
Camacho et al. BioMedical Engineering OnLine 2013, 12:133
http://www.biomedical-engineering-online.com/content/12/1/133

RESEARCH Open Access

An experimental evaluation of the incidence of
fitness-function/search-algorithm combinations
on the classification performance of myoelectric
control systems with iPCA tuning
Guillermo A Camacho1*, Carlos H Llanos2, Pedro A Berger3, Cristiano Jacques Miosso4 and Adson F Rocha4

*Correspondence:
gacamacho@unisalle.edu.co
1Faculty of Engineering, University
of La Salle, Bogotá, Colombia
Full list of author information is
available at the end of the article

Abstract

Background: The information of electromyographic signals can be used by
Myoelectric Control Systems (MCSs) to actuate prostheses. These devices allow the
performing of movements that cannot be carried out by persons with amputated
limbs. The state of the art in the development of MCSs is based on the use of individual
principal component analysis (iPCA) as a stage of pre-processing of the classifiers. The
iPCA pre-processing implies an optimization stage which has not yet been deeply
explored.

Methods: The present study considers two factors in the iPCA stage: namely A (the
fitness function), and B (the search algorithm). The A factor comprises two levels,
namely A1 (the classification error) and A2 (the correlation factor). Otherwise, the B factor
has four levels, specifically B1 (the Sequential Forward Selection, SFS), B2 (the Sequential
Floating Forward Selection, SFFS), B3 (Artificial Bee Colony , ABC), and B4 (Particle
Swarm Optimization, PSO). This work evaluates the incidence of each one of the eight
possible combinations between A and B factors over the classification error of the MCS.

Results: A two factor ANOVA was performed on the computed classification errors
and determined that: (1) the interactive effects over the classification error are not
significative (F0.01,3,72 = 4.0659 > fAB = 0.09), (2) the levels of factor A have significative
effects on the classification error (F0.02,1,72 = 5.0162 < fA = 6.56), and (3) the levels of
factor B over the classification error are not significative (F0.01,3,72 = 4.0659 > fB = 0.08).

Conclusions: Considering the classification performance we found a superiority of
using the factor A2 in combination with any of the levels of factor B. With respect to the
time performance the analysis suggests that the PSO algorithm is at least 14 percent
better than its best competitor. The latter behavior has been observed for a particular
configuration set of parameters in the search algorithms. Future works will investigate
the effect of these parameters in the classification performance, such as length of the
reduced size vector, number of particles and bees used during optimal search, the
cognitive parameters in the PSO algorithm as well as the limit of cycles to improve a
solution in the ABC algorithm.
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Introduction
The loss of capabilities to manipulate objects with the hands is considered a high impact
disease due to the physical, psychological and financial sequels related [1,2]. A current
technological aid for upper limb amputation and deficiency is represented by the use of a
myoelectric hand prosthesis. This device overcomes the inability to grasp and manipulate
objects [3] and in some cases to sense and explore the surrounding world [4]. A myoelec-
tric prosthesis is composed of twomain systems: (a) the prosthesis and (b) theMyoelectric
Control System (MCS), which is the topic of this work. The electromyographic signals
(EMG) are used as an input of the MCS, which classifies patterns of the EMG signals and
operate actuators in the prosthesis.
The conventional MCS classifies the myoelectric patterns in movement classes. The

processing in the MCS is composed of three stages: feature extraction, dimensional-
ity reduction and classification. Recently, Hargrove et al. [5] proposed a complementary
architecture which improves the performance of the conventional MCS. This new archi-
tecture mixes 3 components: (a) a high crosstalk level EMG acquisition system, (b) an
individual Principal Component Analysis (iPCA) transformation stage and (c) the con-
ventional myoelectric control system. The main disadvantage of the iPCA projection is
the dimensionality increment of the electromyographic patterns, in which the pattern
dimension N is incremented by a factor corresponding to the control system’s number of
classes C.
To deal with the dimensionality increment it is possible to compute a reduced iPCA

transformation that generates just the N1 most discriminative dimensions instead of the
complete set C×N (with N1<C×N). The reduced iPCA transformation is used in [5] and
requires an optimization process that intends to find a subset ofN1 elements from a given
set ofC×N channels, warranting themaximum discrimination information in the selected
subset. The optimization is based on a search strategy and a fitness function, i.e. a function
that measures the quantity of discriminative information in the selected subset of channels.
The optimization in myoelectric control systems with iPCA tuning is explored by the

authors in [6], where the analysis is focused on the effects of factors A and B over
the performance of myoelectric control systems with iPCA tuning; with A representing
the fitness function factor with two levels (A1 classification error and A2 correlation
factor) and B representing the search algorithm factor with three levels (B1 sequential
forward selection (SFS), B2 sequential floating forward selection, B3 artificial bee colony
(ABC)). Our paper presents new results that complete the investigation in [6]. Specifically,
we evaluate a new level for the B factor: B4 particle swarm optimization (PSO) for a total
of eight treatment alternatives.
The paper is organized as follows: Section ‘Related works’ discusses previous works in

this research area. Section ‘Background’ describes the principal component analysis, the
problem of channel optimization, the search algorithms and the fitness functions consid-
ered. In Section ‘Methods’ we present the experimental methodology. In Section ‘Results’
the simulation results are given. In Section ‘Discussion’ the results are discussed, and
finally the conclusions are presented in Section ‘Conclusions’.

Related works
Different approaches for the control of myoelectric prostheses have been used. These
can be grouped in two trends [7]: (a) coordinated control [8] and (b) sequential control



Camacho et al. BioMedical Engineering OnLine 2013, 12:133 Page 3 of 23
http://www.biomedical-engineering-online.com/content/12/1/133

which is the main topic of the current study. In the latter, the degrees of freedom are actu-
ated one at a time, in a sequence, as one carries out a multifunction task. These systems
are based on pattern recognition architectures where the patterns are represented by the
EMG signal characteristics (x) and the classes are represented by the movements of the
prosthesis (y).
Starting from one of the first works that made use of a multilayer perceptron (MLP)

neural networks (NNs) [9-11], various classifiers such as linear discriminant analysis
(LDA) [12-14], (neuro) fuzzy [15-20], Gaussian mixture models (GMMs) [21,22], hidden
Markov models (HMMs) [18], and support vector machines (SVMs) [23-25] have been
used. Some commonly investigated feature sets include time domain (TD) features: MAV,
MAVS, ZC, SSC, WL [12,26], autoregressive (AR) coefficients [27], cepstral coefficients
[28], the short-time Fourier transform (STFT), the wavelet transform (WT), the wavelet
packet transform [13] (WPT), and concatenated TD and AR (TDAR) [21,29] features.
These solutions have reached different classification errors, depending on the number of
classes and other factors (see Table 1 for a summary of the different errors reported in last
years). For instance, in [29] an error of 7.4% is reported in a problem with 7 movement
classes and 8 electromyography channels. Recently, a new strategy has been proposed in
which the temporal-spatial information, contained within muscle crosstalk, may implic-
itly add class discriminatory information to the classification problem [21]. This proposal
has been investigated by Hargrove [5] observing a significative reduction in the classifica-
tion error. In a problem with 7 movement classes and 6 EMG channels the system yielded
a classification error of 1.9%.
The proposal in [5] mixes 3 components: (a) a high crosstalk level EMG acquisition

system (i.e. an acquisition system with an special distribution of electrodes that permits
that the signal generated by the M1 muscle can be detected by the electrode associated
with the M2 muscle, where muscles M1 and M2 are near [7]), (b) an iPCA transforma-
tion stage and (c) the conventional myoelectric control system. The main disadvantage of
the iPCA projection is the dimensionality increment of the electromyographic patterns,
in which the original pattern dimension N is incremented by a factor corresponding to
the control system’s number of classes C, i.e. it generates a new pattern with dimension
C times N. To deal with the dimensionality increment it is possible to compute a reduced
iPCA transformation that computes just the N1 most discriminative dimensions instead
of the complete set C × N (with N1 < C × N). This solution requires an optimization
search to find a subset of N1 elements from a given set of C × N channels, warranting
the maximum discrimination information in the selected subset. Because of the time of
response of these systems, the optimization process must be conducted during a configu-
ration stage, before the classification tasks. This optimization uses a search algorithm and
a fitness function as depicted in Figure 1. The results in [5] were computed using a combi-
nation of SFS (sequential forward selection) algorithm and the classification error fitness
function. Despite important reported advantages, there are also some disadvantages for
that configuration: (1) The SFS algorithm presents the nesting effect, i.e., once a channel
has been selected there is no possibility of discarding it [31]. (2) The SFS algorithm does
not use random components [32]; note that this type of components can help by finding
different solutions and potentially lead to better ones [33] in problems with more than
one local optimum. (3) The use of the classification error as the fitness function requires
a supervised procedure, in which the classes associated to each pattern are known, being
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Table 1 Summary of the classification parameters and errors reached in the last years

Classifier Channels Classes Features Subjects Error Additional processing Reference Year

MLP 2 4 MAV, MAVS, ZC, SSC, WL. 9 9.25% [9] 1993

LDA, MLP 5 4 WPT. Transient 16 6.25% [30] 1998

PCA, LDA 4 6 WPT. Stationary 11 6.80% [13] 2001

LDA 4 4 TD. Stationary 12 5% Majority vote [12] 2003

GMM 4 6 AR6+RMS+TD. Stationary 12 3.10% Majority vote [21] 2005

Suppress interclass data

LDA 8 7 AR4+RMS. Stationary 30 7.40% Majority vote [29] 2007

Suppress interclass data

SVM 4 5 RMS +AR6. Stationary 11 3% Majority vote [23] 2008

Suppress interclass data

LDA 10 11 AR6 Stationary 10 6.50% [5] 2009

LDA 10 11 AR6 Stationary 10 5% iPCA Transformation [5] 2009
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Figure 1 Optimization scheme used in the parameter configuration stage.Wi is a PCA matrix
transformation of size N × N for i = 1, . . ., C. Note that eachWc (for c = 1, 2, . . .C) matrix has a N × N size,
then the projected vector s has an incremental size of CN × M.

computationally expensive, due to the need for evaluating the classifier’s output at each
iteration.
In order to obtain a solution to the previous described disadvantages the authors pro-

pose and evaluate in [6], a set of novel configurations for the iPCA tuning, based on two
factors: (A) fitness function and (B) search algorithm. The A factor with two levels: (A1)
classification error and (A2) correlation factor. The B factor with three levels: (B1) sequen-
tial forward selection (SFS), (B2) sequential floating forward selection and (B3) artificial
bee colony (ABC). In this context, this article evaluates a new level for the B factor: B4
particle swarm optimization (PSO). The overall results suggest an advantage on the use of
the PSO algorithm with respect to other studied algorithms, with regard to the running
time during the training stage.

Background
Principal Components Analysis

PCA is an orthogonal linear transformation used to convert a set of observations of
possibly correlated variables into a set of values of uncorrelated variables called princi-
pal components. Given M observations of an N dimensional random vector z, the PCA
transformation is performed by firstly subtracting the mean of the vector from z [5],
x = z − E{z}, computing the N × N covariance matrix Cx = E{xxT } and, then, applying
s = Wx, where s is the vector of the main component and W is the matrix in which each
column is an eigenvector of Cx. Usually the M observations would typically be samples
taken from any C possible classes. This is known as universal PCA (uPCA) or global
PCA [34]. This property of ignoring class information allows us to argue that PCA is
suboptimal for classification purposes [35].
A recent variation, called individual PCA (iPCA) [34,35], groups the M observations

according to their class membership. Separate projection matrices W1, . . .,WC with size
N × N are found for each class (see Figure 1). This set of matrices can be interpreted as a
unique CN × N size transformation matrix WiPCA formed by the concatenation of rows
of the separate projection matrices. The iPCA method effectively “tunes” the data prior
to classification and has been shown to improve classification accuracies for some pattern
recognition problems [36]. The main drawback of this method is the linear increment
of the dimensionality of the patterns with the number of classes C. To overcome this
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problem, a reduced iPCA transformation matrix WR is defined in [5]. This solution uses
a transformation matrix with the best N1 basis of theWiPCA matrix (N1 < CN).

Channel optimization

The optimization task of finding a subset of N1 elements from a given set of CN chan-
nels can be interpreted as a discrete optimization problem (integer elements from the
selected subset). The optimization scheme in Figure 1 is used to carry out this task. In this
scheme, a validation data set xv is projected with the WiPCA matrix. The projected pat-
tern s is a CN ×M size vector. The vector O′ is a subset of the CN dimensions in s and its
components change at each iteration, following a specific strategy defined by the search
algorithm. The fitness function evaluates the quality of an EMG pattern with regard to the
discriminative information. The evaluated patterns by the fitness function are established
by the rows of s which compose the O′ vector. When the stop conditions are reached, the
scheme provides the selected channel subset O as output.

Search algorithms

The search algorithms treated in this study are the following: (a) Sequential Forward
Selection (SFS), (b) Sequential Floating Forward Selection (SFFS), (c) Particle Swarm
Optimization (PSO), and (d)Artificial Bee Colony (ABC); then, the samewill be described.

Sequential Forward Selection (SFS)

This is one of the first developed search methods in the literature related to feature selec-
tion issue. The search procedure consists of the following steps: (a) compute the fitness
function for each of the CN channels and then select the channel with the best value, and
(b) form all possible two dimensional vectors that contain the winner from the previous
step and compute the fitness for each of them, (c) select the vector with the best value, (d)
continue the process until the N1 vector length has been completed. The main drawback
of this algorithm is the nesting effect; that is, once a channel has been selected there is no
possibility to discard it [32].

Sequential Floating Forward selection (SFFS)

This is a suboptimal search algorithm proposed by Pudil et al. in 1994 [31] with the pur-
pose of eliminating the nesting effects of the SFS algorithm. This algorithm begins the
search with an initial subset of two channels. For each subsequent iteration, two tasks are
necessary: (a) search the candidate channel which minimizes the fitness function and add
it to the selected subset O′, (b) verify if the fitness function can be optimized by replac-
ing a channel from the selected subset O′. Consequently, the SFFS search is performed
dynamically, incrementing and decrementing the selected channels in the subset O′ until
reach the target length N1. An efficient way to implement this algorithm is presented in
[31,37].

Particle Swarm Optimization (PSO)

This is a population based stochastic optimization technique developed by Eberhart and
Kennedy in 1995 [38]. In this algorithm, it is assumed that there exists a swarm with S
particles. Consider that the search space is N1-dimensional, and the i-th particle of the
swarm can be represented by a dimensional position vector xi = (xi1, xi2, . . ., xiN1). The
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velocity of the particle is denoted by vi = (vi1, vi2, . . ., viN1). Additionally, consider that
the best individual position for the i particle is pbesti = (pi1, pi2, . . ., piN1) and also that
the first and second best position explored so far are gfbest and gsbest respectively. The
velocity of the particle and its position are updated according to (1) and (2).

vij(t + 1) = w ∗ r(vij(t)) + c1 ∗ r1 ∗ r(pbestij − xij(t)) + c2 ∗ r2 ∗ r(gfbestij − xij(t))

+ c3 ∗ r3 ∗ r(gsbestij − xij(t))
(1)

xij(t + 1) = xij(t) + r(vij(t + 1)) (2)

where, i is the particle index for i ∈ 1, . . ., S; j is a specific dimension for j ∈ 1, . . .,N1;
w is the inertia weight; r1, r2 and r3 are random numbers uniformly distributed in the
range (0, 1); c1 is a cognitive parameter; c2 and c3 are social parameters; r(.) is a rounding
function used to adapt the original PSO for the discrete optimization problem [39,40].
The purpose of including the second best particle gsbest in the velocity update equation

is to increase the diversity and slow convergence by addressing each particle to move
toward the weighted sum of both the best and second best solution the swarm has gener-
ated [41]. Considering a minimization problem the local best of each particle is updated
according to (3).

pbesti(t + 1) =
{
pbesti(t) if f (pbesti(t)) ≤ f (xi);
xi(t) if f (pbesti(t)) > f (xi);

(3)

where, f (.) is the fitness function. Finally, the first and second global best of the swarm
are updated according to (4) and (5).

gfbest(t + 1) = argminp∈pbesti f (p(t + 1)) (4)

gsbest(t + 1) = argminp∈pbesti\g fbest(t+1) f (p(t + 1)) (5)

It is possible that the solution computed with the PSO algorithm contains repeated ele-
ments (i. e. that the vector O′ has repeated elements). This leads to EMG patterns with
high level of redundancy and it does not benefit the localization of the global minimum
on the considered fitness functions. To overcome this, a modification on the conven-
tional PSO algorithm was added. Whenever the search process leads to a solution with
repeated elements, then, that solution will be penalized with a high fitness value and with-
out evaluating the fitness function. This will hinder the EMG patterns with high level of
redundancy from being selected as the optimal solutions in the minimization problem.

Artificial Bee Colony (ABC)

This is an optimization technique proposed in 2005 by Karaboga [42]. In ABC, each
solution to the optimization problem is called food source and is represented by a
N1-dimensional vector. The colony of artificial bees contains three groups of bees:
employed bees, onlookers and scouts. The first half of the colony consists of employed
artificial bees and the second half are the onlookers. For each food source there is only
one employed bee. Therefore, the number of employed bees is equal to the number of
food sources. An employed bee whose food source has been exhausted becomes a scout.
The ABC algorithm can be implemented in two steps [43].
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• Initialization step: the algorithm generates a random initial solution set of length S.
Each solution xi(i = 1, 2. . ., S) is a N1-dimensional vector. The employed bees
measures the nectar amount of each solution, return to the hive and share the nectar
information with the onlooker bees.

• Iterative step: the solution set is submitted to repetitive search cycles. During these
cycles, the bees change its memory contents, searching the food source with the best
fitness. Each bee is able to remember just one food source localization xi. Each cycle
is computed in three phases: (a) employed phase, at this phase each employed looks
for a new food source vi around its current position xi using (6). If the nectar quantity
of this new position improves the previous one, then the bee position is updated.
Once each employed bee has finished this phase, a probability factor pi is computed
(7). Using this factor indicates the nectar level at each xi food source. (b) Onlooker
phase, at this phase the onlooker bees use the probability factor pi of each employed
bee and select a xi food source. Afterwards, a new vi food source around the selected
neighborhood localization is computed (6). Finally, if the fitness value of this new
position improves the previous one, then the bee position is updated. (c) Scout phase,
whenever the exploration of a xi food source does not finish with a solution
improvement, a counter increments the number of trials of that food source. If the
value in this counter is greater than a threshold Clim, this xi food source is discarded
and a new food source is randomly selected by a scout bee.

vij = xij + φij(xij − xkj) (6)

where k ∈ (1, 2, . . .S) and j ∈ (1, 2, . . .N1) are randomly chosen indexes, with k �= i. φij is a
random number in the range [−1, 1] that controls the production of food source positions
around xi.

pi = f (xi)∑S
n=1 f (xn)

(7)

where f (.) represents the fitness function value and S represents the number of food
sources.

Fitness functions

A fitness function is a particular type of function used to summarise, as a single figure of
merit, how close a design solution is to achieving the setting aims. In this case, the aim
is related with the maximum discrimination information in a subset of C × N channels
obtained after the iPCA transformation. Two fitness functions have been used in this
study: (a) Classification error, and (b) Correlation factor, which will be described here:

Classification error

This is the same factor that has been used to measure the performance of the myoelectric
control system; therefore, it is the ideal function to compare the discriminative informa-
tion of the EMG patterns. This factor is computed as the relation between number of
incorrect decisions and the total number of decisions of the system. To compute this rela-
tion, is necessary to know the predicted class vector ŷ and, therefore, the classification
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Figure 2 Steps of the pattern recognition basedmyoelectric control systemwith iPCA tuning [5]. The
dotted line shown in the figure is the conventional classification architecture for myoelectric control systems.
The measured signal is represented by a generic vector x and the class label by a generic vector y.

scheme composed of the block diagrams inside the dotted line in Figure 2 (i.e. the con-
ventional myoelectric system) must be performed. Consequently, there is a significant
computational complexity involved in classification error computation.

Correlation factor

Several factors have been proposed to quantify the amount of common signals presented
between the two dimensions of a signal, the most common being the cross correlation
factor [44]. The equation used to compute this factor for a discrete two dimension vector
x is

Cx(x1, x2) = E[(x1 − μ1)(x2 − μ2)] (8)

where E is mathematical expectation and μi = E[xi]. For N-dimensional vectors, the
correlation coefficient matrix is more used, where (9) defines each element of the matrix;
each element varies within the range [1,−1].

Rx(p, q) = Cx(p, q)√
Cx(p, p)Cx(q, q)

(9)

for p = 1, . . .,N ; q = 1, . . .,N .
Rx is anN×N matrix with correlation coefficients computed for each pair of dimensions

of the vector x. This matrix is symmetric and has ones in its main diagonal; therefore,
to quantify the correlation level it is enough to consider the lower or upper diagonal
elements. An alternative considering the lower elements is

fc = sum(tril(|Rx|)) (10)

where tril(.) is a function that returns the lower triangular elements of the matrix
without the main diagonal ones. To limit the correlation factor between [0, 100] we have
defined the expression in (11), which has been used for computing the correlation factor
between dimensions of the EMG signal.

Fc = 100 × 2fc
N2 − N

(11)

Myoelectric Control Systems with iPCA tuning

Figure 2 depicts the myoelectric control scheme with iPCA tuning [5], which uses an
iPCA transformation for tuning input patterns. This transformation is a variation of
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the PCA (Principal Component Analysis) that was initially used for improving the clas-
sification performance in problems of face recognition [34]. The purpose of the iPCA
transformation is to generate a new signal space where the discriminative information
related to the movement class is amplified, as long as other types of information are atten-
uated. However, there is a drawback: the patterns’ dimensions increase by a factor of C.
Considering an input pattern corresponding to N EMG channels and a classification sys-
tem with C classes, one has to use of a transformation matrix WiPCA with size CN × N .
Therefore, the projection of the input signal results in a new dimension pattern CN
(see Figure 1) [5].
A reduced iPCA transformation can be defined for reducing the effects of dimension

pattern increments. In this solution, it is necessary to compute a reduced iPCA transfor-
mation matrixWR. This matrix projects the input patterns and generates just theN1 most
discriminative dimensions at the output (with N1 < CN). To computeWR it is necessary
to solve the block diagram in Figure 1. The output of this scheme is the vector O, which
contains N1 channels selected from the CN set. Using this vector, the relation between
the iPCA transformation matrix and the reduced iPCA transformation matrix is defined,
as stated in (12), where the Matlab [45] notation for sub-matrices is used.

WR = WiPCA(O, :) (12)

Methods
In order to evaluate the classification performance for each fitness-function/search-
algorithm combination, a methodology based in three steps has been applied (namely,
EMG signal acquisition, computing the reduced iPCA matrix, and system evaluation)
which are depicted in Figure 3.

EMG signal acquisition

We used data collected by the University of New Brunswick - Canada, with authoriza-
tion of Dr. Levis Hargrove. These data were acquired in an experiment approved by
the University of New Brunswick’s Research Ethics Board [5]. The data were sampled
from ten healthy subjects performing eleven motion classes. EMG signals were acquired
from ten sites on the forearm using adhesive duotrodes manufactured by 3M. These sig-
nals were amplified to guarantee potentials in range [+5,−5]V and a bandwidth of 1Hz
to 500Hz. Afterwards, the signals were sampled at 1KHz and quantized with a 16-bit
resolution.
Experimental data were collected during eight trials. Each trial consists of two repeti-

tions of eleven motion classes performed in sequential order, namely: (1) wrist pronation,
(2) wrist supination, (3) wrist flexion, (4) wrist extension, (5) hand open, (6) key grip, (7)
chuck grip, (8) power grip, (9) fine pinch grip, (10) tool grip, and (11) rest position or no
movement.
The intensity of the contraction was determined by the subject, but they were encour-

aged to contract to a level that they comfortably repeated throughout the experiment.
During all trials, subjects elicited the contraction from the rest position, held the con-
traction for 4 s and then returned to the rest position for a predefined inter-motion class
delay period. Trials 1, 2, 3 and 4 used intermotion class delay periods of 3, 2, 1 and 0 s
respectively. Trials 5–8 used inter-motion class delay periods of 2 s. The result is a data
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reduced
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reduced

matrixWR

Test Data
classification

Classification
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computing
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Figure 3 Sequence used to evaluate the classification error. Note that the blocks Computing iPCA Matrix
and System Evaluation must run eight times, i.e. one iteration for each of the four search algorithms with the
first fitness function (classification error) and one iteration for each of the four search algorithms with the
second fitness function (correlation factor).

set composed of myoelectric signals x in each channel and a vector of target classes asso-
ciated y. A sample of the collected data excluding the intermotion class delays is depicted
in Figure 4.
In the present study, the EMG data recorded from trials 1 and 3 were used as a train-

ing data set. EMG data recorded from trials 2 and 4 were used as a test data set. And
finally, EMG data recorded from trials 5 and 6 were used as a validation set to resolve the
optimization problem defined in the Background Section. Otherwise, for all these sets,
the inter-motion class delays were excluded such as reported in [5].

Computing the reduced iPCAmatrix

This step has been implemented in two sequential tasks depicted in Figure 5: (a) search
of the reduced dimension vector O, and (b) building of the reduced iPCA transformation
matrixWR. The first task began with the computing of the iPCA transformation matrices
using the training data xtr . Afterwards, the validation data xv were projected with iPCA
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Figure 4 Acquired signal with the sequence of movements from 1 to 11. Signals illustrated correspond
to channel 3 during trials 6 to 8 and user 1. Dotted lines indicate the held time for the contraction (4 s). Note
that the movements were evaluated in sequential ascending order for all trials.

transformationmatrices and the transformed patterns swere used to run the optimal sub-
set channel search. The result of this search is the vector O composed of the N1 channels
with most discriminative information. This search was evaluated with the eight possible
combinations of fitness-function/search-algorithm. Therefore, at the end of this task the
subsets Oij were obtained, where the sub-indexes i, j indicate the fitness function and the
search algorithm, respectively; for i = 1, 2; j = 1, 2, 3, 4.
In this case, for all search algorithms the N1 parameter was set to 30, such as

recommended in [5]. This value provides good classification accuracy.
The SFS algorithm was configured with just one stop criterion, namely: length of the

selected subset equal to N1.
The SFFS algorithm used two stop criteria: (1) the same defined in SFS and (2) the

maximum number of iterations (Cmax = 120). The latter was selected considering tests
which show a mean number of iterations of 78.3 (with a standard deviation of 23.04) to
find a solution. The PSO and ABC algorithms used other kind of parameters summed up
in Table 2 and Table 3, respectively. For both fitness functions the optimization problem
was defined as a minimization and the parameters were set with the next criteria:

a b

Figure 5 Blocks for computing the reduced iPCA Transformation Matrix. (a) search of the reduced
dimension vector O (b) building of the reduced iPCA transformation matrixWR . Note that this process is
conducted during a configuration stage, before the classification.
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Table 2 PSO algorithm parameters

Symbol Parameters Value

ε Minimum value of fitness function 0

c1 Cognitive parameter 2

c2 Social parameter 2

c3 Social parameter 1

w Inertial weight [0.8 , 0.1]

S Swarm size 10

[vmin , vmax ] Velocity limits [-109, 109]

[xmin , xmax ] Position limits [1, 110]

Cmax Maximum number of iterations 120

For the PSO algorithm the minimum value of cost function (ε) was defined by the
minimum possible value for the classification error and correlation factor (in this case
equal to zero). The number of particles (S) was set to 10; for greater values, the search
time was increased and the time for the experiments could exceed the available time
(2 months to get experimental data), specially when the classification error were used as
fitness function. For lower values, the search performance could be compromised due to
the characteristics of population based stochastic optimization algorithms. The limit val-
ues (vmin, vmax, xmin, xmax) were defined by the dimension of the search space: C × N ,
where C is the number of movement classes (C = 10) and N is the number of acquisition
channels (N = 11). The maximum number of iterations Cmax was set to 120; this value
showed good results for both fitness functions. The algorithm used similar values for cog-
nitive and social parameters (c1, c2 and c3) allowing a neutral strategy, i.e. a strategy were
the confidence in the experience of each particle is equal to the confidence in the expe-
rience of the swarm. The inertial weight w decreases linearly allowing that the particles
polish the search in the last iterations; this configuration induces an effect of global search
in the first iterations and local search at the last ones.
In the ABC algorithm the parameters were configured having two requirements in

mind: (a) high performance in the optimal search, (b) assurance of conditions to make fair
comparisons between bio-inspired algorithms. Then, the number of food sources (S) was
configured to 10, equal than the number of particles in the PSO algorithm. The limit val-
ues (vmin, vmax) were defined by the dimension of the search space: C × N . The number
of maximum cycles (Cmax) was set 120, equal that the maximum number of iterations in
the PSO algorithm. The minimum value of the fitness function was set to 0, because this
was the minimum value achievable by both fitness functions: classification error and cor-
relation factor. The limit of cycles to improve a solution (Clim) was configured to 6; this
value showed good classifications performances and affordable times of search.
To compute the classification error fitness function, the processing scheme formed

by the blocks inside the dotted line in Figure 2, (i.e. the conventional myoelectric con-
trol system) has been used. The configuration was the following: overriding windowing

Table 3 ABC algorithm parameters

Symbol Parameter Value

ε Minimum value of fitness function 0

S Number of food sources 10

[vmin , vmax ] Limit values [1, 110]

Cmax Number of maximum cycles 120

Clim Limit of cycles to improve a solution 6
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feature extraction [12] with lengths of 150 ms and sliding windows of 25 ms, features
conformed by the first 6 autoregressive coefficients (AR6) [18], dimensionality reduc-
tion method based on Uncorrelated LDA (ULDA) [29] and LDA (Linear Discriminant
Analysis) classifier [46]. At this stage, each channel was independently used to train and,
subsequently, to test the control system, such as presented in [5].
At the second task (row selection block in Figure 5) we used equation (12) to com-

pute the reduced iPCA transformation matrix corresponding to each pair fitness func-
tion/search algorithm. Note that, at the output, eight reduced transformation matrices
Wij

R were obtained as consequence of an optimization procedure computed eight times
(the sub-indexes i, j indicate the fitness function and the search algorithm, respectively).

System evaluation

The last proceeding of the methodology was the evaluation of the classification system.
This was carried out in two phases as depicted in Figure 6: (a) the test data (xtst) clas-
sification, and (b) the classification error computing. The first phase was achieved with
the iPCA preprocessing and the conventional classification scheme (see Figure 2), using
the same configuration described for the classification error fitness function computing.
This process was computed for each of the reduced iPCA transformation matrices Wij

R ;
the output of this phase was the predicted class vector ŷij. The second phase compares the
vector ŷij with the target vector y to compute the classification error as defined in equation
(13). The classification error was individually evaluated for each user k of the system.

eij(k) = 100 × sum(y �= ŷij(k))
length(y)

(13)

Results
The simulations proposed in this paper were performed on the Matlab platform and are
based on the myoelectric control toolbox presented in [29]. Nevertheless, we have made
some modifications and added some new functionalities to the myoelectric control tool-
box presented in [29]. These modifications were necessary to appropriately parse the
EMG data base that had a different structure than the used in [29]. The added functional-
ities were done for configuring and implementing all the iPCA related functions, namely:
optimal search, transformation matrices computing projections and performance indi-
cators computing. The resulting simulator is a powerful tool for experimentation with
iPCA myoelectric control, designed on a modular fashion that permits evaluation of dif-
ferent approaches in each of the processing steps. Here we show results separated in two
main stages: (a) first, the results registered during reduced iPCA transformation matrix
computing, and secondly, (b) results registered during EMG pattern classification.

Figure 6 Blocks for system evaluation. The dotted line shown in the figure contains the test data
classification tasks.
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Figure 7 Comparison of search time used for each of the eight treatment alternatives evaluated
during optimization. The search time was computed as the product between the number-of-iterations and
the mean-iteration-running-time.
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Figure 8 Comparison of the fitness value reached with each of the eight treatment alternatives
during the optimization search. The sequence of algorithms in each figure was selected according to the
descending order of fitness.
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Table 4 Comparison of number-of-iterations/mean-iteration-running-time for the eight
treatment alternatives during optimization

Fitness function SFS SFFS PSO ABC

Class. error 30/1282s 64.9/1705s 120/155s 120/475s

Corr. factor 30/5.62s 78.3/7.61s 120/0.79s 120/1.12s

The results of the first stage of the system are shown in Figure 7 and Figure 8. Figure 7
depicts the mean search time, i.e. the time necessary to compute the optimal vector O.
The left figure shows the search time for classification error fitness function and the right
figure for correlation factor fitness function. Complementary information on this subject
is presented in Table 4. This table summarizes the mean values of the number of iter-
ations and the time of each single iteration for each fitness-function/search-algorithm
combination. Note that both bio-inspired algorithms were stopped by the maximum iter-
ations criteria (120 iterations); this means that the time performance comparison among
bio-inspired algorithms just depends on the time of each single iteration of the search
algorithm. The SFS algorithm was stopped when reached 30 iterations and the SFFS have
different mean iterations number for each fitness function. The times in Table 4 have
been computed on a PC with 2.8GHz processor, 8Gb RAMmemory and 4 cores. Figure 8
depicts the mean fitness value reached during the optimal search. This value is presented
for the eight evaluated combinations of search algorithm and the fitness function.
The results of the next main stage (the EMG pattern classification stage) are shown

in Figure 9. This figure displays the mean classification errors generated when each of
the eight reduced matrices Wij

R were used in the myoelectric control system. The black
bars indicate the classification errors obtained with the transformation matrix W 1j

R (i.e.
the transformation matrices computed with the classification error fitness function) and
white bars indicate the classification errors obtained with the transformation matrixW 2j

R
(i.e. transformation matrices computed with the correlation factor fitness function). The
vertical line on the bars represents one standard deviation of inter-subject error variabil-
ity. The red line indicates the mean classification error obtained when the EMG patterns
were classified without the iPCA transformation.
A two factor analysis of variances (ANOVA) was performed over the error classifica-

tion results, which has determined the following behaviors: (a) there was no statistical
evidence of the dependence between the interaction of both factors (i.e. search algorithm
and fitness function) and the classification error (F0.01,3,72 = 4.0659 > fAB = 0.09),
(b) there was statistical evidence of the dependence between the fitness function factor
and the classification error (F0.02,1,72 = 5.0162 < fA = 6.56), and (c) there was no sta-
tistical evidence showing the dependence between the search algorithm factor and the
classification error factor, (F0.01,3,72 = 4.0659 > fB = 0.08).

Discussion
The analysis of simulation results may be performed taking into account two major
aspects: (a) the computational complexity of the search process, and (b) the overall classi-
fication accuracy, using a fitness function. The metric used to measure the computational
complexity was the number of iterations and the computational time of each iteration
(see Table 4). The product of these two metrics defines the search time (i.e. the time nec-
essary to find an optimal solution) and gives an estimate of the computational complexity.
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With regard to the number of iterations is important to mention that: (a) the bio-inspired
algorithms used the maximum number of iterations (120) in each search and (b) the
sequential algorithms never reached the maximum number of iterations (120). Therefore,
the number of iterations is irrelevant to develop comparisons among bio-inspired
algorithms; otherwise, the same is important to compare both sequential and bio-inspired
algorithms. The search time in Figure 7 shows that: (a) solutions founded with error
classification fitness function are more susceptible to long search times. The data have
shown a relation of 250:1 between the search time of the classification error fitness
function and the search time of the correlation factor fitness function. This was already
expected due to the complexity associated with the supervised and non-supervised fitness
functions (see fitness functions in Background Section); (b) the major and minor search
time of the algorithms, regardless of the fitness function, are for SFFS and PSO respec-
tively. The difference between these two algorithms is significant and indicates that the
SFFS algorithm consumes almost four times more iterations than the PSO algorithm, for
the case of maximum number of iterations = 120. The PSO algorithm is 14 percent better
than the ABC algorithm, when correlation factor was used as fitness function. The differ-
ence (with respect to SFS) reaches 31 percent when classification error is used as fitness
function.
This advantage of PSO over the other evaluated search algorithms is consequence of the

low number of evaluations of the fitness function in each iteration of the PSO algorithm.
The fitness values shown in Figure 8 indicate the following behaviors: (a) the fitness com-
puted on the classification error fitness function was lower than that computed with
correlation factor as fitness function; (b) the optimal solutions computed with sequential
algorithms were closer to the global minimum than the ones computed with the bio-
inspired algorithms. These results suggest a superiority of the solutions computed with

SFS SFFS PSO ABC 
0

2

4

6

8

10

Search algorithm (j)

C
la

ss
ifi

ca
tio

n 
er

ro
r 

(%
)

W
R
1j

W
R
2j

Figure 9 Comparison of the classification error reached with each of the eight treatment alternatives.
The error bar represents one standard deviation of intersubject variability. The red line indicates the mean
classifcation error obtained when the EMG patterns were classified without the iPCA transformation.
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sequential algorithms. In order to generalize that behavior, it is necessary to test the bio-
inspired algorithms using other configuration parameters; (c) the fitness reached with the
sequential algorithms SFS and SFFS are similar and, therefore, we can suggest that the
nesting effect associated with the SFS algorithm is not significant in the considered fitness
functions.
Figure 9 shows the comparison of the performances reached when the patterns were

tuned with the different transformation matrices Wij
R (i = 1, 2; j = 1, . . ., 4). The results

indicate the following aspects: (a) the classification rates are similar to the previous ones
published in [5] and the classification error of the conventional myoelectric control archi-
tecture is superior to the classification error of the myoelectric control architecture with
iPCA tuning; (b) there are similar levels of classification error when transformationmatri-
cesWi•

R were used (i.e. transformation matrices computed with the i fitness function and
each of the search algorithms); and (c) there are differences between classification errors
when transformation matrix W •j

R was used (i.e. transformation matrices computed with
the j search algorithm and each of the fitness functions).
The response presented in (a) validates the superiority of the iPCA tuned architec-

ture over the conventional myoelectric control architecture. Otherwise, the (b) response
was not expected. Due to the superiority of fitness that was computed with sequen-
tial algorithms (see Figure 8), greater differences between the classification errors were
expected. For instance, that classification errors associated to transformation matrices
computed with sequential algorithms (Wij

R with j = 1, 2) were less than classifica-
tion errors associated to transformation matrices computed with bio-inspired algorithms
(Wij

R with j = 3, 4). This suggests that finding of the minimal value for the fitness func-
tion is not a sufficient condition to guarantee minimal classification errors during the
evaluation of the myoelectric control system.
Finally, the (c) response was expected, basically by two reasons: (i) the superiority of

classification error over correlation factor in determining the discriminant information in
the selected subsets. (ii) The superior fitness of computed solutions using systems with
classification error fitness function (see Figure 8).
The confusion matrices displayed in Additional file 1: Table S5, Additional file 2: Table

S6, Additional file 3: Table S7 and Additional file 4: Table S8 provide a direct compari-
son between the optimization alternatives used. Additional file 1: Table S5 and Additional
file 3: Table S7 compare classification accuracy when the transformation matrices W 2j

R
were used (i.e. the transformation matrices computed with the correlation factor fit-
ness function and the sequential and bio-inspired algorithms). Additional file 2: Table S6
and Additional file 4: Table S8 compare classification accuracy when the transformation
matricesW 1j

R were used (i.e. the transformationmatrices computed with the classification
error fitness function and the sequential and bio-inspired algorithms).
In Additional file 1: Table S5 and Additional file 3: Table S7, the values in white (left

columns) show processing with SFS algorithm and the values in gray (right columns)
show the results with SFFS algorithm. In Additional file 2: Table S6 and Additional file 4:
Table S8, the values in white (left columns) show processing with PSO algorithm and the
values in gray (right columns) show the results with ABC algorithm.
The results along the main diagonal are correct classifications (accuracy) and those

lying outside of the main diagonal are incorrect classifications. Empty cells correspond
to an error of 0% and the accuracies were rounded to the nearest tenth of a percent. The
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values on these tables confirm two trends: (a) similar levels on classification error when
transformation matrices Wi•

R were used and (b) differences between classification errors
when transformation matricesW •j

R were used.

Conclusions
This paper has presented and evaluated the use of bio-inspired optimization algo-
rithms in the iPCA stage of Myoelectric Control Systems for hand prosthesis. The
influence of fitness function and searching algorithms on myoelectric control sys-
tems with iPCA tuning were investigated in terms of optimization performance
(e.g. running time, number of iterations, mean search time), solution fitness and clas-
sification performance. The alternatives considered for fitness functions were the fol-
lowing: classification error, correlation factor, and for search algorithms: SFS, SFFS,
PSO and ABC. The experimental results suggest superiority on classification perfor-
mance when reduced iPCA matrices computed with classification error fitness function
were used. The results have also shown the independence of classification perfor-
mance with regard to the search algorithm. However, a practical advantage was found
in using PSO algorithm during the optimal search. This advantage is related to the
computational time of the process during the parameter configuration stage and was
corroborated for a particular set of configuration parameters in the algorithm. Future
studies will be carried out to investigate other configuration parameters in the PSO
algorithm as well as the effects of the selected subset length N1 on the classification
performance.

Nomenclature
MCSs Myoelectric Control Systems
iPCA individual principal component analysis
PCA principal component analysis
ABC artificial bee colony
PSO particle swarm optimization
EMG electromyographic signals
SFS sequential forward selection

SFFS sequential floating forward selection
MLP multilayer perceptron
NNs neural networks
LDA linear discriminant analysis

ULDA uncorrelated linear discriminant analysis
GMMs Gaussian mixture models
HMMs hidden Markov models
SVMs support vector machines

TD Time Domain
MAV mean absolute value

MAVS mean absolute value slope
ZC zero crossings
SSC slope sign changes
WL wave length
AR autoregressive
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STFT small time Fourier transform
WT Wavelet transform

WPT Wavelet packets transform
TDAR concatenated TD and AR features

x generic EMG signal
y vector of classes of movement
ŷ vector of predicted classes of movement
ŷij vector of predicted classes of movement computed withWij

R
eij classification error of the system configured with theWij

R transformation
matrix

xv validation data set of EMG signals
xtr training data set of EMG signals
xtst test data set of EMG signals
xi position vector of the i particle and position vector of the i food source in

the PSO algorithm and ABC algorithm respectively
vi velocity vector of the i particle and new position vector around xi in the

PSO algorithm and ABC algorithm respectively
pbesti best individual position for the i particle in the PSO algorithm
gfbest first best position explored so far in the PSO algorithm

w inertial weight in the PSO algorithm
gsbest second best position explored so far in the PSO algorithm

r1, r2 and r3 random numbers uniformly distributed in the range (0, 1)
c1 cognitive parameter in the PSO algorithm

c2 and c3 social parameters in the PSO algorithm
pi probability factor of each employed bee in the ABC algorithm

Clim limit of cycles to improve a solution in the ABC algorithm
Cmax maximum number of iterations and maximum number of cycles in the

PSO algorithm and ABC algorithm respectively
φij random number in the range [−1, 1] that controls the production of

food source positions around xi in the ABC algorithm
s iPCA projected pattern from x

M number of observations of the EMG signal
O′ vector of possible optimal set of channels
O vector of optimal set of channels
Oij vector of optimal set of channels computed with the i fitness function

and the j search algorithm
ε minimum value of fitness function

Cx cross correlation factor
Rx correlation coefficient matrix
Fc normalized correlation factor
j index for the search algorithm
i index for the fitness function
C number of classes of movement
N length of the pattern vector
N1 length of the reduced size vector
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S the number of particles and bees used during optimal search with
bio-inspired algorithms

W PCA transformation matrix
Wc PCA transformation matrix for the c movement class

WiPCA iPCA transformation matrix
WR reduced iPCA transformation matrix
Wij

R reduced iPCA transformation matrix computed with the i fitness
function and the j search algorithm

Additional files

Additional file 1: Table S5 Confusion matrix for the sequential algorithms and correlation factor fitness
function.

Additional file 2: Table S6 Confusion matrix for the bio-inspired algorithms and correlation factor fitness
function.

Additional file 3: Table S7 Confusion matrix for the sequential algorithms and classification error fitness
function.

Additional file 4: Table S8 Confusion matrix for the bio-inspired algorithms and classification error fitness
function.
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