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Abstract

Background: Complex fractionated atrial electrograms (CFAE) acquired during atrial
fibrillation (AF) are commonly assessed using the discrete Fourier transform (DFT),
but this can lead to inaccuracy. In this study, spectral estimators derived by
averaging the autocorrelation function at lags were compared to the DFT.

Method: Bipolar CFAE of at least 16 s duration were obtained from pulmonary vein
ostia and left atrial free wall sites (9 paroxysmal and 10 persistent AF patients). Power
spectra were computed using the DFT and three other methods: 1. a novel spectral
estimator based on signal averaging (NSE), 2. the NSE with harmonic removal (NSH),
and 3. the autocorrelation function average at lags (AFA). Three spectral parameters
were calculated: 1. the largest fundamental spectral peak, known as the dominant
frequency (DF), 2. the DF amplitude (DA), and 3. the mean spectral profile (MP),
which quantifies noise floor level. For each spectral estimator and parameter, the
significance of the difference between paroxysmal and persistent AF was
determined.

Results: For all estimators, mean DA and mean DF values were higher in persistent
AF, while the mean MP value was higher in paroxysmal AF. The differences in means
between paroxysmals and persistents were highly significant for 3/3 NSE and NSH
measurements and for 2/3 DFT and AFA measurements (p<0.001). For all estimators,
the standard deviation in DA and MP values were higher in persistent AF, while the
standard deviation in DF value was higher in paroxysmal AF. Differences in standard
deviations between paroxysmals and persistents were highly significant in 2/3 NSE
and NSH measurements, in 1/3 AFA measurements, and in 0/3 DFT measurements.

Conclusions: Measurements made from all four spectral estimators were in
agreement as to whether the means and standard deviations in three spectral
parameters were greater in CFAEs acquired from paroxysmal or in persistent AF
patients. Since the measurements were consistent, use of two or more of these
estimators for power spectral analysis can be assistive to evaluate CFAE more
objectively and accurately, which may lead to improved clinical outcome. Since the
most significant differences overall were achieved using the NSE and NSH estimators,
parameters measured from their spectra will likely be the most useful for detecting
and discerning electrophysiologic differences in the AF substrate based upon
frequency analysis of CFAE.
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Background
The dominant frequency (DF) is an important measure for assessing complex frac-

tionated atrial electrograms (CFAE) in patients with atrial fibrillation (AF) [1-3].

CFAE are defined as electrograms composed of ≥ 2 deflections per cycle without re-

turn to the isoelectric interval, or having a cycle length < 120 ms, as averaged over

a 10 s recording period [4]. Studies have shown that use of radiofrequency catheter

ablation at CFAE regions may be assistive in eliminating the arrhythmogenic sub-

strate by which AF is inducible and perpetuates [4]. CFAE can be analyzed compu-

tationally using time domain [5,6] or frequency domain methods [2,3,7]. However,

time and frequency methods of digital signal analysis do not have equal robustness.

When amplitude varies randomly, as can be common in CFAE recordings, time do-

main methods lose performance for characterizing AF electrograms, while frequency-

domain methods remain stable [8].

The DF can be defined as the tallest fundamental spectral peak within the electro-

physiologic range [7,9]. The inverse of this frequency is, to a first approximation, the

atrial activation rate [10,11]. For DF calculation, electrograms are traditionally

preprocessed by digital bandpass filtering and rectification of the signal, followed by

additional low pass filtering [3,12,13]. The preprocessing step generates a smoothed sig-

nal that is proportional to the amplitude of the high-frequency components in the ori-

ginal atrial electrogram [12,13]. This enhances the presence of periodicity or

nonperiodicity in the waveform [14] by transforming sharp biphasic deflections into

sinusoidal-like shapes, with the result that the fundamental frequency is more likely to

correspond to the atrial rate [10,15]. However, amplitude and frequency variability can

significantly degrade DF measurement of the preprocessed signals when the discrete

Fourier transform (DFT) is used [15-17], and thus the preprocessing step is sometimes

skipped [18].

Recently, a novel spectral estimator (NSE), derived from a mathematical transform

having an orthogonal, data-driven basis [19], was applied to CFAE for frequency ana-

lysis [19,20]. Since the basis is data-driven, it is estimative of all digital signal compo-

nents, including the sharp biphasic deflections commonly present in electrograms,

without the need to resort to the distortive preprocessing step that is often used for

DFT analysis. Although subharmonics and cross-terms are not significant for DFT ana-

lysis because the Fourier basis is sinusoidal and antisymmetric, they may be significant

in NSE spectra [21]. In this study, spectral estimators derived from the aforementioned

signal averaging transform were implemented to compare performance versus the DFT

for discerning differences in paroxysmal versus persistent AF data.

Method
Clinical data and the electrophysiology procedure

Atrial electrograms were recorded in 19 patients referred to the Columbia University

Medical Center cardiac electrophysiology laboratory for catheter ablation of AF. These

recordings were obtained for prospective analysis as approved by the Institutional Re-

view Board, but analyzed retrospectively for this study. Nine patients had documented

clinical paroxysmal AF, and normal sinus rhythm was their baseline cardiac rhythm in

the electrophysiology laboratory. Atrial fibrillation was induced in these patients by

burst atrial pacing from the coronary sinus or right atrial lateral wall, and was required
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to persist for ≥10 minutes prior to data collection. Ten other patients had longstanding

persistent AF without interruption for from several months to years prior to their cath-

eter mapping and ablation procedure. Bipolar atrial mapping was performed with a

NaviStar ThermoCool catheter, 7.5F, 3.5 mm tip, with 2 mm spacing between bipoles

(Biosense-Webster Inc, Diamond Bar, CA, USA). The electrogram signals were ac-

quired using the General Electric CardioLab system (GE Healthcare, Waukesha, WI),

and filtered at acquisition from 30-500 Hz with a single-pole bandpass filter to remove

baseline drift and high frequency noise. The filtered signals were sampled at 977 Hz

and stored. Although the bandpass high end was slightly above the Nyquist frequency,

negligible CFAE signal energy resides in this frequency range [9].

Only signals identified as CFAEs by two cardiac electrophysiologists were included

for analysis. CFAE recordings of at least 16 s in duration were obtained from two sites

outside the ostia of each of the four pulmonary veins and from two left atrial free wall

sites, one in the mid posterior wall, and another on the anterior ridge at the base of the

left atrial appendage. The mapping catheter was navigated at these locations until a

CFAE site was identified. A total of 204 digitized sequences – 90 from paroxysmal and

114 from longstanding AF patients, all meeting the criteria for CFAE, were selected for

this study and included for computational analysis. As in previous studies, to

standardize the morphological characteristics, all digital CFAE signals were normalized

to mean zero and unity variance (average level = 0 volts, standard deviation and vari-

ance = 1) [19-21]. Short signal segments were considered to also be approximately

mean zero and unity variance, so that the autocovariance and autocorrelation functions

were considered to be equivalent.

Power spectral generation using ensemble averaging

NSE spectra were generated as described in detail previously [7,9,19-21] and mentioned

briefly here. In the equations below, underline signifies a vector, a capital letter indi-

cates a matrix, and the first subscript denotes the vector or matrix dimension. A signal

xN of length N can be divided into n segments of length w for ensemble averaging:

ew ¼ 1
n

X
i

xw;i; i ¼ 1 to n ð1Þ

where ew is the ensemble average vector of length w,

xN ¼
xw;1
xw;2
:::
xw;n

2
664

3
775 ð2Þ

and:

n ¼ int
N
w

ð3Þ

where ‘int’ is the integer function (the real number is rounded down). Examples of the

summation of signal segments of lengths w = 100, 200, and 500 are shown in Figure 1.

If the signal is 2000 discrete sample points long as in Figure 1, then to form the ensem-

ble average, according to Eq. 3 there would be n = 20 segments of length w = 100, n =

10 segments of length w = 200, and n = 4 segments of length w = 500. The first four



Figure 1 A. CFAE and its first four signal segments with w = 100, 200, and 500. Arrows show some of
the relationships of the signal segments with respect to the original signal at top.
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segments that are extracted from the signal are shown, which are all of the segments

when w = 500. By summing all n segments, and dividing by n, the ensemble average of

signal segments of length w is obtained. The ensemble average power is then given by:

Pw ¼ 1
w
⋅ eTw⋅ ew ð4aÞ

¼ 1
n2w

X
i

xTw; i ⋅
X
j

xw; j i ¼ 1 to n; j ¼ 1 to n ð4bÞ

¼ 1
N w

X
i

X
j

xTw; i ⋅ xw; j i ¼ 1 to n; j ¼ 1 to n ð4cÞ

It is evident from Eq. 4c that the ensemble average power is related to the autocorrel-
ation function. Suppose a segment length w = 500 and signal length N = 2000 as de-

scribed in Figure 1. Then from Eq. 3, n = 4. Since in Eq. 4c the indices will then be

given by i = 1 to 4 and j = 1 to 4, the phase lags between the four signal segments are

given by:

i ∖ j 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

2
66664

3
77775 ¼ lags matrix ð5Þ

where each matrix element is the absolute difference in phase lag between segment i

and segment j. Thus there is no lag w when i = j (lag = 0w), there is one lag between

segments when the indices are separated by 1 (lag = 1w), two lags when the indices

are separated by 2 (lag = 2w), and three lags when the indices are separated by 3

(lag = 3w). Hence, the contribution toward averaging the autocorrelation function in

Eq. 4 is a nonunity weighting of lags, i.e., 0w: 4, 1w: 6, 2w: 4, and 3w: 2. Eq. 4 makes
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use of only signal segments at lags contained within length N of the signal. By compari-

son, the autocorrelation function r is computed as the inner product of signal compo-

nents separated by the same phase lag ϕ:

r w; kð Þ ¼ 1
N

xTN ⋅ xN ; φ¼ k ⋅w ð6aÞ

¼ 1
nw

X
i

xTw; i ⋅ xw; iþk i ¼ 1 to n ð6bÞ

where ϕ = kw. In Eq. 6b, the autocorrelation function is described as a summation of

inner products of signal segment pairs having length w, with segment xw;iþk being

shifted by k segment lengths (kw sample points) from segment xTw;i . The lags matrix of

Eq. 5 shows that the NSE estimator is an unequally weighted average of the autocorrel-

ation function. To include all lags kw, k = 1 to n, so that there is equal weighting when

forming an average autocorrelation function, Eq. 6a can be modified as:

rav wð Þ ¼ 1
nN

X
k

xTN ⋅ xN ; φ¼ k ⋅w k ¼ 1 to n ð7aÞ

¼ 1
n2w

X
k

X
i

xTw;i ⋅ xw; iþk i ¼ 1 to n; k ¼ 1 to n ð7bÞ

where rav(w) is the autocorrelation function average for all lags ϕ = kw, k = 1 to n,

Eq. 7 is computed over an interval 2N, and Eq. 7b shows the form when segments of

length w are summed. Figure 2 illustrates the process of using this average autocorrelation
Figure 2 Mechanism by which the average autocorrelation spectrum sharpens as n lags are added
to form the average. A. The autocorrelation function. B. Lag vectors. The frequency range shown in
panels C and D, 2-20 Hz, corresponds to w = 500–50 sample points for the signal digitized at 977 Hz.
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function as a spectral estimator of CFAE. Firstly, shown in Figure 2A, is the auto-

correlation function xTN ⋅ xN ; φ ¼ k⋅w , as calculated using Eq. 6. A plot of r(w,1) versus

frequency:

f ¼ sample rate
w

ð8Þ

is useful as a rough spectral estimator [22-24]. Figure 2A is such a plot except that the

abscissa should be converted to a frequency scale using Eq. 8. The process of using the

autocorrelation function average as a spectral estimator is shown in Figure 2B. The traces

from left to right in the three panels of Figure 2B are constructed using Eq. 7A, with

k = 1, 2, and 3, respectively, in the range w = 1 to 500. The abscissa in the respective

panels from left to right in Figure 2B has units of lag kw, for 1w, 2w, and 3w. When the

three traces in panel B (lags 1w, 2w, 3w), as well as traces for lags 4w, 5w, …, 16w (not

shown), are overlapped, the result is depicted in panel C, with the abscissa being in units

of Hz (Eq. 8, sample rate 977 Hz). Note that at some frequencies the traces in panel C are

reinforced, whereas at other frequencies they are not. When the traces for all lags are

summed, as in Eq. 7, the result is shown in Figure 2D, which is the power spectrum based

on equally-weighted averaging of the autocorrelation function. The tallest peak occurs at

approximately 6.6 Hz, while the second harmonic is at 13.2 Hz and the second subhar-

monic is at approximately 3.3 Hz. As k increases in Eq. 7, the added component becomes

sharper (left to right in Figure 2B), thus contributing fine detail to the spectrum of

Figure 2D. This is because a much longer portion kw of the signal, w = 1 to 500, is used

for calculation when k is large, with faster falloff away from correlated lags. Where the

deflections of individual traces reinforce in panel C, they become spectral peaks in panel

D. Where reinforcement occurs, there is a correlation between the signal at most or all

lags kw.

To implement Eq. 7 in computer software, the following line of software code can be

used:

rav wð Þ ¼ rav wð Þ þ x ið Þ ⋅ x iþ kwð Þ i ¼ 1 to N ; k ¼ 1 to n ð9Þ

where x(i) is a discrete point in the signal and x(i+kw) is a point, shifted by i+kw for

lags lw, 2w, …, nw. This spectral estimator is normalized as rav(w)/ nN and plotted

versus frequency as calculated using Eq. 8, and is termed the AFA estimator.

The method for construction of lag vectors which are used to form the AFA estimate

is shown in more detail in Figure 3. Lag 1w is depicted in panel A and is the same as

Figure 2B, left-hand panel. For reference, the frequency scale for a sampling rate of 977

Hz, as well as the segment length w, is shown on the abscissa. Letting lag 1w range

from 1 to 500, corresponding to a frequency of 977 – 1.95 Hz, the lag vector contains

500 points in total. The construction of the lag 2w vector is depicted in panel B. The

500 indices have doubled in value as compared with panel A, and now range from 2 to

1000. Examples of corresponding index numbers for lags 1w and 2w are shown as solid

circles in the graphs of panels A and B, respectively. To form the lag 2w vector, the 500

points with lag 2w are extracted from the trace in Figure 3B and plotted, with the result

being the middle graph in Figure 2B. This lag vector contributes a sharper set of fea-

tures to the overall spectral estimate of Figure 2D. Similarly to construct the lag 3w

vector, the 500 points with lag 3w are extracted from the trace in Figure 3C and



Figure 3 Construction of lag vectors. Panels A-C show how lag vectors are constructed from the
autocorrelation function in the range w = 1 to 500. The solid circles on each graph show the values for
w = 100, 200, 300, 400, and 500.

Ciaccio et al. BioMedical Engineering OnLine 2013, 12:72 Page 7 of 17
http://www.biomedical-engineering-online.com/content/12/1/72
plotted, with the result being the right-hand graph in Figure 2B. This lag vector pro-

vides an even sharper contribution to the spectral estimate of Figure 2D. As can be ob-

served in Figure 2A, the autocorrelation function tends to diminish in amplitude with

greater lag ϕ, due to small prediction errors. Other investigators have used a damped

sinusoidal model for characterization of the autocorrelation function [25], but this is

not needed to construct the AFA spectral estimate, as damping and other changes are

already built into the lag vectors.

Introduction of antisymmetry

Although the NSE power spectrum has previously been shown useful for analysis of

atrial fractionation, subharmonics and cross-terms are present. To reduce these arti-

facts, the basis can be made antisymmetric [21]. Consider an ensemble average vector

ew with w even, composed of two segments aw/2 and bw/2, and let all vectors be row

vectors:

ew ¼ aw=2 bw=2�
� ð10Þ

To impart antisymmetry to the second harmonic, the segments are averaged and the

result subtracted from each segment:

e
00
w ¼ ½aw=2 bw=2� −

1
2

aw=2 þ bw=2 aw=2 þ bw=2�
�

¼ 1
2

aw=2 − bw=2 bw=2 − aw=2�
� ð11Þ

where the double prime symbol ('') indicates that the ensemble vector is now antisym-

metric for the second harmonic. To show this, when the two components in Eq. 11 are

averaged, they form the 0 vector:
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0 ¼ 1
2
⋅
1
2

aw=2 − bw=2Þ þ bw=2 − aw=2Þ�
��� ð12Þ

If w is odd, then w/2 will not be an integer and will be subject to rounding error,
which will introduce phase noise. To eliminate this drawback would require inter-

polation between data points so that real numbers are used, which for simplicity is not

done in this study.

Impartation of antisymmetry to higher harmonics is commutative and therefore is

not order-dependent. This can be shown by numerical example for harmonics 2 and 3.

The vectors shown below are row vectors. Consider a signal x:

x ¼ 1 2 3 4 5 6½ � ð13Þ

The average of the second harmonic is:

h h2i ¼ 1
2

1 2 3½ � þ 1
2

4 5 6½ � ¼ 5
2

7
2

9
2

� �
ð14Þ

Thus:
x
00 ¼ x − ½〈h2i 〈h2i� ¼ −

3
2

−
3
2

−
3
2

3
2

3
2

3
2

� �
ð15Þ

Since x
00
is now antisymmetric:
0 ¼ −
3
2

−
3
2

−
3
2

� �
þ 3

2
3
2

3
2

� �
ð16Þ

The average of the third harmonic of x
00
is:
h h3i ¼ 1
3

−
3
2

−
3
2

� �
þ 1

3
−
3
2

3
2

� �
þ 1
3

3
2

3
2

� �
¼ −

1
2

1
2

� �
ð17Þ

Thus
x
0 0;0 0 0 ¼ x

0 0
− h3i h3i h3i� ¼ −1 −2 −1 1 2 1½ �hhh½ ð18Þ

Both the second and third harmonics of the new vector are now antisymmetric:
0 ¼ −1 −2 −1½ � þ 1 2 1½ �
0 ¼ −1 −2½ � þ −1 1½ � þ 2 1½ �

ð19Þ

If the third harmonic of x is first made antisymmetric:

h h3i ¼ 1
3

1 2½ � þ 1
3

3 4½ � þ 1
3

5 6½ � ¼ 3 4½ � ð20Þ

Then:

x
0 0 0 ¼ x − h3i h3i h3i�hhh½

¼ 1 2 3 4 5 6½ � − 3 4 3 4 3 4½ �
¼ −2 −2 0 0 2 2½ �

ð21Þ
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If the second harmonic of x
0 0 0

is then made antisymmetric:

h h2i ¼ 1
2

−2 −2 0½ � þ 1
2

0 2 2½ � ¼ −1 0 1½ � ð22Þ

Then:
x
0 0 0; 0 0 ¼ x

0 0 0
− h2i h2i� ¼ −1 −2 −1 1 2 1½ �hh½ ð23Þ

where the right hand sides of Eq.’s 18 and 23 are identical. Therefore, the order of har-

monic removal is inconsequential, and antisymmetry is maintained for each harmonic

that is removed. If the basis contains little or no power in the second and third har-

monics, then h2ih , h3ih … will trend toward zero vectors, and there will be no signifi-

cant change in the shape of the original ensemble vector nor change in its power by

imparting antisymmetry.

In Figure 4 is shown an example of harmonic removal. A recording from the left su-

perior pulmonary vein, persistent AF patient is shown in panel A for 1000 sample

points. For this signal the DF is 5.96 Hz (w = 164). The ensemble average at the DF

after antisymmetry is imparted to the second harmonic is shown repeated in panel B.

Addition of the two antisymmetric components, each of length 164 / 2 = 82 points,

forms the zero vector, shown in panel C. When antisymmetry is imparted to the en-

semble averages prior to power spectral calculation, the resulting spectral estimator is

termed the novel spectral estimator with harmonics removed (NSH).

Implementation of estimators and spectral measurements

The aforementioned spectral estimators were compared to the Fourier power spectrum,

which was computed using a radix-2 implementation of the DFT [26]. For ease of
Figure 4 Example of removal of harmonics from the ensemble average of the DF, which is done for
the NSH estimator implementation. Panel A: Original signal. Panel B: The ensemble average of the
dominant frequency with antisymmetry imparted to the second harmonic. Panel C: Addition of the
antisymmetric components of the ensemble average in panel B results in the zero vector.
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comparison, rectangular windowing was used for all estimators, so that frequency reso-

lution was not diminished [20]. Furthermore, for better comparison, the preprocessing

step of bandpass filtering, signal rectification, and low pass filtering [12,13] was not

implemented. For calculation of spectral parameters, for simplicity the NSH estimator

was implemented with antisymmetry imparted to the second harmonic only, where

most of the harmonic power resides.

The following parameters were used for comparison of the spectral estimators in the

physiologic range of 3-12 Hz. The DF was determined by automatically selecting the

tallest spectral peak in the range 3.5-8.5 Hz [21] with manual correction when neces-

sary if the fundamental frequency was found to reside between 3–3.5 Hz or between

8.5-12 Hz (in practice it is almost always found between 3.5-8.5 Hz). This practical im-

plementation solves the problem of inadvertently selecting a subharmonic as the DF

during the automatic detection process, as was done in a previous study [27]. The domi-

nant amplitude (DA) was also measured, defined as the amplitude of the DF peak [21]. A

larger value of DA indicates that more signal power resides in the dominant periodic

component, as can occur when a stable local electrical activation pattern is the source.

The magnitude of the power spectrum from 3-12 Hz was then normalized to a range of

0–1 units. The mean of this normalized spectral profile (MP), which is indicative of the

spectral baseline level and therefore the degree of global electrical activation pattern sta-

bility [21], was also calculated.
Figure 5 Examples of power spectra for the four estimators. The spectra are shown in the range
2 – 20 Hz for clarity.



Table 1 Dominant amplitude

Method MN - Par SD - Par MN - Per SD – Per MN Signif SD Signif

NSE 1.472 0.231 1.839 0.604 p < 0.001 p < 0.001

NSH 1.192 0.225 1.521 0.483 p < 0.001 p < 0.001

AFA 0.141 0.172 1.173 4.637 p = 0.140 p < 0.001

DFT 0.688 0.297 0.849 0.375 p = 0.004 p = 0.064

Par paroxysmal AF, Per persistent AF, MN mean, SD standard deviation, Signif significance. For DA and DF, only
pulmonary vein ostia recordings were used and N = 60 and 76, respectively, for paroxysmal versus persistent CFAE.
For MP, all sites were used and N = 90 and 114, respectively, for paroxysmal versus persistent CFAE.
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Comparison of fast activation rate versus highly fractionated CFAE

As a further check of the methods, the CFAE were then subdivided according to mor-

phologic differences. All CFAE were first scaled to a peak-to-peak value of 1.0 milli-

volts. Fast activation rate CFAE were defined as those scaled electrograms with a

standard deviation < 0.074. Highly fractionated CFAE were defined as those scaled elec-

trograms with a standard deviation ≥ 0.074. The threshold was taken so as to subdivide

the number of CFAE in each subgroup evenly (102 electrograms in each group). This

quantitative definition corresponded to the visual appearance of these electrograms.

For each of the two subgroups, the same spectral parameters were compared for paroxys-

mal versus persistent CFAE using all four estimators.
Statistical calculations

The DFT, NSE, NSH, and AFA estimators were compared statistically based on the

three measured spectral parameters. The Mann–Whitney Rank Sum Test, a nonpara-

metric procedure which does not require assumption of normality or equal variance,

was used to determine significant differences in the means in the spectral parameters,

and the F-test was used to determine significant differences in the standard deviations

(SigmaPlot 2004 for Windows Ver. 9.01, Systat Software, Chicago, MedCalc ver. 9.5,

2008, MedCalc Software bvba, Mariakerke, Belgium). Differences were considered sig-

nificant at a level p < 0.05.
Results
An example of the power spectra for each of the estimators using a repetitive electro-

gram pattern having a frequency of 4.89 Hz is shown in Figure 5. This example was

used to show that each estimator could detect the DF. From panels A to D are spectra

from NSE, NSH, AFA, and DFT estimators. The frequency range is 2 – 20 Hz to

show presence of sub- and superharmonics. For all spectra, the tallest peak in the
Table 2 Dominant frequency

Method MN - Par SD - Par MN - Per SD - Per MN Signif SD Signif

NSE 5.741 1.235 6.196 0.969 p < 0.001 p = 0.047

NSH 5.732 1.274 6.420 0.977 p < 0.001 p = 0.030

AFA 5.317 1.182 5.962 1.176 p < 0.001 p = 0.959

DFT 5.623 1.126 6.253 0.919 p < 0.001 p = 0.096

Par paroxysmal AF, Per persistent AF, MN mean, SD standard deviation, Signif significance. For DA and DF, only
pulmonary vein ostia recordings were used and N = 60 and 76, respectively, for paroxysmal versus persistent CFAE.
For MP, all sites were used and N = 90 and 114, respectively, for paroxysmal versus persistent CFAE.



Table 3 Mean spectral profile

Method MN - Par SD - Par MN – Per SD - Per MN Signif SD Signif

NSE 0.401 0.062 0.337 0.104 p < 0.001 p < 0.001

NSH 0.375 0.069 0.308 0.096 p < 0.001 p = 0.001

AFA 0.358 0.088 0.304 0.099 p < 0.001 p = 0.247

DFT 0.305 0.068 0.258 0.071 p < 0.001 p = 0.674

Par paroxysmal AF, Per persistent AF, MN mean, SD standard deviation, Signif significance. For DA and DF, only
pulmonary vein ostia recordings were used and N = 60 and 76, respectively, for paroxysmal versus persistent CFAE.
For MP, all sites were used and N = 90 and 114, respectively, for paroxysmal versus persistent CFAE.
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electrophysiologic range of 3 – 12 Hz, the DF, is at 4.89 Hz, the frequency of the repeti-

tive pattern. The 2.45 Hz subharmonic is evident in NSE and AFA spectra. Cross-terms

are also present in the NSE spectrum, for example at 3.26 Hz (2/3 integer relationship

with the DF) and 12.23 Hz (5/2 integer relationship with the DF). Subharmonics and

cross-terms are mostly absent from the NSH spectrum, which for illustrative purposes

was constructed using antisymmetric bases for the 2nd, 3rd, 5th, and 7th harmonics.
Summary statistics

Measurements for all data are shown in Tables 1, 2 and 3. The DA spectral parameter

results are summarized in Table 1. For all measurement methods, mean DA was greater

in persistent as compared with paroxysmal AF. This was highly significant for the NSE

and NSH estimators (p < 0.001). The standard deviation in the DA spectral parameter

was greater in persistent AF as compared with paroxysmal AF for all methods. This

was highly significant (p < 0.001), except for the DFT estimator which was not signifi-

cant. For all measurement methods, the mean DF was also greater in persistent AF as

compared with paroxysmal AF (Table 2). This was highly significant for all methods

(p < 0.001). The standard deviation in DF was larger in paroxysmals for all methods,

which achieved moderate significance only for NSE and NSH (p < 0.05). Measurements

for the MP spectral parameter are shown in Table 3. For all methods, mean MP was

greater in paroxysmal as compared with persistent AF patients. The differences in

mean MP were highly significant for all four methods (p < 0.001). The differences in

the standard deviation of MP were highly significant for the NSE and NSH estimators

(p ≤ 0.001).

Overall, the NSE and NSH methods had highly significant differences in the means

for DA, DF, and MP (p<0.001). The AFA and DFT methods had highly significant dif-

ferences in the means for DA and MP only (p<0.001). Overall, NSE and NSH had

highly significant differences in the standard deviations for DA and MP (p<0.001) and

moderately significant difference for DF (p<0.05)s. AFA had a highly significant dif-

ference in standard deviation for the DA measurement. The DFT had no significant
Table 4 Fast activation rate - dominant amplitude

Method MN - Par SD – Par MN - Per SD - Per MN Signif SD Signif

NSE 1.453 0.210 1.679 0.442 P = 0.008 P < 0.001

NSH 1.175 0.208 1.411 0.415 P = 0.003 P < 0.001

AFA 0.012 0.016 0.106 0.563 P = 0.412 P < 0.001

DFT 0.688 0.299 0.741 0.368 P = 0.600 P = 0.099

Par paroxysmal AF, Per persistent AF, MN mean, SD standard deviation, Signif significance.



Table 5 Fast activation rate - dominant frequency

Method MN - Par SD - Par MN - Per SD - Per MN Signif SD Signif

NSE 5.689 1.225 6.352 1.031 P = 0.003 P = 0.158

NSH 5.545 1.337 6.665 0.949 p < 0.001 P = 0.005

AFA 5.028 1.025 6.004 1.229 p < 0.001 P = 0.148

DFT 5.444 1.068 6.454 0.982 p < 0.001 P = 0.489

Par paroxysmal AF, Per persistent AF, MN mean, SD standard deviation, Signif significance.
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differences in standard deviation for any of these measurements. Thus based on signifi-

cant differences in spectral estimation measurements between paroxysmal and persis-

tent AF, the NSE and NSF methods had greatest efficacy, followed by AFA and DFT.

Tables 4, 5 and 6 show the results for fast activation rate CFAE only. Similar to

Tables 1, 2 and 3, there are higher values for DA and DF in persistent AF for all estima-

tors, and higher values of MP in paroxysmal AF for all estimators. The NSE and NSH

estimators exhibit significant differences in paroxysmals versus persistents for all three

spectral parameters. The AFA and DFT estimators exhibit significant differences in par-

oxysmals versus persistents for only the DF spectral parameter. Tables 7, 8 and 9 show

the results for highly fractionated CFAE only. Similar to Tables 1, 2 and 3 and Tables 4,

5 and 6, there are higher values for DA and DF in persistent AF for all estimators, and

higher values of MP in paroxysmal AF for all estimators. The NSE, NSH, and DFT esti-

mators exhibit significant differences in paroxysmals versus persistents for two of three

spectral parameters. The AFA estimator exhibits significant differences in paroxysmals

versus persistents for one of three spectral parameters – the MP. For both subgroups

(Tables 4, 5 and 6 and Tables 7, 8 and 9), overall there were significant differences in

standard deviations at the p<0.01 level in 5/6 comparisons for the NSE and NSH esti-

mators, in 2/6 comparisons for the AFA estimator, and in 1/6 comparisons for the DFT

estimator.
Discussion
Summary

In this study, novel methods of spectral estimation were compared to traditional Fou-

rier analysis for characterization of complex fractionated electrograms recorded during

atrial fibrillation. The foundation for these novel techniques is a recently described

transform in which the power spectrum is computed by averaging the autocorrelation

function at lags [19]. Since the DFT estimator models the autocorrelation function

using a sinusoidal approximation (Wiener–Khinchin theorem), all four spectral estima-

tors are derived from the autocorrelation function. Three spectral parameters were

used to test the efficacy of each spectral estimator. Along with the DF which is

commonly used, two additional spectral measurements, the DA and MP, were also
Table 6 Fast activation rate - mean spectral profile

Method MN – Par SD – Par MN - Per SD - Per MN Signif SD Signif

NSE 0.400 0.057 0.352 0.091 P = 0.004 P < 0.001

NSH 0.382 0.062 0.319 0.089 p < 0.001 P < 0.001

AFA 0.369 0.087 0.340 0.086 P = 0.094 P = 0.902

DFT 0.307 0.076 0.277 0.066 P = 0.054 P = 0.156

Par paroxysmal AF, Per persistent AF, MN mean, SD standard deviation, Signif significance.



Table 7 Highly fractionated - dominant amplitude

Method MN - Par SD – Par MN - Per SD - Per MN Signif SD Signif

NSE 1.509 0.270 2.037 0.716 p < 0.001 P < 0.001

NSH 1.226 0.259 1.658 0.530 p < 0.001 P < 0.001

AFA 0.027 0.025 0.185 0.555 P = 0.084 P < 0.001

DFT 0.688 0.301 0.984 0.343 p < 0.001 P = 0.298

Par paroxysmal AF, Per persistent AF, MN mean, SD standard deviation, Signif significance.
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calculated. Efficacy was determined from the significance of the difference in the means

and standard deviations of the measurements when comparing paroxysmal versus per-

sistent AF data. Two of the methods, NSE and NSH, were significantly improved with

respect to the DFT for discerning CFAE spectral parameters in paroxysmal versus per-

sistent AF patients. Although the AFA method, calculated over a signal length 2N, pro-

vided only marginal improvement as an estimator as compared with the DFT, it is

simple to implement, requiring only one line of software code to describe the calcula-

tion (Eq. 9).
Clinical correlates

Although the DF is often used for frequency analysis of CFAE, our study suggests that

other spectral parameters may be more useful for fractionated atrial electrogram ana-

lysis. The DA parameter is related to DF power, and is therefore somewhat similar to

the regularity index sometimes used in previous studies [14,28]. The regularity index is

defined as the power of the dominant peak divided by the overall spectral power. How-

ever the regularity index requires the width of the dominant peak to be guesstimated.

Furthermore, the regularity index is normalized over an arbitrary power spectral range.

No such guesstimates and arbitrary impositions are used for DA calculation, so that it

is potentially a more robust measure for clinical application. The MP parameter was

measured over the accepted electrophysiologic range of 3-12 Hz [21]. It is therefore a

more global spectral measure as compared with the DA and DF parameters, and as

such is more similar to the organizational index described in previous studies [14,28].

The organizational index is defined as the spectral power of the DF and its harmonics

divided by the overall spectral power. The organizational index however, involves

guestimation of the width of the dominant peak, as well as the width of harmonics

whose power should be summed, and the number of harmonics to be summed. In con-

trast, the MP spectral parameter does not use guesstimates, so that it is likely to be a

more robust measure for clinical application.

The NSE transform for spectral estimation and signal reconstruction has also been

applied to other applications including ventricular tachyarrhythmias [29] and to video-

capsule imagery data in celiac disease patients [30]. The method is therefore likely
Table 8 Highly fractionated - dominant frequency

Method MN - Par SD – Par MN - Per SD - Per MN Signif SD Signif

NSE 5.845 1.281 6.003 0.863 P = 0.591 P = 0.001

NSH 6.106 1.073 6.118 0.939 P = 0.936 P = 0.274

AFA 5.896 1.285 5.910 1.122 P = 0.781 P = 0.266

DFT 5.981 1.181 6.005 0.778 P = 0.914 P = 0.001

Par paroxysmal AF, Per persistent AF, MN mean, SD standard deviation, Signif significance.



Table 9 Highly fractionated - mean spectral profile

Method MN - Par SD – Par MN - Per SD - Per MN Signif SD Signif

NSE 0.401 0.068 0.323 0.113 p < 0.001 P < 0.001

NSH 0.368 0.076 0.297 0.101 p < 0.001 P = 0.006

AFA 0.345 0.088 0.272 0.099 p < 0.001 P = 0.247

DFT 0.302 0.057 0.240 0.071 p < 0.001 P = 0.031

Par paroxysmal AF, Per persistent AF, MN mean, SD standard deviation, Signif significance.
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applicable to a variety of data types. The spectral parameters described in this study

have also been used for QRST cancellation [31] and the NSE estimator has been incor-

porated into a study for heart sounds quantification [32]. Heart sounds patterns have

also been detected by averaging segments of the acoustic signal at different lengths w,

similar to the NSE implementation [33].
Limitations

The General Electric CardioLab acquisition settings are hardwired for signal digitiza-

tion at a rate of 977 Hz after antialiasing with a single pole filter having a 500 Hz corner

frequency. These settings cause any high frequency components from 489 – 500 Hz to

pass through the filter without sufficiently fast digitization for accurate representation, a

limitation of the system. The study was done using retrospective data and with a relatively

small number of patient recordings. The results should be confirmed in a larger, pros-

pective study.
Conclusions
Measurements made from all four spectral estimators used in the study were in agree-

ment as to whether the means and standard deviations in three spectral parameters

were greater in paroxysmal or in persistent AF. Since the measurements were consis-

tent, implementation of several of these estimators for power spectral analysis should

be useful for verification of the findings. Since the most significant differences overall

were achieved using the NSE and NSH estimators, parameters measured from their

spectra will likely be the most helpful for detecting and discerning electrophysiologic

differences in the AF substrate. For all methods, to varying degrees of significance,

the DP parameter was greater and the DF higher in persistent AF, while the MP

was larger in paroxysmal AF, likely reflecting a greater uniformity in remodeling and

greater stability of the activation pattern in the arrhythmogenic substrate of persis-

tent AF patients.
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