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Abstract

Background: Continuous and discrete wavelet transforms have been established as
valid tools to analyze non-stationary and transient signals over Fourier domain methods.
Additionally, Fourier transform based coherence methods provide aggregate results but
do not provide insights into the changes in coherent behavior over time, hence limiting
their utility.

Methods: Statistical validation of the wavelet transform coherence (WTC) was
conducted with simulated data sets. Time frequency maps of signal coherence between
calf muscle electromyography (EMG) and blood pressure (BP) were obtained by WTC to
provide further insight into their interdependent time-varying behavior via the skeletal
muscle pump during quiet stance. Data were collected from healthy young males (n = 5,
19–28 years) during a quiet stance on a balance platform. Waveforms for EMG and BP
were acquired and processed for further analysis.

Results: Low values of bias and standard deviation (< 0.1) were observed and the use of
both simulated and real data demonstrated that the WTC method was able to identify
time points of significant coherence (> Threshold) and objectively detect existence of
interdependent activity between the calf muscle EMG and blood pressure.

Conclusions: The WTC method effectively identified the presence of linear coupling
between the EMG and BP signals during quiet standing. Future studies with more
human data are needed to establish the exact characteristics of the identified
relationship.

Keywords: Wavelet transform coherence, Calf muscle EMG, Quiet standing, Blood
pressure, Posture control, Skeletal muscle pump
Background
The skeletal muscle pump as we understand it, pumps venous blood pooled in lower

limbs back to the heart through contractions under varied circumstances [1]. This acti-

vation has been shown to be essential to maintain venous return and blood pressure

(BP) during standing [2] and after exercise [3].

This mechanism is indicative of a possible baroreflex-induced interaction between

BP regulation and lower limb muscle activation. The potential interaction between BP

and postural sway (as an indicator of skeletal muscle pump activity) has been shown in
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terms of their relationships to lower limb and trunk discomfort [4]. In a previous study

we investigated the direct interaction between BP and postural sway [5] through clas-

sical coherence analysis, a method which has been extensively applied to physiological

time series that are generated by a combination of complex interactions. We observed

that mediolateral (ML) postural sway and BP were related with significant coherence in

the frequency range of 0.01 – 0.1 Hz. This frequency band was within the range previously

reported between postural sway and calf muscle electromyogram (EMG) (0 – 0.2 Hz) [6].

This provided motivation for more direct evidence of blood pressure mediated skeletal

muscle pump activation through the relation between EMG and BP signals.

The BP signal has been extensively studied for the analysis of baroreflex sensitivity,

respiratory sinus arrhythmia, and other cardiovascular conditions [7]. On the other

hand, studies of EMG signals from the lower leg muscles have been largely focused on

exercise and posture assessments [6] with minimal focus on their relation with BP

changes. Both EMG and BP signals have been identified as non-linear and non-

stationary in nature [8,9], as they are both time and pulse dependent, thus requiring a

more sophisticated approach than the classical Fourier based coherence analyses. The

activation of the skeletal muscle pump (pulse) to improve venous return during con-

ditions of declining blood pressure is an interaction of complex nature presenting

non-trivial structure due to the number of regulatory mechanisms in the blood flow

control [10].

In this study we chose to use the wavelet transform, a method which has been used

in many forms to analyze physiological signals. Discrete wavelet transforms (DWT) and

continuous wavelet transforms (CWT) have been used for feature extraction analysis of

EMG signal [11-13] and applied to investigations of low frequency BP fluctuations in

rats [14], peripheral blood circulation oscillations [15], and vasovagal syncope [16]. The

use of both DWT and CWT in cardiovascular signal analysis has been reviewed in

detail by Addison [17].

The coherence function is a method used to assess the existence and strength of

linear coupling between two signals in the frequency domain [18]. Classical coherence

and correlation methods have been used to investigate the relationship between signals;

however, signal stationarity is assumed. This stationarity assumption can potentially

overshadow the dynamic characteristics required for continuous physiological adjust-

ments to maintain homeostasis. Therefore, Fourier based coherence and spectral ana-

lysis methods including short-time Fourier transform are of limited utility. The wavelet

transform coherence (WTC) method is a known signal analysis tool for random-like

deterministic signals created by complex and not fully understood mechanisms. It has

been investigated and applied in cardiovascular analysis [19] with the aim of under-

standing the response of the autonomic control system to induced orthostatic stress, an

area related to the proposed research.

Wavelet transform coherence is used to find transient correlations between signals.

The most common use of wavelet coherence is to find correlated areas between signals

that are uncorrelated for most of the time. The WTC method provides information on

the strength of the relationship as a time frequency map. In this way, related signal

features can be obtained over specific frequency zones and time points. Desired resolution

can be obtained simultaneously for each signal feature; higher temporal resolution for

higher frequencies, and higher spatial resolution for lower frequencies.
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The scope of this work was to investigate the applicability of the WTC method as a

tool for identification of presence of relationship between the cardiovascular and pos-

tural control systems. The preliminary attempt was made utilizing the classical coher-

ence method to find the existence of the relationship as per the previous work [5]. Bias,

standard deviation, and coherence threshold were calculated in the frequency range of

interest using simulated signals in order to evaluate the baseline characteristics of the

method independent of human variability for the signals under investigation. Finally,

the WTC estimator was applied to real physiological signals acquired from the two

systems in a quiet stand test.

Methods
Wavelet transform

We applied the Morlet wavelet to the WTC estimation in our study since it is a com-

monly used mother wavelet for the analysis of physiological signals [17,19]. A descrip-

tion of its application in this study is presented below while more detailed discussion of

the WTC method can be found in previously published work by Torrence and Compo

[20] and Grinsted et al. [21].

Briefly, the discrete form of the CWT is shown in Equations 1 and 2 where xn is the

digitized time series with time step δt, n = 1,.,., N, s represents scale and Ψ is the scaled

and translated mother wavelet.

Wn sð Þ ¼
XN−1

n0¼0
xn0Ψ

� n0‐nð Þδt
s

� �
ð1Þ

Ψ
n0‐nð Þδt

s

� �
¼ δt
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� �1=2

Ψ 0
n0‐nð Þδt

s
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The Morlet coefficient, ω0, defines the balance between frequency and time reso-
lution where ω0>6 is the minimum requirement as per the admissibility condition [22].

For our analyses and frequency resolution requirements, we tested the coherence esti-

mator in the range 6 < ω0 < 30 for its statistical acceptance.

For the mother wavelet, the scale to frequency transformation (Equation 3) was de-

fined through the Fourier wavelength [20]. The scale to frequency conversion enabled

the creation of a spectrogram as a time frequency map of coherence amplitude against

a less intuitive time scale map.

λ ¼ 1
f
¼ 4πs

ω0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ω2

0

p ð3Þ

Based on previous work in our laboratory where we first investigated the frequency
dependent relationship between postural sway and BP [5], analysis with the WTC esti-

mator was conducted for three frequency bands which encompass the frequency ranges

commonly associated with cardiovascular regulation [19], namely, High Frequency

(HF) band 0.5 – 0.1 Hz; Low Frequency (LF) band 0.1 – 0.05 Hz; and Very Low

Frequency (VLF) band 0.05 – 0.01 Hz. The coherence output in the time frequency

map was averaged over each respective frequency band to obtain the three band coher-

ence estimates.
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The squared wavelet coherence estimator was defined as the squared absolute value

of the smoothed cross- wavelet spectrum Wxy
n

� �
, normalized by the smoothed power

spectrum of the two signals Wx
n;W

y
n

� �
(Equation 4).

Ĉ2
n ¼
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n sð Þ : s−1	 
�� ��2
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The wavelet power density estimator of xn is defined as Wxx
n sð Þ ¼ Wx

nW
x�
n where, Wx�

n

was the complex conjugate of the wavelet coefficient Wx
n (Equation 1). The cross wavelet

transform of two time series, xn and yn, was defined as Wxy
n ¼ Wx

n sð ÞWy�
n sð Þ. The symbol

〈⋅〉 in Equation 4 was the smoothing operator as defined by Torrence and Webster [23].

Statistical validation for the WTC method

Statistical validation of the new method for application to physiological signals was

needed to establish the participant independent baseline characteristics. Simulated

signals were generated to closely resemble the real signal in the analysis. As our analysis

involves two different types of signals, we independently simulated the EMG and

systolic blood pressure (SBP) signals; Rowell [1] demonstrated that both the transition

from supine to upright stance and induced postural sway have a greater effect on

systolic blood pressure than diastolic or mean arterial pressure. Similar to Bonato and

colleagues [24], the myoelectric signal obtained from surface electrodes was modeled as

a filtered noise signal. Both Gaussian and Laplacian noise signals were considered in

the simulation to take into account the effects of muscle contraction levels on EMG

signal distribution. That is, EMG recorded at low contraction levels has super-Gaussian

distribution (e.g., Laplacian distribution) and tends to be Gaussian with increasing

contraction level [25]. A shaping filter was used, as suggested by Stulen and Deluca

[26], with the following transfer function (Equation 5):

H fð Þ ¼ k2f 4h f
2

f 2 þ f 2l
� �

f 2 þ f 2h
� �2 ð5Þ

Where: fl = bandpass low cut off frequency, fh = bandpass high cut off frequency, and

k = 1.699/fh k.

The EMG signal was synthesized using the transfer function in Equation 5 with the

low and high cutoff frequency at 0.01 and 0.5 Hz, respectively. As the SBP signal vari-

ation does not have a consistent pattern, the SBP signal was modeled as a bandpass

filtered white noise signal in the range 0.01 – 0.5 Hz to simulate an arbitrary SBP

signal. For all simulated signals (EMG, SBP) 2400 data points were generated at a

sampling frequency of 10Hz to create a data length equal to 4 minutes.

The theoretical coherence estimation was based on the model of a single input single

output (SISO) linear time invariant (LTI) system [27,28]. The theoretical coherence

between X(t) and Y(t) was given by:

γ2 fð Þ ¼ 1
1þ GNN fð Þ=GXX fð Þ ð6Þ

Where GXX ( f ) and GNN ( f ) were the spectral density functions of the input signal, X
(t), and the noise N(t) that was added to get the output signal, Y(t), respectively [29]. In
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order to apply the model to our time-frequency analysis, we used the wavelet power

spectral density function in Equation 6:

γ2n sð Þ ¼ 1

1þWNN
n sð Þ=WXX

n sð Þ ð7Þ

Equation 7 shows that the theoretical coherence is effectively determined by the sig-

nal to noise ratio (SNR) of the system given by the denominator and vice versa [27,28],

which is further controlled through the variance of the added noise relative to the

input.

The simulated data were then used to estimate the coherence through WTC which

was compared to the theoretical coherence to determine signal bias and standard devi-

ation. Bias of a measurement reflects the tendency towards a particular value in the

range of measurement and standard deviation measures the spread of the estimation

from the mean value. Under an ideal scenario one would expect to have low values of

bias and standard deviation, and choose appropriate parameters for the estimators. In

accordance with the SISO system model for most physiological systems [27], the output

signal, Y(t), was obtained by the addition of zero mean Gaussian white noise to the

input X(t) (simulated signals) with a variance equivalent to that calculated with the

SNR through Equation 6.

The bias and the standard deviation (SD) estimates for the modulus of the transfer

function for the SISO system have previously been defined by Pinna and Maestri [27],

these estimates were adapted for the WTC method and new bias (Equation 8) and

standard deviation (Equation 9) estimates were obtained:

bias kð Þ≅ 1
N

XN
C2 kð Þ

� �
−k ¼ C2 kð Þ�−k ð8Þ

SD kð Þ≅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N � 1

XN
C2 kð Þ−C2 kð Þ�

� 
2
r

ð9Þ

where k was the theoretical coherence level (γ2) from 0.05 to 0.95 in 0.1 steps, and C2

(k) was the calculated WTC value for the signal pair associated with each theoretical

coherence level k (through SNR in Equation 6). This procedure was repeated for the

different wavelet coefficients ω0 = 6, 10, 15, 20, 30. The bias and SD measures were

calculated as an average over the values obtained for 1000 mutually independent

synthesized input/output signal pairs.

As a final step, the threshold of the coherence estimator was determined. The thresh-

old defines the value above which the coherence will be considered significant, and the

two signals to have linearly dependent behavior at that time point. The coherence out-

put for two completely uncoupled signals provides information about the significance

threshold values for the particular coherence estimator.

To find the threshold for the WTC estimator, signals for SBP and EMG were synthe-

sized as defined above. Using the SISO system model, the output signals were obtained

with added white noise, but the variance was kept at a level that gave a SNR < <1,

which provided a theoretical band coherence value close to zero (Equation 7). The

input/output pairs were then created and checked for the threshold of WTC for differ-

ent values of ω0.
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The band coherence was estimated between each input/output pair and averaged

over 1000 iterations to give a coherence time series; and the empirical sampling distri-

bution (frequency histogram) was computed for each frequency band. The threshold

for zero coherence, T(f ), was set at the 100(1-α) percentile of the coherence sampling

distribution, where α is the significance level of the statistical test kept at 95% confi-

dence or 0.05 [30].
Data collection

Based on the coherence threshold provided by the simulation, data from five partici-

pants were collected to investigate in vivo interactions between EMG and blood pres-

sure. The protocol followed in the present study was approved by the office of research

ethics of the Simon Fraser University to be of minimal risk to the participants. All

participants provided written informed consent prior to starting the experiment.

Experimental data were collected following the protocol described by Blaber et al. [5].

Additionally, bilateral lower leg EMG was performed for four leg muscles: tibialis an-

terior, medial gastrocnemius, lateral gastrocnemius, and medial soleus. Transdermal

differential recording of signals was performed using an 8-channel EMG system, (Myosys-

tem 1200, Noraxon Inc., Arizona, USA). For signal transduction, Ag/AgCl dual electrodes

(2 cm inter-electrode distance) were used at the muscle sites, and a single Ag/AgCl elec-

trode was placed at the right lateral malleolus as a reference electrode. Electrocardiog-

raphy (ECG) signals were acquired (LifePak 8, Medtronic Inc, Minnesota, USA) using the

Lead II configuration of ECG electrode placement. Blood pressure signals were acquired

by photoplethysmography using a finger cuff electrode (Finapres, Ohmeda 2300 Ohmeda,

Ohio, USA). The postural sway data, in terms of the coordinates of the COP of the body,

were calculated from the force and moment data collected with a force platform (Accusway,

Advanced medical technologies Inc, MA, USA).

All data were acquired using a 32-analog input channel data acquisition card and

Labview 8.2 software (National Instruments Inc., TX, USA) with a sampling rate of

1000 Hz. Data were filtered with a Butterworth filter of fourth order with a low-pass

cut-off frequency at 20 Hz and a high-pass cut off at 0.001Hz to remove the DC (0 Hz)

noise. The R-waves in the ECG waveform were detected, and the corresponding time

mapped SBP time series was generated. All data were re-sampled at 10 Hz using

interpolation before further analyses were performed. Data pre-processing and analysis

were performed using MATLAB 2009b (Mathworks Inc, MA, USA). Statistics were

presented as means ± SD.
Experimental protocol

The experiment was conducted in a sensory input reduced environment within an

enclosed space of black drapes to remove all random visual stimuli. Measurements for

height, weight and orthostatic correction for blood pressure were conducted prior to

setup. Participants were set up for data acquisition prior to experimentation. After all

the electrodes were placed, the participant was asked to sit quietly with a straight back

and arms relaxed by the sides to verify the signal authenticity. The participants were re-

quired to be seated for 5 minutes, after which they were asked to stand (assistance was

provided during the transfer from sit to stand) for 5 minutes with eyes open. They were
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instructed to make a passive transition from the seated to upright stance phase without

altering their foot position. During the entire test duration, they were required to main-

tain eye-level gaze. The same 10-minute procedure was repeated with eyes closed with

an imaginary eye-level gaze in the same position as with eyes open. The data with eyes

closed were selected in the analysis, as postural sway increase and elevated levels of

muscle activation were observed with the removal of visual input. The last 4-minute

data during standing were used in the analysis.

Aggregate EMG was obtained by addition of rectified, zero–mean, EMG recordings

from all individual leg muscles. The aggregate EMG measure has been used in exercise

related studies [31] and was adopted similarly as a measure of total muscle activity.

Data from five young (19–27 years), healthy, male participants were analyzed to check

the applicability of the method.
Results
Simulations

For simulated EMG (Figure 1), bias and SD reduced with increasing levels of coher-

ence. Different ω0 values yielded similar bias for EMG data. There was a steep fall in

the value of SD for low coherence values which changed to a steady reduction for

higher coherence. The Laplacian based EMG simulation yielded similar bias and

slightly lower SD than the Gaussian simulation. With SBP (Figure 2) there was a trend

towards a reduction in bias with increasing coherence levels. Within the range of inter-

est for coherence in the current study (i.e., > ~0.3 (threshold)), ω0 = 6 showed overall

small bias and consistent behavior across different frequency bands. Values of SD in-

creased for lower coherence levels, and reduced for higher coherence levels after reach-

ing a peak in between.

Based on the overall bias results, in conjunction with the limited number of data

samples in the current study, we picked a small wavelet (i.e., ω0 =6) in the WTC ana-

lysis of real data. The threshold values of coherence between EMG and SBP were found

to be at 0.3248 (HF), 0.3249 (LF), and 0.33 (VLF) for Gaussian EMG simulation and

0.3332 (HF), 0.3317 (LF), and 0.3318 (VLF) with Laplacian based simulation.
Stand tests

The cross power spectral density (CPSD) analysis of the stand test data in the frequency

range (0 – 0.1 Hz) showed peaks in the entire range (Figure 3) (coherence: 0.16 ±

0.05; power: 0.1 ± 0.06 Power/Hz). Both the spectral power and coherence between

the signals showed peaks around 0.05 and 0.08 Hz. The results in Figure 3 are displayed

in the frequency range (0.03 – 0.1 Hz) as the output had very less number of data

points to provide interpretable results in the range < 0.03 Hz. The individual results for

all participants’ data analysis are shown in the Table 1.

In the WTC analysis of the stand test data, the WTC threshold obtained from Laplacian

EMG simulation were applied because of the low muscle contraction level during

quiet standing [25]. The WTC estimator showed significantly high coherence in all

three frequency bands. For the representative participant (number 2), the coherence

time series was above significance levels for at least one of the three frequency bands

at almost any time point in the whole duration under analysis (Figures 4 and 5). The



Figure 1 Bias and standard deviation vs. coherence plots of the simulated electromyogram (EMG)
signals based on (A): Laplacian and (B): Gaussian noises (ω0=6 square; ω0=10 diamond; ω0=15
cross; ω0=20 triangle; ω0=30 star).
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coherence estimator (HF: 0.34; LF: 0.32; VLF: 0.42, averaged over 4 minutes) showed

significant values for 53.8% (HF), 36.5% (LF), and 86.4% (VLF) of the whole time dur-

ation under consideration. The results from the analysis of all five participants’ data

are included in Table 1. Averaging over all participants, the WTC estimator (HF: 0.33 ±

0.04; LF: 0.33 ± 0.07; VLF: 0.45 ± 0.06) detected significant coherence for 46.5 ±

13.6% (HF), 48.5 ± 25.8% (LF), 92.3 ± 11.2% (VLF) of the whole time duration under

consideration.



Figure 2 Bias and standard deviation vs. coherence plots of the simulated systolic blood pressure
(SBP) signals (ω0=6 square; ω0=10 diamond; ω0=15 cross; ω0=20 triangle; ω0=30 star).
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Discussion
The present study investigated the feasibility of the wavelet transform coherence

method to detect the existence of a time varying relationship between fluctuations in

blood pressure and muscle activation in the lower legs using simulated data and real

physiological data from healthy young male individuals during quiet stance. The

present study is one of the very few which have applied the WTC method for the ana-

lysis of relationships between non-stationary physiological signals, and the first to

investigate the applicability in identifying the relationship between the BP and EMG

signal pair. Classical coherence methods have often been used to find such relation-

ships, but these methods assume a stationary nature of the signals. As BP and EMG

signals have been identified to be non-stationary, these classical methods do not pro-

vide complete analyses. The WTC method provided a coherence output in the form of

a time frequency map depicting corresponding coherence values for each time point in

the frequency range of interest (Figures 4 and 5).

Classical coherence analysis similar to the previous research in our lab [5] was

applied to the data to obtain the cross-spectral power and coherence variation with

frequency (Figure 3). The plots show presence of peaks in the frequency range of 0.03 –

0.1 Hz. However, no acceptable information was received in the frequency range < 0.03 Hz,

as the number of available data points was too low to obtain convincing results. The pres-

ence of peaks in the plots suggests that there exists a relationship between the signals

which needs to be investigated further. These plots provided aggregate measure with fre-

quency resolution, but no information was obtained regarding the change in the linear de-

pendence with time. Hence this analysis only reiterated the previous results [5], but in this

case showing the presence of coupling between the EMG and SBP signals during the nor-

mal condition. To further understand the time dependence of the signal interrelationship

we therefore applied the WTC method to achieve both time and frequency resolution.



Figure 3 Average (bold lines) plus or minus one standard deviation (dash lines) cross-spectral
power density (top) and coherence (bottom) estimates for young, healthy male participants (n = 5)
between EMG and SBP signals.
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Time-frequency coherence maps were obtained for both simulated and human sig-

nals to quantify and validate the estimator in the HF (0.1 – 0.5 Hz), LF (0.05 – 0.1 Hz),

and VLF (0.01 – 0.05 Hz) frequency bands. We chose to produce two representations

of the coherence estimate (i) time-frequency maps of coherence value, (ii) coherence



Table 1 Results from the analysis of real data of 5 male participants during quiet stance
with eyes closed

CPSD WTC

Participant no. Average value
of coherence

Average power
(power/Hz)

Average value
of coherence

Percentage
of time with
significant

interaction (%)

HF LF VLF HF LF VLF

1 0.15 0.04 0.31 0.39 0.52 37.9 67.2 100.0

2 0.14 0.04 0.34 0.32 0.42 53.8 36.5 86.4

3 0.13 0.19 0.30 0.25 0.39 35.5 31.1 75.2

4 0.16 0.12 0.30 0.40 0.40 38.0 84.0 100.0

5 0.25 0.11 0.39 0.27 0.50 67.1 23.7 100.0

The wavelet transform coherence (WTC) output is presented independently in the three frequency bands. The output for
cross power spectral density (CPSD) analysis is averaged in 0.03 - 0.1 Hz frequency band.
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(average over a frequency range) with time. The simulated signal sets were derived

from a band pass filtered noise signal as established in the literature [24,25,32]. The use

of simulated data sets enables an objective evaluation of the analysis method. Statistical

validation of the WTC estimator showed low values of bias and standard deviation

within the range of interest for coherence for the simulated EMG (both Laplacian and

Gaussian) and BP signal data sets. This signified an unbiased analysis of the inter signal

coherence with minimal variance across the different analysis parameters. The thresh-

old levels obtained from the simulated data sets are generic and independent of the

source of data, and can be applied in further studies using such analysis. Note the

WTC analysis was also validated on EMG data simulated from Gaussian noise in this

study and the corresponding threshold of significant coherence can be utilized in future

studies involving high muscle contraction levels (e.g., exercise).

Previous research with a similar application of WTC methods has shown comparable

results with acceptable differences from the current study [19,20,23]. The differences in

the values of the statistical measures and behavior with different values of the Morlet

coefficient, ω0, were as expected based on the different types of signals under investiga-

tion. In particular, the current study investigated the EMG signal that has been shown

to have a large random component [8]. The randomness in the signals, and the
Figure 4 Time-frequency map of coherence between EMG and SBP obtained from one participant
(number 2) using the wavelet transform coherence (WTC) analysis method.



Figure 5 Three plots of band coherence obtained from averaging over corresponding frequency
bands with the solid line representing the coherence between EMG and SBP and dashed straight
line the significance level for the corresponding frequency band.
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different frequency ranges of interest produced the observed differences and overall

outcome of the analysis.

When applied to the real signal sets, the WTC method was successful in identifying

zones of significant coherence between the two signals under investigation. Of particu-

lar interest was that the coherence time series was above significance (>T) for at least

one of the three frequency bands at almost any time in the whole duration under ana-

lysis. This would indicate that there were changes in the spectral characteristics of the

dependence between the two signals over time. The percentage time of significant co-

herence (Table 1) suggests that the signals were not interacting for the entire time

duration, but only for a smaller section of time distributed over the entire duration

under investigation.

The time-frequency representation of coherence also allowed for the assessment of

the coupling between the two signals over different time scales (i.e., HF, LF, and VLF in

the present study). The frequency ranges of interest were chosen in accordance to the

results obtained in the Fourier cross-spectral analysis. While the origin of VLF interac-

tions is not fully understood, significant coherence in HF (0.5 – 0.1 Hz) band may

imply a respiration-driven coupling between postural control and BP regulation

whereas a baroreflex-induced sympathetic outflow to the skeletal muscle may be char-

acterized by the LF (0.1 – 0.05 Hz) coherence band. Further studies with more partici-

pants and experiment protocol including well controlled physiological perturbations

are warranted to fully investigate the physiological relevance of wavelet coherence in

these different frequency ranges.

The low values of coherence and spectral power obtained by classical analysis are due

to the aggregation of the effect of changing dependence between the signals over time.

On the other hand, the WTC analysis enabled us to find that there was a change in the

dependence (coherence value) between the two signals which was not consistent

throughout the time duration. Additionally, the WTC method found that the coupling

between the signals increases and decreases in a non rhythmic pattern, suggesting that

there is not likely a fixed pattern of coupling. On average over time the WTC estimator

provided higher values of coherence than the classical coherence method, attributed to

the characteristics of Morlet wavelet function applied to the signals under investigation.

This implies that the results from the two methods indicate the same outcome, with
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the additional advantage of the time-frequency resolved output obtained from the

WTC method.

As a validation study, the focus was to identify the overall coupling between lower

limb muscle activity and the blood pressure on a system level. Therefore, an aggregate

EMG was the reasonable choice in this context. However, summed EMG could poten-

tially overlook the detailed roles of individual muscles in the cardio-postural interac-

tions. Assessment on the relationships between individual lower limb muscle activation

and BP regulation will be performed in subsequent studies. Moreover, investigations

with more participants, hence greater statistical power, are warranted in the future to

further compare the cardio-postural interactions under different conditions (e.g., eyes

open vs. eyes closed) and/or between different groups (e.g., young vs. elderly).
Conclusions
In the present study we established wavelet transform coherence analysis as a viable

method for the analysis of the relationship between non-stationary blood pressure and calf

muscle electromyography signals. The physiological relevance of the individual frequency

bands was not evaluated, however; the time shifts in the individual signal characteristics

may be related to the activity of other systems. Wavelet analysis provides a better and

more powerful tool to investigate the hypothesized [5] bidirectional interaction between

these two systems. Further in depth analysis to characterize the physiological dependence

between cardiovascular regulation and lower leg muscle electromyographic activity is now

required.
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