2, 5 mM glucose, 10 mM HEPES and 20 mM sucrose,

pH 7.4, 300 mOsM.kg-1).

Membrane potential measurements

The lenses were placed in recording chamber on the stage of a dissecting microscope

and continually perfused with warm AAH. The resting potential of the lens (Em) was

recorded by impaling the lens with a microelectrodes connected to the head-stage of a

microelectrode amplifier (Axoclamp-2A, Axon instruments, Union City, CA). The out-

put from the amplifier was digitized (DigiData 1200, Axon Instruments), and acquired

(AxoScope, Axon Instruments) before being analysed off-line (Clampfit, Axon Instru-

ments). To monitor the effect of changing the extracellular K+ concentration on Em, the

bath was then perfused with a range of concentrations of AAH ringers in which the NaCl

was replaced with an equimolar concentration of KCl. All equipment was grounded and

placed inside a Faraday cage to minimise electrical interference.

http://www.cmgui.org
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Results
Previously, we have solved our computational model using a set of boundary conditions

[Table 2] that represents the “normal” ionic environment experienced by the lens in vivo

[17]. Using these conditions, we produced 3D maps of standing fields of intracellular and

extracellular ion concentrations, electrical potentials and circulating ionic and water fluxes

that agreed with the published literature [14,36,46,47]. Here we have altered the boundary

conditions to firstly mimic lens depolarisation, and then a reduction in Na+ pump rate.

These two perturbations are known to affect the direction and magnitude of circulating

currents measured at the lens surface [9,15,34,48,49]. By resolving the model under these

new boundary conditions and comparing the data generated for electrical potentials, and

the net circulating currents with our own and existing experimental data, we were able to

assess the ability of our model to predict how changes in the underlying physiology of the

lens affect its circulation system. Finally, we have used the model to predict changes to

standing fields of intracellular ionic concentrations induced by these two perturbations.
Depolarization of the lens potential by high extracellular K+

Although epithelial (EK ~ −80 mV) and deeper fiber cells (ENSC ~ 0 mV) have distinctly

different resting membrane potentials, the fact that they are extensively coupled by gap

junctions [14,50,51] means that the lens potential (Em), as measured by an intracellular mi-

croelectrode, represents the weighted average of all cells. Microelectrode measurements of

Em from a variety of species of lens have shown that the potential is around ~ −70 mV in

magnitude [5,52,53] indicating that it is dominated by the K+ conductance localised to epi-

thelial and peripheral differentiating fiber cells. If however, the microelectrode is incre-

mentally advanced into the lens, the measured potential decreases slightly to ~ −50 mV

[46]. This indicates that a standing gradient in electrical potential exists in the lens. In-

creasing the concentration of extracellular K+ lens bathing medium reduces EK in these

surface cells, causing an overall depolarization of the lens potential [33], a flattening of the

electrical gradient and a reduction in magnitude of ion currents recorded at the lens sur-

face [9,15,16].

To test whether our model could predict similar changes to the lens electrical gradi-

ent, we gradually changed the boundary conditions used to solve the model by increas-

ing [K+]eo and decreasing [Na+]eo in 10 mM steps from the “normal” concentrations of

[K+]eo = 8 and [Na+]eo = 110. This approach ensured that the total cation (Na+ and K+)

content remained constant, while preserving the other initial boundary conditions

[Table 2]. Here we show model predictions of Em versus distance into the lens (r/a), for

three selected sets of cation concentrations ([K+]eo = 8, [Na+]eo = 110; [K+]eo = 58, [Na+]eo =

57; and [K+]eo = 108, [Na+]eo = 10 mM) used as starting boundary conditions [Figure 3A].

Using the “normal” cation concentrations ([K+]eo = 8, [Na+]eo = 110) the model gener-

ates a standing electrical gradient that is -76 mV at the periphery and declines to -52 mV

in the lens core [Figure 3A]. Changing the cation concentrations to [K+]eo = 58, [Na+]eo =

60 mM and [K+]eo = 108, [Na+]eo = 10 mM, caused a progressive depolarization of Em to-

wards 0 mV and abolished the radial gradient in electrical field as would be expected if

the Em of the lens is dominated by EK [Figure 3A].

We then experimentally validated our computer model’s predictions by performing

microelectrode measurements of Em in rat lenses exposed to changes in the



Figure 3 Effect of increasing extracellular K + on lens electrical potential. A: Equatorial plots of lens
voltage (Em) versus radial distance (r/a) showing the electrical potential gradients extracted from the model
for three different extracellular K + concentrations (● = 8; ■ = 58; and ▲ = 108 mM [K+]eo). B: Plot showing
the effect of changing the extracellular K + concentration ([K+]eo) on the lens potential measured
experimentally by microelectrodes located in the outer cortex (▲) and values obtained from the model
(■) as an average of the equatorial electrical gradients shown in A.
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extracellular cation concentration [Figure 3B]. In these experiments Em values were col-

lected by microelectrodes that were located in the outer cortex of lens. To facilitate

comparison between the experimental data collected from a single location and our cal-

culated electrical gradients, we averaged the electrical gradients obtained from the

computational model to generate a single value of Em for the different sets of cation

concentrations [Figure 3B]. It was apparent from these comparisons that the model

lens is depolarized when its ionic balance is disturbed.

Such decline of trans-membrane potentials was expected to have an impact on the

ionic circulatory fluxes. Indeed vibrating probe [15,16] and modified Ussing chamber

[9] experiments have shown that net current densities are directed inwards at the poles

and outwards at the equator. In a previous study we used our computer model to visu-

alise net current flows through the lens in 3D [26] [Figure 4A]. Furthermore, we dem-

onstrated that our model’s predictions agreed in net magnitude and direction with the

experimentally measured currents around the surface of the lens [17]. In this study we

have investigated the effects lens depolarization induced by elevating extracellular po-

tassium ([K+]eo) on these calculated current densities.

From the 3D current density (Inet) maps calculated by the model, it was apparent that

depolarisation of Em, caused by increasing [K+]eo from 8 to 58 mM, resulted in a sub-

stantial reduction in inwardly and outwardly directed currents at the poles and equator,

respectively [Figure 4B]. Interestingly, a further increase in [K+]eo to 108 mM and

depolarization of Em to ~ 0 mV caused the calculated Inet vectors to reverse. These vectors

appeared to become inward at the equator and outward at the polar regions [Figure 4C].

To facilitate comparison between the different conditions, we extracted the 2D magnitude

plots of the calculated surface Inet field and plotted them against the angle from the equa-

tor [Figure 2B]. This analysis more clearly highlights the reduction in calculated surface

current densities, caused by increasing [K+]eo to 58 mM and the reversal of the predicted

Inet field by increasing [K+]eo to 108 mM [Figure 4D].

The effects of increasing [K+]eo on the predicted magnitude and directionality of

surface current densities in our model of the mouse lens were found to be in agree-

ment with experimental findings for a variety larger lenses obtained from rats [16],



Figure 4 Effect of lens depolarisation on net current density. 3D representation of the predicted
net current density patterns obtained for solving the model using [K+]eo concentrations of (A) 8 mM,
(B) 58 mM, and (C) 108 mM. The numbers on the colour-bar are in A/cm2 units. D: 2D profiles of the
change in current density at the surface of the lens going in a circumferential direction from posterior
pole (−Pi/2) to anterior pole (Pi/2) expressed as a function of the angle form the equator (0) extracted
from the 3D plots (A-C) created by solving model using [K+]eo concentrations of 8 mM (●), 58 mM (■),
and 108 mM (▲).
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frogs [15] and rabbits [9] [Table 3]. Although comparing the results from different

species can be problematic since the absolute magnitudes of circulating surface cur-

rents recorded are different and the measurement techniques vary, all lenses

responded in a similar fashion to the replacement of extracellular Na+ with K+.

Partial replacement of Na+ with K+ decreased the magnitude of circulating currents

in all the lenses and full replacement eventually caused the direction current flow to

reverse in all lenses.

While the agreement of the simulated and the measured trends is encouraging, the

variance of quoted absolute values indicate that our model should be optimised for

each species of lens to accurately predicting the physiological state in a specific species.

In summary, our model has confirmed that differences in membrane permeability’s de-

termine the magnitude and directionality of circulating currents in the lens.



Table 3 Comparison between the computational model of the mouse lens and
experimental data collected from different species

Species Technique Medium cation
concentrations (mM)

Current values* and %
change from control

Ap Eq Pp

Mouse§ Computational modelling [K+]eo = 8 - [Na+]eo = 110 - 8.5 μA/cm2 + 20 μA/cm2 - 11 μA/cm2

[K+]eo = 58 - [Na+]eo = 57 85% 90% 85%

[K+]eo = 108 - [Na+]eo = 10 - 35% - 25% - 40%

Rat [16] Vibrating probe [K+]eo = 5 - [Na+]eo = 130 - 20 μA/cm2 + 22 μA/cm2 - 12 μA/cm2

[K+]eo = 75 - [Na+]eo = 75 N/A - 75% N/A

[K+]eo = 113 - [Na+]eo = 37 N/A - 200% N/A

Frog [15] Vibrating probe [K+]eo = 2 - [Na+]eo = 113 - 13 μA/cm2 + 24 μA/cm2 - 36 μA/cm2

[K+]eo = 54 - [Na+]eo = 54 60% 60% 60%

[K+]eo = 105 - [Na+]eo = 2.5 - 70% - 70% - 60%

Rabbit [9] Ussing chamber [K+]eo = 3 - [Na+]eo = 115 - 1.2 μA + 10.8 μA - 2.9 μA

[K+]eo = 37 - [Na+]eo = 83 - 50% N/A 40%
§Mouse data is from the current model. *Current values obtained from the model and the literature are expressed as
either current densities (μA/cm2) or magnitudes (μA).
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Na+/K+ ATPase pumps’ rate reduction

It is been proposed that the active removal of Na+ ions at the lens surface is the major

driver of the lens circulation system [23]. In this regard it has been shown that Na+/K+

ATPase activity in a variety of lenses is concentrated around the equatorial plane

[12,54,55] and that pharmacological inhibition of the these pumps abolishes current

outflow at the equator and inflow at the poles [5,9]. Na+ pumps are known to be

temperature sensitive [48,56-58], and it has been shown that cooling the lens slows the

pump rate to produce a reversible shift in cation concentrations that is manifested as

an accumulation of intracellular Na+ and a depletion of intracellular K+ [57]. In our

model this temperature sensitivity of the Na+ pump is captured by [Equation 8].

IP Tð Þ ¼ IP T¼310Kð ÞQ
T−310ð Þ=10
10 ð8Þ

Where Ip(T) is the Na+ pump’s rate T Kelvin degrees, Ip(T=310K) is the Na+/K+ ATPase

pump rate’s at 310 Kelvin both of which are measured in A/cm2; and Q10 is the

temperature coefficient for ionic transport by the Na+ pump. Since Q10 has been esti-

mated in a variety of lens studies to be between 1.8 and 2 [48,58,59], we chose a value

of 1.9 for Q10. To affect a change in pump rate we simply resolved the model over a

range of temperatures (T = 310° to 280°K in 5°K increments), while maintaining the

other boundary conditions constant [Table 2].

Hence, we were able to use the inherent temperature variable (T) in our model to se-

lectively reduce the rate of the Na+ pump. Such control enabled us to determine what ef-

fect pump rate has on electrical potential gradients and net surface current densities.

Unlike the effects of increasing extracellular K+ [Figure 3], reducing the Na+ pump rate by

either 77% (T = 300°K) or 90% (T = 280°K) produced only a small depolarisation of Em,

and did not abolish the standing electrical gradient [Figure 5]. This differential effect of

the two perturbations on the Em calculated by our model supports the findings from



Figure 5 Effect of reducing Na + pump rate on lens electrical potential. A: Equatorial plots of lens
voltage (Em) versus radial distance (r/a) showing the electric potential gradients extracted from the model
for three different temperatures (● = 310; ■ = 300; and ▲ = 280°K) that reduce Na + pump rate.
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experiments that Em is primarily determined by the EK of surface cells and indicates that

any direct contribution from the electro-genic Na+ pump to the lens potential is minimal.

In contrast to the observed minimal effect on electrical gradients, reducing the activity

of the Na+ pump had a major effect on the calculated 3D Inet vector fields [Figure 6A-C].

To highlight these changes, surface plots of Inet were extracted from the 3D vector fields

[Figure 2B] for the different temperatures and are compared in Figure 6D. From this com-

parison it was apparent that reducing the Na+ pump rate, by lowering the temperature to

300 or 280°K, decreases the maximum calculated Inet by ~ 42% and 83%, respectively. This

outcome demonstrates that the Na+ pumps are the major driver of the circulating currents

in the lens; a result that is consistent with experimental findings in the literature. Lowering

the temperature of the media bathing lenses in vitro to just above freezing point has also

been shown to reduce ionic transport by 85 to 90% [56-58]. Furthermore, the pharmaco-

logical inhibition of the Na+ pumps in the lens with ouabain, [9,11,16,56] produced a dose

dependent reduction of current densities at the surface of different species of lens [Table 4].

In summary, it appears that our mouse model is in general agreement with experi-

mentally obtained measurements of Inet ion a variety of species, perturbed by elevated

[K+]eo or reduced Na+ pump rate.

To further investigate the effects of these two perturbations on the underlying lens

physiology, we examined the ability of our model to predict changes in intracellular con-

centration gradients in response to lens depolarization and a reduction in Na+ pump rate.
Calculated intracellular ion concentration gradients

It has been shown experimentally that a radial concentration gradient exists for Na+ in

the mouse lens where Na+ is lowest (~7 mM) in peripheral fiber cells and highest

(~16 mM) in the lens nucleus [16,60]. The existence of this gradient is intuitively

expected based on the distributed passive Na+ permeability that drives the entry of Na+



Figure 6 Effect of reducing Na + pump rate on net current density. 3D representation of the
predicted net current density patterns obtained for solving the model using temperatures of (A) 310,
(B) 300, and (C) 280°K as boundary conditions. The numbers on the colour-bar are in A/cm2 units.
D: 2D profiles of the change in current density at the surface of the lens going in a circumferential
direction from posterior pole (−Pi/2) to anterior pole (Pi/2) expressed as a function of the angle form
the equator (0) extracted from the 3D plots (A-C) created by solving the model using temperatures of
310 (●), 300 (■), and 280°K (▲).

Table 4 Comparison of inhibiting Na+/K+ pump rate either computationally or
experimentally using Ouabain

Species Temperature dependent % reduction in pump rate % Reduction current density

Ap Eq Pp

Mouse 28% (T = 300°K) 50% 50% 50%

Model 82% (T = 280°K) 100% 100% 100%

Pharmacological inhibition of pump rate Ouabain (mM)

Frog [16] 0.1 mM 50% 70% 40%

Rabbit [15] 0.1 mM 60% 60% 60%

Rat [9] 1 mM 100% 100% 100%
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ions into all fiber cells and the localised expression of Na+ pumps to peripheral cells

that mediates the active removal of Na+ from the lens. Our model was able to repro-

duce this measured gradient in intracellular [Na+] [Figure 7A&D], but our data appear

to contain a discontinuity at r/a = 0.5 which was not observed in the fit to the experi-

mental data. This slight discrepancy between the shape of the measured and calculated

gradients could reflect either the smoothing effect of fitting a trend curve the inherent

scatter of the experimental data [16,60] or to a potential caused by the transition of the

mesh from an ellipsoid to a spherical representation in the cortex and core, respectively

[Figure 2]. The model also calculated the steady state standing gradients for [K+] and

[Cl-] that have yet to be measured experimentally. The model predicts a gradient for [K+]i
[Figure 7B&E] that is opposite to that found for [Na+]i, with [K+] being lowest in the core

and highest in the periphery, so that the total cation content is balanced in the different

regions of the lens. In contrast, [Cl-]i was estimated to be relatively constant throughout

the lens [Figure 7C&F], a prediction consistent with the role of [Cl-] in maintaining the

electro-neutrality of the lens.

Interestingly, depolarizing the lens Em [Figure 7A-C], or reducing Na+ pump rate

[Figure 7D-F], had different effects on the modelled intracellular ion concentration gra-

dients. Depolarizing the lens by progressively increasing [K+]eo to 108 mM produced a

flattening of the [Na+]i gradient [Figure 7A], while reducing pump rate by lowering the

temperature only slightly elevated this gradient [Figure 7D]. We observed a similar, but in

the opposite direction, effect of these two perturbations on the [K+]i gradient [Figure 7B&E],

but only minor changes in modelled [Cl-]i gradient [Figure 7C&F]. Our modelling predic-

tions are similar to the “cation shift” effect mentioned in the literature [57]. At low tempera-

tures, an accumulation of [Na+]i and depletion of [K+]i in the lens has been experimentally
Figure 7 Comparison of the effects of depolarization and reduction in Na + pump rate on intracellular
ion concentration gradients. A-C: 2D plots of the radially extracted intracellular concentration gradients for Na
+ (A), K + (B) and Cl- (C) obtained by solving the model using extracellular K + concentrations of 8 (●), 58 (■)
and 108 mM (▲) as the boundary conditions to mimic lens Em depolarization. D-F: 2D plots of the radially
extracted intracellular concentration gradients for Na + (D), K + (E) and Cl- (F) obtained by solving the model
using temperatures of 310 (●), 300 (■) and 280°K (▲) as the starting boundary conditions to mimic a reduction
in Na + pump rate.
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observed [57], [48]. It has also been shown that this “cation shift” effect was reversible, by

restoring the temperature to 37°C. In our model decreasing the temperature decreased the

[K+]i concentration in the core of the lens by around 4 mM, meanwhile the [Na+]i concen-

tration was raised by the same amount in the centre of the model [Figure 7D-F]. So in effect

our model can predict the “cation shift” phenomenon.
Limitations of the model
It worth noting that any computational model, including the one presented here, is at best

an approximation of a complex biological tissue. All such models require incremental im-

provement as new experimental information becomes available and improved methods for

solving the model are developed. For example, our current model estimates irregular ionic

concentration gradients [Figure 7], which is not consistent with the measured smooth

curves of these profiles throughout the lens [16]. We believe that these estimations will be

improved in future upgrades of our model utilizing higher resolution finite element

meshes to capture the fine 3D geometry of the lens and finer regional distribution of ele-

ments such as the gap junctions and extracellular space tortuosity, all without compromis-

ing the computational load.

Furthermore, the under-estimation of the magnitude of hydrostatic pressure in the

core (19.5 kPa versus 43 kPa) noted in our original study [30], is another example

where our model deviates from recent experimental findings [16,60]. It has been pro-

posed that the experimentally measured pressure gradient is generated by the restricted

flow of water from the centre to the periphery of the lens through gap junction chan-

nels [1,14]. This illustrates that structural components of the lens can influence the

magnitude of the pressure gradient and suggests that the difference between calculated

and measured pressure fields may reflect the absence of a structural feature not cur-

rently captured in our model [61,62]. In this regard we have recently identified a zone

in the inner cortex of the lens that exhibits a reduction in the penetration of solutes

and water [25] that could influence the magnitude of the calculated pressure gradient.

What is reassuring, however, is that our model correctly predicted the experimentally

measured percentage change in hydrostatic pressure induced by either depolarising the

lens or inhibiting pump rate. Experimental elevation of extracellular K+ decreased the

measured hydrostatic pressure in the core by 90% [16], while our model calculated a

similar change of 85%. Similarly inhibiting the Na+/K+ pump activity with ouabain pro-

duced a 50% drop in pressure [16], while a computationally induced reduction in pump

rate of 82% produced a 75% drop in pressure. This qualitative association between the

electrical gradients and pump rate activity suggests that circulating current and fluid

fluxes are involved in generating the hydrostatic pressure gradient. The ability to quan-

titatively predict the magnitude of changes in the hydrostatic pressure gradient is an

obvious area where further work will improve the accuracy of our model.
Conclusions
In this paper we have tested the ability of our 3D computer model of lens structure

and function to predict changes in the electrical field, net current densities, and intra-

cellular ionic concentration gradients in response to a depolarization lens potential or a

reduction in Na+ pump activity induced by an elevation in extracellular [K+] and
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lowering the temperature, respectively. The ability of our model to predict the effect of

these perturbations on lens properties showed good agreement with the experimental

data available in the literature for a variety of species of lens [9,11,15,16,48,56-58],

thereby confirming that spatial differences in membrane permeability and Na+ pump

rate are the major drivers of circulating currents in the lens.

While our current finite element model is based on a mouse lens, we believe that the

microcirculation equations, derived in the literature [2,5,14] and implemented here, are

applicable to other species. However, it should be noted that larger mammalian lenses,

such as the human lens, have more complex structures compared to rodent lenses

[43,61,62]. Capturing such complex structural features using an appropriate finite element

mesh that is specific to each species of lens will enable us to model lens structure and

function in different animal models and ultimately the human lens of different ages.

This modelling approach will afford us the capability to computationally isolate dif-

ferent components of the lens microcirculation system and study their effects on over-

all lens homeostasis. This ability to create “digital knockout” models of the ocular lens

will facilitate our ability to design and analyse experiments in order to study the contri-

bution of individual ion channels and transporters to the generation of the lens internal

microcirculation system.
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