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Abstract

Introduction: This paper presents the problem of automatic measurement of the
iridocorneal angle in tomographic images of the anterior segment of the eye. It
includes the results of the comparison of well-known methods for measuring the
iridocorneal angle with new methods, proposed in this paper. All these methods
concern tomographic image analysis and processing.

Material and method: In total, approximately 100’000 tomographic images (from
about 6’000 patients) were analysed. They were obtained using two devices: SOCT
Copernicus (Optopol Tech. SA, Zawiercie, Poland) and Visante OCT (Carl Zeiss
Meditec, Inc, Dublin, California, USA). The patients, aged 12 to 78 years with varying
degrees of the iridocorneal angle pathology, were from the region of Silesia, Poland.
The images were in DICOM or RAW formats and analysed in the software developed
by the authors for the purposes of this study.

Results: The results indicate that the measurement method proposed by the
authors, which is based on the calculation of the minimum distance between the iris
and the cornea in the adopted area, is the most accurate. For this method sensitivity
was 0.88, specificity 0.89 and the area under the Receiver Operating Characteristic
curve (AUC) was 0.88. The other known methods for measuring the iridocorneal
angle gave worse results, that is, for example, for the measurement of the distance
between the iris and the cornea AUC = 0.87, sensitivity = 0.86 and specificity = 0.71.
For another well-known method of measuring the iridocorneal angle AUC = 0.77,
sensitivity = 0.82 and specificity = 0.61.

Conclusions: The study proved that the proposed method of measuring the
minimum distance between the iris and the cornea within the adopted area is the
most effective in the classification of the iridocorneal angle in patients with a high
degree of pathology of all the compared measurement methods based on
tomographic images. However, it requires fully automated measurement.

Keywords: Eye, Image processing, Iridocorneal angle, OCT

Introduction
This paper compares well-known methods for the iridocorneal angle analysis in tomo-

graphic images of the anterior segment of the eye with the new ones, suggested by the

authors. The iridocorneal angle is the structure responsible for the outflow of aqueous

humor from the anterior chamber of the eye. Normal intraocular pressure is determined

by the production of aqueous humor by the ciliary epithelium and the rate of humor
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outflow via two pathways – the trabecular meshwork and the uveoscleral pathway [1,2].

Anatomical anomalies such as the angle narrowing or closure result in impeded outflow

and increased intraocular pressure.

The iridocorneal angle is situated on the circumference of the anterior chamber be-

tween the sides of the cornea and sclera and the base of the iris and the anterior sur-

face of the ciliary body. Currently, a primary diagnostic tool and technique that enables

the analysis of the angle structures is gonioscopy which uses contact gonio lenses [3].

The angle is also studied with OCT devices and the technique is called automatic

gonioscopy. The main advantage of this method is its non-invasiveness, whereas the

advantage of classical gonioscopy is the ability to visualize pathological structures, such

as neovascularization or hyperpigmentation of the weave of the trabecular meshwork

[4]. The assessment of the iridocorneal angle using OCT Visante involves morpho-

logical assessment and a morphometric analysis of the angle parameters. Morphometric

measurements can be carried out using the measuring tool "caliper" included in Visante

OCT commercial software. The tool is intended to assist manual operation – Figure 1.

An operator typically indicates a point on the scleral spur in a OCT image (marked

with a white circle in Figure 1) whereas a device adjusts the position of the other points

(marked with red circles – in Figure 1). In order to perform these morphometric mea-

surements, it is necessary to manually locate the scleral spur, which is a landmark for

determining morphometric measurements, in the scan "ASS". In practice, it often hap-

pens that the scleral spur is not visible. According to the results given in paper [5], such

a situation occurs in approximately 20% of cases. The known methods TIA, AOD 500,

AOD 750, TISA 500, TISA 750 can be defined on the basis of these morphometric mea-

surements – Figure 2 [6] and Table 1.

These methods are described in detail in papers [1-3,7]. The values "500" and "750"

refer to the distance, expressed in microns, from the scleral spur. As mentioned above,

on the basis of the scleral spur location point indicated by an operator, the other char-

acteristic points are drawn automatically. They are necessary to perform calculations

for the presented methods, namely TIA, TISA and AOD. Undoubtedly, this semi-

automatic method facilitates operator's work but still it is not done fully automatically.

Fully automatic measurement was suggested by the authors in 2011 [7]. It involves the

use of information about iridocorneal contours. Each iris contour point is combined
Figure 1 Tomographic image of the anterior segment of the eye and examples of commercial
software operation provided with the Visante OCT device. In the illustrated case, an operator indicates
one point for the scleral spur position (highlighted with a white circle) and the machine adjusts its position
and draws the location of consecutive points marked with red circles. The results for the analysed case are
AOD = 393 μm, TISA = 0.152 mm2, TIA = 38.2°.



Figure 2 Methods of measuring the iridocorneal angle. a) AOD 500 (Angel Opening Distance) involves
measuring a distance between a point of the cornea which is 500 μm away from the scleral spur and the
opposite point of the iris. b) TIA (Trabecular-Iris Angle) involves a direct measurement of the angle. c) TISA
500 (Trabecular-Iris Space Area) involves measuring an area covering 500 μm located in the area bounded
by the cornea and the iris.
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with a suitable corneal contour point. A division of contours is performed based on the

point of the greatest curvature (point marked in black, the starting point of the coord-

inate system – Figure 3). In this way, a sequence of measurements at various distances

from the apex of the measured angle is obtained – the chart shown in Figure 3. This

method, referred to as AOS (Angle Opening Sequence), ensures obtaining much more

information on the iridocorneal angle when compared to AOD, TIA and TISA. The

varying degree of the iridocorneal angle pathology visible in Figure 4 (especially narrow

or closed iridocorneal angle), which is difficult to measure with conventional methods

such as TIA, TISA and AOD, is successfully and reliably evaluated using AOS [8]. It is

apparent from the examples shown in Figure 4 that a difficulty in a reliable assessment

of the iridocorneal angle with the AOD, TIA and TISA methods lies primarily in a large

extent of pathology – distorted sides of the angle, especially of the iris angle. Therefore,

in pathological conditions, measurement results of TISA and AOD are strictly

dependent on measurement locations. Slightly less sensitive to this type of pathology is

the TISA method. However, its practical application is limited due to the area unit

(μm2) which is less intuitive and difficult to quickly compare with the other methods,

TIA and AOD. In practice, the described methods for measuring the iridocorneal angle,

namely TIA, TISA and AOD, have a number of inconsistencies and irregularities in the

interpretation of results. As a consequence, results are not repeatable, reliable and diffi-

cult to verify and compare with the model and other doctors’ results. The situation be-

comes critical when the progress of treatment or the disease progression of a patient

diagnosed by different doctors in different medical centres equipped with different

types of OCT devices needs to be assessed.

Archiving results is an important issue in practical measurements. In the case of TIA,

TISA and AOD, each measurement is connected with archiving one scalar value, e.g.

the angle value measured with TIA with a typical accuracy of one decimal place. In the
Table 1 Known methods for measuring the iridocorneal angle and their definitions

Method symbol Method name Definition

AOD Angle Opening Distance (Figure 2a) involves measuring a distance between a point
of the cornea which is 500 μm away from the scleral spur
and the opposite point of the iris

TIA Trabecular-Iris Angle (Figure 2b) involves a direct measurement of the angle

TISA Trabecular-Iris Space Area (Figure 2c) involves measuring an area covering 500 μm
located in the area bounded by the cornea and the iris



Figure 3 Measuring principle of the iridocorneal angle with AOS (Angel Opening Sequence)
suggested by the authors in 2011. Each iris contour point (in red) is connected to a suitable corneal
contour point (in yellow). A division into the appropriate contour is performed based on the point in the
largest curvature (shown in black). In this way, a sequence of measurements at various distances from the
apex of the measured angle is obtained.

Koprowski et al. BioMedical Engineering OnLine 2013, 12:40 Page 4 of 16
http://www.biomedical-engineering-online.com/content/12/1/40
case of AOS, a data vector of successive measurements of iridocorneal contour distances

is archived. In paper [7] in 2011, the authors presented a new way of recording the results

obtained with the AOS method, which included the alphabet shown in Table 2.

The alphabet has been adopted in clinical practice. However, its practical application

is somewhat troublesome due to more complicated recording in comparison to
Figure 4 Various degrees of the iridocorneal angle pathology with marked measurement points for
AOS. The presented cases a), b) and c) are not correctly measured with TIA, TISA and AOD. This is due to
both a visible pathology (a variable iris shape) as well as the definition of TIA, TISA and AOD.



Table 2 Alphabet for the iridocorneal angle description proposed by the authors in 2011

Symbols Function

/ increasing distance for successive values on the axis 0x (Figure 3)

^ local minimum

v local maximum

_ constant distance value for increasing values of 0x

Numerical parameters

angular value,

maximum, minimum or fixed distance for specific 0x

range of values on the axis 0x in which a given situation occurs
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conventional, previously known, methods (TIA, TISA, AOD). As a result, medical errors

are more likely due to improper recording. Therefore, the authors suggested a new

method, modified in relation to AOS, for measuring the iridocorneal angle, namely AOM

(Angel Opening Minimum) which is described below.
Material
In the study, about 100’000 tomographic images (from about 6’000 patients) were ex-

amined. The images were acquired using the following devices: SOCT Copernicus

(Optopol Tech. SA, Zawiercie, Poland) and Visante OCT (Carl Zeiss Meditec, Inc,

Dublin, California, USA). The patients, aged 12 to 78 years with varying degrees of the

iridocorneal angle pathology, were from the region of Silesia, Poland. The obtained im-

ages were in DICOM or RAW formats with a resolution of 256 × 1024 pixels, within a

measuring range of 8 mm × 16 mm, which gives 31.3 μm/pixel. The image analysis was

carried out in a Matlab software package with Image and Signal Processing toolboxes

and the code was optimized in the C programming language.
AOM method

The AOM (Angle Opening Minimum) method involves determining a minimum dis-

tance, which is one scalar value, between the contours of the iris and cornea. To be

more exact, it is the distance between different points of the cornea and the nearest

point of the iris. The measured area of the cornea covers a range of 500 μm or 750 μm

starting from the scleral spur. Details on the principle of the AOM method of measure-

ment are shown in Figure 5a. Figure 5b, on the other hand, shows an opposite situ-

ation, where a minimum distance between various points of the iris and the nearest

point of the cornea is calculated – the AOM2 method. The AOM method is based on a

sequence of calculations of the minimum angle values for individual pixels of the cornea

edge from all the pixels of the iris edge (or the other way round in AOM2 – Figure 5).

Measurements can be carried out in the entire range for each of the contour points of the

iris or cornea (as in Figure 5c and 5d) but only the contour points which are realized in

the range of 500 μm of the corneal contour are relevant. This narrowing of the measure-

ment range usually takes place in the last stage of calculations.

The obtained results differ depending on the measurement method (AOS, AOM or

AOM2 – Table 3). Examples of a sequence of distance measurements are shown in

Figure 6. The graph shows changes in values of the angle opening for successive pixels of



Figure 5 The conception of AOM (Angle Opening Minimum) and AOM2methods and the obtained
results. a) shows how the shortest distance between all the points of the cornea and one of the sample points
of the iris is chosen in the AOM method. The shortest distance for both variants for one analysed pixel is
highlighted in bold arrow. b) shows how the shortest distance between all the points of the iris and one of the
sample points of the cornea is chosen in the AOM2 method. c) and d) show practically obtained results for all
pixels in the implementation of the two variants: the AOM method shown in a) and the AOM2 method shown
in b). In order to better visualize the results, the analysis was not limited to the appropriate range of 500 μm.
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the contour of the cornea or iris, respectively, for the images in Figure 5c and 5d. The lar-

gest visible difference is between the AOM method and the other methods, namely

AOM2 and AOS. The difference is due to different measurement methods and amounts

to approximately 10 pixels (10 pixels * 31.3 μm/pixel = 313 μm) in the range of 500 μm

which is marked in yellow (Figure 6). In practice, due to a greatly variable shape of the

contour of the iris in comparison with the contour of the cornea, the AOM method pro-

duces underestimated measurement values. However, they are more reliable when com-

pared to the AOS or AOM2 methods. They enable to take into account the iridocorneal

angle pathology to a greater extent. Such situations concern the narrowing of the

iridocorneal angle in the area outside the range of 500 μm when accurate (consistent with

the definition) calculations with the methods TISA, TIA and AOD do not produce satisfac-

tory results.

The result of the measurement of the iridocorneal angle with the AOM method is

therefore a minimum distance between the iris and the cornea measured in the area of
Table 3 Methods for measuring the iridocorneal angle proposed by the authors and
their definitions

Method symbol Method name Definition

AOS Angle Opening Sequence (Figure 3) each iris contour point is combined with a suitable
corneal contour point

AOM Angle Opening Minimum (Figure 5a) shortest distance between all the points of the
cornea and selected range of the iris

AOM2 Angle Opening Minimum 2 (Figure 5b) shortest distance between all the points of the
iris and selected range of the cornea



Figure 6 Graph of changes in values of the angle opening for successive pixels of the contour of the
cornea or iris, respectively (depending on the measurement method) shown in Figure 5 c) and d). The
graph shows the biggest difference between the AOM method and the other methods (AOM2 and AOS). Visible
differences are due to different measurement methods described in the paper. The area highlighted in yellow
includes the range of 500 μm measured from the scleral spur (16 pixels ⋅ 31.3 μm/pixel ≅ 500 μm).

Koprowski et al. BioMedical Engineering OnLine 2013, 12:40 Page 7 of 16
http://www.biomedical-engineering-online.com/content/12/1/40
500 μm starting from the scleral spur. The above mentioned range of 500 μm of the

corneal contour (16 pixels fall into this range for the analysed image resolution) and all

the pixels in the contour of the iris are taken into account in the measurements.
Implementation of the AOM method

The AOM method requires full automation of image analysis. This automation enables

to detect the cornea and iris edges and then perform adequate calculations of the

minima (according to the methodology of AOM described above). The image analysis

algorithm, in particular, should include the following elements [9-12] shown in Figure 7.

The need to use a profiled algorithm in this case is connected with inadequate results

obtained with other known algorithms for detecting lines and/or areas in the image.

� Hough’s transform [7] enables to detect lines in images of a pre-selected shape.

However, the results in the case of large inter-individual variability are not satisfactory.

� wavelet analysis method [13] gives incorrect results when objects are hard to see

and the lines overlap – such situations are quite common in the case of the

analysed images,

� analysis methods of elongated objects cannot be applied here due to a possibility of

large changes in the size of both the object itself and its thickness and a possibility

of its division into multiple parts (e.g. the iris or cornea).

� object recognition methods in cases of large pathology can give unpredictable results.

� other known methods, for example, texture analysis [14], also do not produce

satisfactory results.

Based on this and the literature review [8,15-18] and given the medical evidence

presented below, a profiled algorithm for the analysis and processing of images of the

front part of the eye was suggested.



Figure 7 Block diagram of the tomographic image analysis algorithm in the AOM method. The
presented algorithm enables fully automatic measurement of the iridocorneal angle. The obtained result is in
the form of one scalar value which is the minimum distance between the selected ranges of the iris and
cornea. The presented algorithm is versatile and provides correct results for any tomographic images of the eye.
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In the implemented algorithm, an input image with the resolution of 256 × 1024

pixels, mentioned in the introduction, is entered into the developed software in

DICOM format. Then filtration with a median filter (with a 3 × 3 pixel mask) is carried

out followed by the analysis of each column. As a result of this analysis, a binarization

threshold is calculated for each column (Otsu method [19]). The created binary image

is shown in Figure 8b). In the next stage, the method of filling the holes is applied in
Figure 8 Some stages of processing in the calculation of the iridocorneal angle with the AOM method:
a) the sclera and cornea boundaries (in green and red) set automatically, b) approximation of the
automatically set sclera boundary – in blue and yellow, c) the iridocorneal angle set automatically with
the AOM method and its enlargement d). According to the definition, the iridocorneal angle calculated with
the proposed AOM method is a minimum distance calculated between the cornea pixels (the area of 500 μm)
and all the pixels of the iris boundary. It is marked with a bold yellow line – d).
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order to eliminate minor inclusions or detachment. In this pre-prepared image, the

sclera boundaries are determined followed by approximation of the boundaries with a

polynomial of degree 4 (Figure 8b). After the analyses of the iris, ciliary appendages

and scleral spur, there follows the analysis of iris termination points which uses informa-

tion from the inside of the sclera boundary (Figure 8c). At this stage, the iridocorneal

angle can be determined using the TIA, TISA and AOD methods. The value of the

iridocorneal angle measured with the AOM method (or AOM2) requires a calculation of

Euclidean distance for each possible pair of points (iris-cornea). The result is a minimum

distance between them calculated in the range of 500 μm, highlighted in Figure 8d in

bold yellow.

This algorithm correctly identifies and calculates the iridocorneal angle not only with

the AOM method but also with the other methods, namely AOS, AOM2 or TIA, TISA

and AOD at 500 and 750 μm from the scleral spur. All the algorithm parameters are

calculated automatically. The algorithm automatically adjusts to the type and brightness

of a derived image (pre-processing, filtering with a median filter with a 5 × 5 pixel mask

or normalization). During the programme installation, an operator only gives a distance

attributable to the pixel (strictly dependent on the type of the used tomographic cam-

era) if it is not specified in the DICOM header. This information is necessary to cali-

brate the measured values of the iridocorneal angle (in the analysed images obtained

with Visante OCT it is 31.3 μm/pixel).

Accuracy of the measurements and the comparison of the results obtained with the

above methods (AOD, TIA, TISA, AOS, AOM and AOM2) are presented below.

Comparison of AOD, TIA, TISA, AOS, AOM and AOM2 methods in practice

A practical application of the measurement methods, namely AOD, TIA, TISA, AOS,

AOM and AOM2, requires designation of the contours or a single point of the cornea

and iris. In addition, it is necessary to determine the scleral spur location. The currently

available software for OCT devices does not enable the mentioned fully automatic

measurement. Calculations are carried out either manually or semi-automatically. For

this reason, the results are not repeatable – they depend on an individual choice of the

scleral spur (iridocorneal angle) location by an operator. The presented algorithm en-

ables fully automatic measurement with the above mentioned methods. Therefore, their

comparison is possible.

Of all the mentioned methods (AOD, TIA, TISA, AOS, AOM and AOM2), only AOD,

TIA, AOM2 and AOM are further taken into account. The TISA method is rarely used

in practice due to the unit of the iridocorneal angle, that is, μm2 (mm2). The AOS

method is also difficult to compare with other results because of a difficulty in com-

parison of an AOS data sequence (or the mentioned alphabet) with scalar values

obtained as results from other methods.

The other methods, AOD, TIA, AOM2 and AOM, can be compared using one of two

ways. One of them uses a model (an artificial image) with a known and measured

iridocorneal angle and the other one compares results with those obtained by ophthal-

mology experts. The first way, which will not be used here, is to use an artificial image

containing known values of the iridocorneal angle realized with resolution error preci-

sion at the time of creating the image. The other way is to use the results obtained

from an assessment performed by an ophthalmology expert or from other more
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accurate measurement methods (if they exist). Both ways have their advantages and dis-

advantages. The disadvantage of the first method is a difficulty in close conjunction of

artificial images with real images which reflect a full range of variability. Its advantage

is an ability to quickly compare the results and no need for the presence of an ophthal-

mologist. In the other method, results are obtained from a real image, but it requires a

tedious procedure that involves manual marking (by an operator) of individual values

of AOD, TIA, AOM2 and AOM. This method is also highly dependent on the observer’s

subjective judgment which is mainly related to the determination of significance of de-

tails in an image.

As a result, the comparison of the methods AOD, TIA, AOM2 and AOM was carried

out in two stages.

Comparison with the results obtained by an expert

In the first stage, an ophthalmologist manually marked the iridocorneal angle for the

first 100 images with the AOD, TIA, AOM2 and AOM methods. In this case, a mea-

surement error δq was calculated. It was defined as:

δq ¼ wM−wP

wP
:100% ð1Þ

where:

wM – the measured value,

wP – a correct value measured with more accurate methods (e.g. manually) or an

average value of a series of measurements,

q – an index indicating the measurement method: AOD, TIA, AOM2 or AOM.

The obtained values of δq are not greater than 5% for the AOD and TIA methods

(δAOD = 4.5%, δTIA = 4.8%) and for AOM and AOM2, they are δAOM = 7.2% and δAOM2 =

9%, respectively. Therefore, it seems that the presented AOM and AOM2 methods are

worse than the known methods. The reason for larger error values for these methods is

the principle of measurement. It is much harder to manually select iris contour points

located closest to the analysed corneal contour pixel (Figure 5) and then determine, of

all the points, which of them is the smallest. Thus, it is necessary to compare the

methods in terms of reliability of the iridocorneal angle calculation and detection of

pathological cases. This methodology is described below.

Comparison with the results obtained with other known methods

In the second stage, the comparison of the AOD, TIA, AOM and AOM2 methods for

all the obtained images (approximately 100’000) was performed by standardization of

the measurement unit to relative values. This comparison was related to the effective-

ness of detection of cases with normal and narrow iridocorneal angle, including patho-

logical conditions. In order to compare the results, the following typical measures were

used: accuracy ACC=(TP+TN)/(TP+TN+FP+FN), specificity SPC=TN/(FP+TN) and

sensitivity TPR=TP/(TP+FN) where: TP – true positive, TN – true negative, FN – false

negative and FP – false positive. These measures were used to evaluate the AOD, TIA,

AOM2 and AOM methods.

All cases where the iris or cornea was not visible were pre-eliminated. Such situations

occurred when OCT imaging was not focused on calculating the iridocorneal angle.
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After removing such cases, 83'574 images remained for further analysis. It was carried

out in the steps presented below.
Removal of all atypical cases for which the algorithm designated too short or too long

iris edge

Atypical cases are those for which the iris edge designation contains less than 16 pixels

(500 μm, Figure 9a – in blue) or more than 70 to 80 pixels, which is equivalent to

2.5 mm (Figure 9a – in yellow). These limitations are natural and result from the

presented methodology of measurement of AOD, TIA, AOM2 and AOM. The distance

from the scleral spur boundary used in the measurement is 500 μm, which corresponds

to a minimum of 16 pixels. This limitation (16 pixels) arises only from the need to

compare these methods, and smaller values (<16) do not indicate errors in the algo-

rithm operation. There are 48'022 images of this type whose length of the iris contour

is below 16 pixels. This represents 57.5% of the analysed images. Values above approxi-

mately 70 to 80 pixels of the iris edge length do not occur in medicine; therefore, they

indicate an error in the algorithm operation. As is apparent from the graph showing

the iris contour length for individual images, a number of such cases (exceeding 70

pixels) is relatively low (3'458, which is 4.1% of all cases). In total, 32’094 images

remained for further analysis after applying these two limitations.
Comparison of the results obtained for the proposed AOM method and the AOD method

For this purpose, ΔAOD,AOM was calculated as a difference between AOD and AOM.

The results are shown in Figure 9b. The graph (Figure 9b) was divided in two parts.

The changes in the value of ΔAOD,AOM highlighted in green when compared to the

AOM and AOD methods indicate undervaluation of the iridocorneal angle measure-

ment for the AOM method. This situation is consistent with the definition according to

which in the case of the AOM method, it is the smallest distance between the corre-

sponding points in the iris and cornea that is sought. The part of the graph marked in

yellow (Figure 9b) covers a range of pathological cases for which a direct comparison
Figure 9 Graph of changes in the iris length a) and the graph of changes in the value of ΔAOD,AOM

b) for the sorted (from the smallest value) images. The area marked in blue in the graph a) covers the
properly set iris contours but due to their length (<16 pixels, 500 μm) they cannot be used for further
analysis. The acceptable values of the iris length are highlighted in green and the incorrectly designated iris
contours in yellow. On the graph b), properly set values of the difference ΔAOD,AOM are marked in green and
the algorithm errors are in yellow.
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of AOM and AOD was not possible (incorrect location of the area of analysis for

the AOD method or incorrect indication of a minimum in the AOM method). The

graph of ΔAOD,AOM as a function of a sequence of images was divided in two parts

(Figure 9b):

� with differences between AOD and AOM arising from their definition (in practice

to about 22 pixels) and,

� with differences between AOD and AOM caused by the algorithm errors.

The division between the two areas (the threshold value of 22 pixels) was verified in

practice and included a manual analysis of borderline cases. This value also means that

in carrying out a calculation for the afore mentioned group of images, the difference in

the results for AOD and AOM methods will not be greater than 22 pixels for the most

obtuse iridocorneal angle.

As it turns out, in practice, the AOM method enables a proper evaluation of specific

cases of the iridocorneal angle. These examples are shown in Figure 10. Thus it is pos-

sible to obtain correct classification of images with a proper, open iridocorneal angle

from pathological cases with the risk of iridocorneal angle closure.
Figure 10 Sample image fragments of the iridocorneal angle for which the known AOD, TIA and
TISA methods give incorrect results. For these examples, the iridocorneal angle is determined properly
with AOM and AOD methods. The results obtained with the AOM method are marked with a bold yellow
line, and the results obtained for the AOD method are in red. The other coloured lines refer to the cornea
and iris contours (yellow, magenta), and sides of the angle of the TIA method (sides are shown as a linear
interpolation of the iris and cornea contours) are marked in white. The results obtained for the examples
are: a) AOD = 12.9, AOM = 7.8, TIA = 29.7 b) AOD = 15.6, AOM= 9.2, TIA= 27.1 c) AOD = 22.6, AOM = 6.5, TIA = 29
d) AOD = 26, AOM = 16, TIA = 24.5 e) AOD = 21.6, AOM = 15.9, TIA = 22.6 f) AOD = 30.2, AOM = 15.2, TIA= 29.8
(AOM and AOD values are given in pixels, TIA values in degrees).



Koprowski et al. BioMedical Engineering OnLine 2013, 12:40 Page 13 of 16
http://www.biomedical-engineering-online.com/content/12/1/40
Comparison of quality of classification for the methods AOM, TIA and AOD

This comparison was made for a classification of healthy subjects and patients with the

risk of iridocorneal angle closure (TIA < 15°, AOD < 190μm, TISA < 0.11 mm2 [5,20]).

Model values of the classification (due to the size of the group) were determined as the

average of measurements performed with the AOS and TISA methods; additionally, in

some cases, as the average of the results corrected by an expert. The division gave

20'536 cases with a correct iridocorneal angle and 2'454 cases with an incorrect

narrowed angle. The AOM, TIA and AOD methods were compared for which the ROC

(Receiver Operating Characteristic) curves shown in Figure 11 were obtained. For each

method, the cut-off threshold was changed in the range from 0 to 180 by every 1, cov-

ering both the range of angular values (in the case of TIA) and the range of distance

changes given in pixels (AOM and AOD). For the TIA method, optimal values were

obtained for the threshold TIA = 18°, i.e.: TPR = 0.82 and SPC = 0.61. These are the

worst results obtained for the compared methods. In this case, AUC is 0.77. The other

compared method is AOD. In the case of this method, an optimal cut-off threshold is

AOD = 8 pixels (about 240 μm). With this threshold value, TPR = 0.86 and SPC = 0.71

and AUC is 0.87. The last compared method is the new AOM method. It gave the best

results for a threshold cut-off AOM = 6 pixels (about 180 μm) where TPR = 0.88, SPC =

0.89 and AUC = 0.88.

The adopted measurement definitions result from differences between the results.

Distance point measurements are the main reason for errors in AOD. This method is

very sensitive to noise and artefacts in images which can be observed especially in cases

of high degrees of pathology. For the TIA method the situation is similar. A fixed point

position of the angle measurement is very sensitive to noise. Another difficulty lies in

finding an appropriate point of the angle apex [5,21,22]. Perhaps arranging the angle
Figure 11 ROC (Receiver Operating Characteristic) graph of the evaluation of classification for TIA,
AOD and AOM. The area under the curve for the best classifier of AOM, i.e. AUC = 0.88 is marked in blue.
The other methods produce worse results i.e.: for AOD, AUC = 0.87 and for TIA, AUC = 0.77. Differences in the
obtained classification quality result from the conception of measurement with TIA and AOD methods.
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sides as a line approximating the iris and cornea contours would produce better results.

The TISA method seems to be the most appropriate here. However, local narrowing of

the iridocorneal angle enables to obtain the same results as in the case of slight angle

narrowing, but in a larger area (500 μm) [23-26].
Conclusions
The paper presents the comparison of known methods and proposes a new method of

measuring the iridocorneal angle on the basis of tomographic images. This comparison

shows that the best method is the one presented by the authors, namely AOM for

which AUC = 0.88. This result is by 0.01 better than that obtained for the well-known

AOD method (Tables 1, 2, 3). In terms of specificity, the difference between AOD and

AOM is even greater (Figure 11) and amounts to 0.18. The differences between AOD

and AOM result from specificity of measurement. For example, measurements for the

AOD method (as well as for another method, i.e. TIA) are carried out pointwise

[27-29]. The whole area of the iridocorneal angle, i.e. in the range of 500 μm starting

from the scleral spur [5], is not taken into account. Moreover, minimum distance values

are not calculated unlike in the AOM method. AOM enables to obtain reliable results

in the form of a single scalar value in comparison with AOS (for which a sequence of

values is obtained). Although AOS enables visualization of more complex cases (of the

iridocorneal angle calculated for large pathology) in the form of a graph, it requires re-

cording a series of numbers (which refer to distances between the retina and the cor-

nea). One of the disadvantages of the AOM method is the need to perform calculations

(of minimum distance) on a computer. Manual calculations of the iridocorneal angle

with the AOM method may lead to worse results than in the case of the TIA and AOD

methods [7,30,31].

In summary, this paper shows the advantage of automatic calculations of the mini-

mum distance between the iris and the cornea within a specified range over the other

previously known methods. The disadvantages of these known methods are: point

measurement, lack of full automation or obtaining a series of information instead of a

single number. The new proposed method is free of these defects. It enables to success-

fully diagnose pathological cases of iridocorneal angle narrowing, which is not possible

with other available methods. It also enables to obtain very high repeatability of mea-

surements and record the results in the form of single numbers. Owing to this method,

implemented to any OCT device, ophthalmologists will receive more accurate results

fully automatically – without any manual intervention. Not only will it increase comfort

but it will also give rapid and reproducible results. In addition, it will enable to perform

an automatic statistical analysis of a selected population of patients and monitor the

progress of treatment, which will directly influence the costs of treatment, prevention

and diagnosis of patients.
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