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Abstract

Background: Efficacy and safety of various treatments using fractional laser or
radiofrequency depend, to a large extent, on precise movement of equipment head
across the patient’s skin. In addition, they both depend on uniform distribution of
emitted pulses throughout the treated skin area. The pulses should be closely
adjacent but they should not overlap. Pulse overlapping results in amplification of
irradiation dose and carries the danger of unwanted effects.

Methods: Images obtained in infrared mode (Flir SC5200 thermovision camera
equipped with photon detector) were entered into Matlab environment. Thermal
changes in the skin were forced by CO2RE laser. Proposed image analysis and
processing methods enable automatic recognition of CO2RE laser sites of action,
making possible to assess the correctness of performed cosmetic procedures.

Results: 80 images were acquired and analyzed. Regions of interest (ROI) for the
entire treatment field were determined automatically. In accordance with the
proposed algorithm, laser-irradiated Li areas (ROI) were determined for the treatment
area. On this basis, error values were calculated and expressed as percentage of area
not covered by any irradiation dose (δo) and as percentage area which received
double dose (δz). The respective values for the analyzed images were δo=17.87
±10.5% and δz=1.97±1.5%, respectively.
Conclusions: The presented method of verifying the correctness of performing
low-invasive esthetic medical (cosmetic) procedures has proved itself numerous
times in practice. Advantages of the method include: automatic determination of
coverage error values δo and δz, non-invasive, sterile and remote-controlled
thermovisual mode of measurements, and possibility of assessing dynamics of
patient’s skin temperature changes.

Keywords: Image processing, Esthetic medical procedures, Laser, Fully automatic
Background
Esthetic medicine market is among the most dynamically developing sectors of indus-

try across the world. Especially popular prove treatments that are low-invasive.

According to the American Society of Plastic Surgeons, in the USA alone 13.8 million

of low-invasive procedures were performed in 2011, at the estimated value of ca. USD

12.2 billion. Considering trends in population demographics in both developed and de-

veloping countries, the tendency of low-invasive esthetic medical procedures to grow
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in popularity will likely become more dynamic. Owing to the new developments in the

medical equipment market it has now become possible to obtain satisfactory results of

esthetic medicine procedures, together with a relatively low treatment invasiveness

which also means shorter recovery time. Such minimum invasiveness, modest intensity

of adverse side effects, coupled with satisfactory effects of treatment is possible, how-

ever, only after optimizing procedure parameters.

Action of fractional lasers causes focal ablation of epidermis, whereas radiofrequency-

based procedures result in local overheating of both epidermis and corium. At tissue

level these agents cause remodeling of collagen fibers and stimulate epidermal regener-

ation [1-7].

Energy of laser radiation or radiofrequency energy is delivered to patient’s skin in the

form of pulses which affect a definite tissue area. Efficacy and safety of treatment using

a fractional laser or radiofrequency depend, to a great extent, on precise movement of

the therapeutic equipment head across the patient’s skin [8]. In addition, they both de-

pend on uniform distribution of emitted pulses throughout the treated skin area. The

pulses should be closely adjacent but they should not overlap [8,9]. Pulse overlapping

results in dose amplification and carries the danger of undesired effects [7] and [10].

Known methods for monitoring the efficiency and safety of laser esthetic procedures

include optoacoustic [11,12] and optodynamic methods [13]. They are based on using

high-sensitivity cameras (detectors) that allow imaging fluorescence phenomena in real

time, as well as measuring fluorescence intensity while performing concomitant spec-

tral analysis. Use of these methods has its limitations due to, for example, speed of

image acquisition or impossibility of treating the patient in a totally uninvasive manner

with increased positioning distances.

In the presented study we aimed to verify the correctness of performing laser-mediated

esthetical medical procedures. This was achieved based on automatic calculation of the

degree of coverage of the treated area by CO2RE laser-sent pulses. The study was

performed using the proposed method of analyzing images obtained in infrared mode.
Materials

We analyzed thermovisual image sequences collected from 15 patients using a Flir

SC5200 thermal imaging camera equipped with photon detector. In total, 80 images were

analyzed (from patients’ right and left cheek, chin, forehead and nose). Thermal changes

in human skin were induced using CO2RE laser. All patients were adequately prepared

prior to the cosmetic procedure and thermovisual measurements. The error of ther-

movisual measurement method was minimized by taking into account 1) false estimation

of the object’s emissivity, 2) radiation originating from the surroundings and reflected

from the object, 3) atmospheric attenuation and scattering and own atmospheric emis-

sion, 4) changes in emission from camera optical components, 5) errors intrinsic to meth-

odology of adopted measurement course, 6) air current convection, 7) emotional state of

patient, 8) patient’s dress, 9) thermal conductivity of limited and diffuse heat sources, 10)

skin vascularization, 11) meals eaten by patient within preceding 24 hrs, 12) crossed radi-

ation, 13) patient’s movements prior to and during examination, 14) undisclosed diseases,

and 15) faults in the algorithm. The cited measurement errors can be easily diminished or

totally eliminated by assuring constant room temperature (no air movement due to drafts
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or air conditioning, solar irradiation, radiators, etc.) and securing time necessary to

acclimatize a patient in such room (typically half an hour). This is an essential require-

ment for the majority of thermovisual measurememts.

After minimizing errors due to these causes we carried out measurements according

to the methodology presented below.
Method
Infrared images generated by a thermal scanning camera (Flir SC5200) equipped with

photon detector were entered into Matlab environment. The camera has indium antimo-

nide (InSb) detector, with 3–5 μm spectral range, 320×256 pixel resolution and 30×30 μm

pixel pitch. Thermal changes in patient’s skin were induced by CO2RE laser (CO2 type –

10600 nm wave-length, pulsed laser beam emission mode, 4.5 J/cm2 energy density, 1–

150 mJ impulse energy, 16.7 kHz impulse frequency, 20–3000 μs impulse duration,

10 mm2 maximum scanned area, 120 μm or 150 μm dot size) [6,14-16].

Application of individual irradiation doses and, thus, induction of thermal changes,

was performed manually, by sequentially applying the equipment head to patient’s face.

The irradiation procedure was performed by an expert physician who attempted to

cover as much as feasible of the whole analyzed area [15]. Synchronization of laser trig-

gering and image acquisition had been programmed. Synchronization error due to op-

erating system delay, data transmission timing and number of stills per second did not

exceed 0.1 second. The thermal scanning equipment was positioned during the proced-

ure at ca. 30 cm from patient’s face.
Preprocessing

Input image L(m,n) (where m denotes rows and n denotes columns) at 320×256 pixels,

following an increase in resolution to M×N=480×640 pixels, was filtered using a median

filter with h mask dimensions Mh×Nh=3×3. Increase of image resolution was achieved

using the nearest neighbor method, avoiding thus new pixel values [17-19]. The generated

image LMED was subjected to processing aimed at detecting regions of interest (ROI).

Automatic ROI detection denotes a phase in the image analysis and processing, during

which assignment of skin area receiving irradiation dose takes place. This method should

work correctly in analyzing temperature changes in areas subjected to therapeutic proced-

ure. Due to close relationship between forcing of temperature change and time of skin

temperature reaction onset, this process was followed in more detail.

Thermal reaction of the skin is strongly related to the kind of forcing, the place of ra-

diation beam focusing in the skin, and the process of human body thermoregulation

(Figure 1). Inasmuch as radiation beam and surface area it hits can be controlled, the

thermoregulation process is an individual human feature. Accordingly, the process of de-

termining ROI had been preceded by assessing human skin reaction speed to set forcing.

Figure 2 shows speed of human skin reaction upon pulse forcing. The reaction differs at

various distances r from forcing axis center. The corresponding images (sequence) are

shown in Figure 3. Forcing was defined as single CO2RE laser pulse of 1000 μs duration

delivered at time t=0. Figure 3 shows first measurement after 1 second following forcing

and subsequent measurements at 1 second intervals. As seen from the discussed graph

the character of changes is typical for first-order inertia object. Steady state appears after a



Figure 1 Pictorial scheme of applying the forcing procedure and placement of thermovision
camera with respect to patient’s body (left) and corresponding thermovisual image (right). The
camera is placed 20 cm away from the patient’s skin (in this case from forehead). Squares reminiscent of
patient’s forehead areas is another dose of the laser given by an experienced operator. Energy of laser
radiation is delivered to patient’s skin in the form of pulses which affect a definite tissue area. Thermal
reaction of the skin is strongly related to the kind of forcing, the spot of radiation beam focus on the skin,
and the process of human body thermoregulation.
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few seconds, however, skin temperature remains elevated by 2.5°C with respect to

temperature before treatment. Before the procedure temperature of the involved skin area

was 33°C. In all examined patients this state of elevated temperature lasted for no less than

20 minutes. Areas of equipment head application are still visible within that time. They

are square areas Li, in agreement with array shape. Based on these experiments it was con-

cluded that for several minutes after procedure conclusion this shape is identical with the

area subjected to forcing. The analysis should thus be performed no later than a few mi-

nutes after the treatment and no sooner than 10 seconds following the last irradiation

dose. By fulfilling these criteria one minimizes a dynamic error linked to human thermo-

regulation process. Here, it is linked with changes of human skin response to forcing and,

more precisely, with duration of CO2RE laser treatment in successive spots (Figure 4).

By taking into account these limitations, detection of ROI in the treatment area is un-

usually simple, due to well visible temperature changes in thermovisual images. Auto-

matic detection of these regions (Li) uses morphological operations with the structural

element SE. Morphological opening operation LO causes globalization of image fea-

tures, in this case ROI.

LO ¼ maxSE minSE LMEDð Þð Þ ð1Þ

It is characterized by highest temperature within the image. Accordingly, the image
LU can be binarized by using a constant threshold pr that takes into account patient’s

skin temperature before the procedure:

LB m; nð Þ ¼ LU m; nð Þ > pr ð2Þ

where:

LU m; nð Þ ¼ LO m; nð Þ−LMED m; nð Þj j ð3Þ

Binarization (LB) may result also in other smaller areas. Removal of smaller, errone-
ously indicated areas was achieved by labeling procedure (marking of clusters). The



Figure 2 Patient’s skin temperature changes as function of time elapsed. Point forcing was applied (at
t=0) in the form of a CO2RE laser pulse. Subsequent data points represent average values from the forcing
area (2×2 pixels). Figure shows speed of human skin reaction upon pulse forcing – a single microbeam.
Laser irradiation creates cone shaped laser channels – the so-called microscopic ablation zones (MAZ).
MAZs are lined by a thin layer of coagulated tissue, together constituting the microscopic treatment zones
(MTZ). The reaction on laser radiation - MTZ dimensions - differs at various distances r from forcing
axis center.

Figure 3 Sequence of thermovisual images showing temperature changes at 1-sec intervals,
reflecting reaction to forcing (CO2RE laser pulse) in the 2x2 pixel area at the center of the image.
Time measured from initiated forcing ranged from 1 to 12 seconds. During ablative fractional resurfacing
treatment, microscopic pieces of skin are vaporized, and a thermal deposit occurs in the dermis. The
efficacy and safety of laser treatment is related to the density of superficial microtissue elimination and the
thermal deposit left in the dermis. The CO2 (CO2RE) laser has a high absorption coefficient for tissue water
that allows minimal residual thermal damage if the power density is significant enough to cause tissue
vaporization that outpaces the speed of thermal diffusion.
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Figure 4 Temperature distribution (patient’s right cheek) at 2 min after treatment conclusion. The
distribution demonstrates ±0.1°C differences. The areas are not distributed evenly which is the result of
imprecise performance of the laser procedure by equipment operator. Figure shows the case of successive
overlapping doses of radiation or the formation of untreated spaces. Heat propagation in skin can be
modeled with diffusion approximation. With increasing depth and area of thermal injury clinical response
increases. Overheating due to an excess number of passes or pulse overlapping can result in scarring.
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largest cluster (area) was then chosen. In all of the acquired thermovisual images this

area was indicated correctly. This area (ROI) and LR image created on its basis were

the subject of subsequent analysis.

Algorithm

The block structure of the created algorithm is shown in Figure 5. Input image LR com-

prising the measured area was analyzed using Canny edge analysis. As a result, edges of

the square areas (LC) of forcing were obtained. Assuming a uniform application of

CO2RE laser head to the patient’s body by expert equipment operator, Li areas do not

undergo rotation. Accordingly, the next stage of analysis involved detection of angle at

which all square areas Li are found on patient’s body (Figures 6 and 7). To do this, edge

images LC were subjected to operations of Radon transform LV (Figure 8):

LV n0; αð Þ ¼ ∑m0LC round n0cos αð Þ−m0sin αð Þð Þ; round n0sin αð Þ−m0cos αð Þð Þð Þ ð4Þ

where:

n0

m0

� �
¼ cos αð Þ sin αð Þ

−sin αð Þ cos αð Þ
� �

n
m

� �
ð5Þ

As a result, position of all areas Li rotated on patient’s skin by angle was equalized.
Radon transform can be replaced with Hough transform. At this stage, reconstruction of

particular square areas is not essential except for determining one parameter angle α*.

The dimensions and location of Li area is known; only α* angle is unknown. In extreme

cases, it is sufficient to determine the maximum from the sum of values for particular

rows of the revolving image of Lc edge. Position of Li areas is detected on LO image gener-

ated in this way. Detection of Li areas was carried out using watershed segmentation



Figure 5 Flow chart of the two-stage algorithm automatically recognizing ROI and Li areas. At the
first stage skin area affected by the treatment procedure is segmented (ROI). At the second stage, individual
Li areas are segmented and their position is approximated by a square area. In consequence, percentage
values of areas non-covered by laser treatment and areas with overlapping irradiation dose can
be calculated.

Figure 6 Lf fragment (input image) temperature changes at 60 s from treatment conclusion. Apex
values represent temperatures higher than those before treatment, while valleys show lower temperatures,
respectively. In order to avoid pulse stacking, it is important to know the structure of the beam of a typical
CO2 laser. Since the distribution of fluences within the laser beam is Gaussian, or bell-shaped, there is a
significant difference in ablative depths between the center and the edges of the beam. This may result
apparent differences in the distribution of heat on the surface of the skin.
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Figure 7 Intermediate results obtained using the algorithm that automatically recognizes ROI and
skin areas subjected to laser intervention. Right column shows input images L while left column shows
images that represent the difference of input image L and its morphological closing. The left column is
thus an intermediate result. At subsequent steps of the algorithm visible clear ROI areas are approximated
by square areas resulting from forcing shape. Even at this stage of analysis inaccurate covering of skin
surface by laser pulses is seen. Pulse overlapping or stacking may lead to heat accumulation.
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method. Segmentation is implemented on an image subjected to elimination of constant

temperature component. Here, binarization with a set threshold did not yield satisfactory

results. Figure 9 shows δo error value changes as a function of binarization threshold pr
chosen [20]. As seen from the graph, the percentage value of irradiation-free areas is al-

most linearly dependent on binarization threshold [20-23]. It is not thus possible to state

unequivocally which among the chosen binarization thresholds is correct. Following initial

segmentation, each area has an assigned center of gravity and is approximated by a rect-

angular area. Some examples of the results obtained are shown in Figure 10. The process

thus consists of separately recognizing each Li area [24], [25]. As authors’ goal was to

evaluate the correctness of the examined procedures, only percentage values of surface

areas not receiving treatment and areas with overlapping treatment were calculated. For

gap areas lying in between Li areas percentage values of δo error were calculated as a total

number of pixels in LR areas subjected to forcing, with respect to the total number of

pixels in uncovered areas (Figure 11):

δO ¼ ∑m∑nLR m; nð Þ−∑i∑m∑nLi m; nð Þ−∑m∑nLZ m; nð Þ
∑m∑nLR m; nð Þ ⋅100% ð6Þ

where Lz is a matrix containing “1” in places where Li areas superimpose and ”0” in the

remaining places.

δz error was defined as a percentage value of overlapping areas with respect to the

whole LR area (Figure 11):



Figure 8 Final results obtained using the algorithm automatically analyzing unevenness of
subsequent irradiations during procedure performance. Shown are: LR image with marked ROI (upper
left), Lc image with edges determined by Canny method (upper right) and the result of Radon transform LV
(n’,α) obtained for Lc image (center below).

Figure 9 Changes in δo error values as a function of chosen binarization threshold pr.. As can be
seen, percentage value of free areas is almost linearly dependent on binarization threshold. One cannot
conclude unequivocally which binarization threshold will be correct.
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Figure 10 The result of applying the algorithm. It automatically recognizes areas subjected to forcing
and marks them in red. This makes possible to calculate errors due to the presence of irradiation-
overlapping, as well as irradiation-free areas. The evaluation of these areas is critical from a clinical point of
view; stacking or overlapping of pulses, and/or excessive number of laser passes all may result in excessive
tissue damage. Repeated CO2 laser passes will dehydrate and coagulate dermis, which subsequently limits
the penetration of laser energy. Because a large part of the heat in subsequent passes or overlapping
pulses is not actually used to ablate the skin, the thermal loading of tissue increases.
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δZ ¼ ∑m∑nLZ m; nð Þ
∑m∑nLZ m; nð Þ ⋅100% ð7Þ

Interpretation of errors δo and δz defined in this way is straightforward. It defines cor-
rectness of the performed procedure (forcing). Increased value of δo means that the op-

erator did not drive the laser head uniformly, leaving untreated areas. This is not

harmful to the patient but requires additional corrective treatment. On the other hand,

increased values of δz error indicate harm, as patient receives in these areas a double

dose of irradiation.

Practical use of this algorithm is demonstrated in the next section.

Results
ROI for the whole treatment region were determined automatically for all of the 80 an-

alyzed images. Next, in accordance with the algorithm given, values of δo and δz errors

were calculated. The obtained results are shown in Figure 12. For low values of δo the

graph confirms the correlation between values of δo and δz errors. This means that the

operator attempting to fill out the whole treated area causes overlapping of irradiation

doses. Mean and standard deviation of the mean for individual errors is δo=17.87±

10.5% and δz=1.97±1.5%. The error committed by an expert operator pertains primarily



Figure 11 Image showing irradiation-free and irradiation-overlapping areas. These images form the
basis for calculating δo and δz error values. The sum of pixel values seen in the images is calculated with
respect to the total sum of pixels in the whole analyzed ROI. Imaging irradiation-free and irradiation-
overlapping areas allows to recognize early the critical areas and treat them promptly to avoid permanent
sequelae. Although there are individual differences with respect to propensity to side effects, most adverse
reactions seen after laser resurfacing appear to be a result of improper treatment technique.
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to omission of small areas (large value of δo error). Errors resulting from overlapping of

adjacent Li areas are small, with single-digit percentage values.

Determination of δo and δz errors is affected also by other elements specific for the algo-

rithm itself or/and for procedure methodology. These elements include: 1) error due to

camera placement with respect to patient’s skin, 2) error due to non-perpendicular place-

ment of laser head with respect to patient’s skin during the procedure of applying
Figure 12 Changes in δo and δz error values for successive cases analyzed. It can be seen that
substantially more errors are due to incomplete laser treatment area coverage than to
overlapping coverage.



Koprowski et al. BioMedical Engineering OnLine 2013, 12:51 Page 12 of 14
http://www.biomedical-engineering-online.com/content/12/1/51
irradiation dose, 3) local disturbances in skin thermoregulation, 4) presence of perspir-

ation, 5) interference such as, e. g., patient’s hair falling accidentally onto forehead during

the procedure.

In practice, the last two elements predominate: one is caused by skin reaction to

temperature and the other by improperly secured hair.

The obtained results as well as δo and δz error values are affected by personal habits of

the operator (technician). It has been noticed that these error values strongly depend on in-

dividual habits of the technician and, only to a lesser degree, on the shape of facial area

subjected to treatment. Differences in δo and δz error values for two technicians may vary

in a broad range. Due to this reason an automated system of laser triggering has been pro-

posed. The system is based on tracking in visible light the skin areas subjected to treatment

(a CCD camera is placed in the laser head). Treated skin areas are memorized using visible

light. Following manual relocation (in any direction) of the laser head by a fixed distance,

the laser is automatically triggered. Such a system allows minimizing values of δo and δz er-

rors. In addition, these errors stay independent of the individual habits of an operator. The

system is patent-protected [26] and shall be described in detail in future papers.
Comparison of results with other methods

Contemporary generation of lasers do not offer yet a qualitative analysis of procedures

performed using them. It is assumed that an expert laser operator performs the cosmetic

procedure correctly, without causing overlapping of irradiation doses. Various practical

methods allowing laser beam control and visible image analysis have been reported to

date, especially in patent claim literature [27]. Also known have been descriptions of

visualization methods using visible light and accomplished by various types of cameras

placed, e. g., in laser head [28]. None of these solutions offers, however, analysis of the cor-

rectness of procedures performed with laser equipment. Neither temperature fields nor

their degree of homogeneity have been assessed. In only a few reports temperature fields

and their distribution within the skin were analyzed e. g. [29-31]. In the model proposed

by Frahm et al. [29], model simulations of superficial temperature correlated with the

measured skin surface temperature (ρ>0.90, p<0.001). Reported were studies comparing

three Infrared Thermal Detection Systems. In this case correlations between ITDS and

oral temperatures were similar for OptoTherm (ρ=0.43) and FLIR (ρ=0.42), but signifi-

cantly lower for Wahl (ρ=0.14, p<0.001). Among numerous references pertaining to appli-

cation of thermovision in medicine only a few e. g. [30-38] have dealt with quantitative

(not qualitative) measurements. As an example, Bagavathiappan et al. [33] reported a

temperature difference of 0.7–1°C as statistically significant. Based on this one can con-

clude that thermovisual analysis of human skin does require taking into account numer-

ous factors which interfere with measurement. In the case of the algorithm presented

herein only a minute skin fragment is analyzed. An expert laser operator has full control

over this fragment, and is capable of minimizing the effect of additional factors to a negli-

gible level.
Conclusions
The presented method of verifying the correctness of performing laser-mediated esthetic

medical procedures has repeatedly proven itself in practice. Its advantages include: 1)



Koprowski et al. BioMedical Engineering OnLine 2013, 12:51 Page 13 of 14
http://www.biomedical-engineering-online.com/content/12/1/51
automatic determination of δo and δz error values, 2) non-invasive sterile and remote-

controlled thermovisual measurements, 3) possibility of learning how to assess procedure

correctness through training, 4) assessment of dynamics of patient’s skin temperature

changes, and 5) assessment of correct choice of irradiation dose, treatment length and in-

dividual equipment setting.

The described method has been currently used in esthetic medical procedures

performed at the Silesian Medical College in Katowice, Poland.
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