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Abstract

Background: Abdominal organs segmentation of magnetic resonance (MR) images
is an important but challenging task in medical image processing. Especially for
abdominal tissues or organs, such as liver and kidney, MR imaging is a very difficult
task due to the fact that MR images are affected by intensity inhomogeneity, weak
boundary, noise and the presence of similar objects close to each other.

Method: In this study, a novel method for tissue or organ segmentation in
abdomen MR imaging is proposed; this method combines kernel graph cuts (KGC)
with shape priors. First, the region growing algorithm and morphology operations
are used to obtain the initial contour. Second, shape priors are obtained by training
the shape templates, which were collected from different human subjects with
kernel principle component analysis (KPCA) after the registration between all the
shape templates and the initial contour. Finally, a new model is constructed by
integrating the shape priors into the kernel graph cuts energy function. The entire
process aims to obtain an accurate image segmentation.

Results: The proposed segmentation method has been applied to abdominal
organs MR images. The results showed that a satisfying segmentation without
boundary leakage and segmentation incorrect can be obtained also in presence of
similar tissues. Quantitative experiments were conducted for comparing the
proposed segmentation with other three methods: DRLSE, initial erosion contour
and KGC without shape priors. The comparison is based on two quantitative
performance measurements: the probabilistic rand index (PRI) and the variation of
information (VoI). The proposed method has the highest PRI value (0.9912, 0.9983
and 0.9980 for liver, right kidney and left kidney respectively) and the lowest VoI
values (1.6193, 0.3205 and 0.3217 for liver, right kidney and left kidney respectively).

Conclusion: The proposed method can overcome boundary leakage. Moreover it
can segment liver and kidneys in abdominal MR images without segmentation errors
due to the presence of similar tissues. The shape priors based on KPCA was
integrated into fully automatic graph cuts algorithm (KGC) to make the
segmentation algorithm become more robust and accurate. Furthermore, if a shelter
is placed onto the target boundary, the proposed method can still obtain satisfying
segmentation results.
Introduction
The recent development of open magnetic resonance imaging has provided new op-

portunities for next generation image-guided surgical and interventional applications.

Image-guided surgery is a standard surgical procedure for abdominal disorders that
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can reduce surgical trauma and open surgery burdens [1]. However, during surgical

planning and surgical navigation based on MR images, there are two problems have to

be faced: the shape deformation of the organs and the similarity among abdominal or-

gans. For these reasons, an effective and robust algorithm for abdominal organs seg-

mentation is helpful and very important in image-guided surgery and surgical

navigation system [2,3].

Usually, basic image information, such as intensity and gradient, are used for segmen-

tation; Ostu, k-means clustering, region growing, etc. are the most widely used algo-

rithms for segmentation. However, they are not suitable for MR segmentation. Because

of its weak boundary, intensity inhomogeneity and noise, the segmentation of MR im-

ages is considered a complex procedure [4]. For this reason, developing different ad-

vanced and intelligent algorithms for MR image segmentation has become a research

hotspot over the last few years.

Abdomen MR image segmentation is a challenging task, because majority of tissues

in abdomen are soft tissues, the intensities of abdominal tissues are very similar and

shape change in a complex way due to respiratory movements [5]. To provide more in-

formation about the tissues and organs in abdomen to the doctors, more effective and

robust algorithm to segment abdomen MR images are developed. For example, Hassan

et al. [6] proposed a novel method to segment liver MR images automatically. This al-

gorithm utilizes artificial neural networks and watershed algorithm. Moreover, Sheng

et al. [7] applied a wavelet-based k-means clustering method to segment the human

kidney from MRI data set.

Since the level set method can be performed on a fix Cartesian grid with no need to

parameterize these objects, in the past decade it was used more and more frequently in

image segmentation [8-11]. Moreover, the level set method can represent contours with

complex topology and change their topology in a natural way. However, the algorithms

converge to a local minimum easily, so the results are easily affected by the initial

values. Additionally, the execution time may be very long in some applications, espe-

cially with large images and multi-object segmentations [12,13].

Graph cuts techniques have received considerable attention for their global energy

optimal advantages. It is used in more and more image segmentation applications for

different medical images, such as MR images [14]. However, it requires to choose the

object and background seeds interactively, implying a time-consuming procedure. Ker-

nel graph cuts is a fully automatic algorithm based on graph cuts proposed by Salah

et al. [15]. It consists of a multi-region image segmentation algorithm based on graph

cuts via kernel mapping of the image data. This algorithm is not successful for abdom-

inal organs segmentation due to the weak boundary and surrounding objects with simi-

lar intensities. The graph cuts based on active contours method was proposed by Xu

et al. [16]. The method identifies an initial contour around the target and then forms

the narrow banded area containing the target via dilation and erosion. The segmenta-

tion focuses on image data in the narrow banded area, and separates the abdominal or-

gans with similar intensities. However it cannot solve the weak boundary problem that

leads to edge leakage. Integrating the prior information into the segmentation is a

popular solution for the weak boundary; the prior information can lead to a more ac-

curate segmentation result according to [17-20]. Asem et al. [21] proposed graphs cuts

integrated shape priors, and applied this method to kidney segmentation in abdomen
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MR images. The result of the segmentation shows that it can overcome the edge leakage,

however, it uses the probabilistic model, which increases its complexity; moreover, it also

needs interactive operations. Chen et al. [21] integrate shape information generated from

Active Appearance Model (AAM) into graph cuts for abdominal 3D organ segmentation.

However, the long computation time and the dependence of initial location limit its appli-

cations. Comparing to the linear PCA (principle component analysis), the nonlinear PCA

model performs better on problems with nonlinear deformation [22]. Malcolm et al. [23]

proposed a segmentation model that integrates the KPCA-based shape priors into graph

cuts, but the model executes iteratively so it is time-consuming.

In this paper, we propose a new method, which combines kernel graph cuts with

KPCA to segment abdominal organs. First, a seed point is chosen inside the target

organ, and then the region growing algorithm is used to obtain approximately segmen-

tation. Second, image morphology operations (dilation and erosion) are used to form

an initial contour close to the target organ. Third, KPCA is used to obtain the shape

priors by training the relevant shape templates set. At last, the shape priors are inte-

grated into kernel graph cuts to make a better segmentation. The main contribution of

this paper is the proposal of novel methods that combine kernel graph cuts algorithm

with shape priors for abdominal organs extraction. The shape priors based on KPCA

help our algorithm to increase segmentation accuracy while intensity is not sufficient

to obtain accurate segmentation results.

This paper is organized as follows. Section Methodology describes the methodology

which gives a description of kernel graph cuts and shape priors based on KPCA and

detailed introduction of our proposed method. Section Experiments presents the exper-

iments results obtained using the proposed novel method. Finally, the discussion about

the algorithms is presented and conclusions are drawn in Section Discussion and

Section Conclusions, respectively.

Methodology
This section starts by briefly describing the KGC and KPCA.

Kernel graph cuts

Graph cuts algorithm was introduced by Boykov et al. [14] for binary image segmenta-

tion application. The purpose is to segment an object from a given image using a set of

seeds (object and background) placed by user.

The graph cuts algorithm aims to cast the energy-based image segmentation problem

into a graph structure global min-cut problem. The energy function of graph cuts con-

tains two terms: a region-based term R(A)and a boundary term B(A), where A stands

for an object or background pixel assignment. The region-based term evaluates the

penalty for assigning a particular pixel to a given region. The boundary term evaluates

the penalty for assigning two neighboring pixels to different regions. These two terms

often weight by 0 ≤ ε ≤ 1 for relative influence, and the energy function is expressed as

follows:

E Að Þ ¼ ε⋅R Að Þ þ 1−εð Þ⋅B Að Þ ð1Þ

KGC was proposed by Salah et al. [15] for automatic segmentation by mapping image
data into high dimension through kernel function. Graph cuts method is a supervised
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algorithm which requires user intervention for choosing seeds (object & background).

The proposed energy function contains two terms: an original kernel-induced data

term which evaluates the deviation of the mapped image data and a regularization term

expressed as a function of the region indices. The energy function is expressed as fol-

lows:

E μlf g; δð Þ ¼
X
l∈L

X
p∈Rl

ϕ μlð Þ−ϕ Ip
� �� �2 þ α

X
p;qf g∈D

r δ pð Þ; δ qð Þð Þ ð2Þ

Where E({μ1},δ) measures kernel-induced non Euclidean distances between the observa-
tions and the regions parameters μ1. φ is a nonlinear mapping from the observation space I

to a higher dimensional mapped space J, and the radial basis function (gauss function) ker-

nel is used as usual. a is a positive factor. δ is an indexing function which assigns each point

of the image to a region. l ∈ L Is a pixel label in some finite set of labels L. P∈R1 is a pixel in
each region which is characterized by one label l. R(δ((p),δ(q,)) is a smooth regularization

function and D is a neighborhood set containing all pairs of neighboring pixels {p,q}.

According to the Mercer’s theorem [24], which states that kernel function can be

expressed as a dot product in a high-dimensional space, explicitly the mapping φ is not

available. Instead, the kernel function is as follow:

K y; zð Þ ¼ ϕ yð ÞT ⋅ϕ zð Þ ; ∀ y; zð Þ∈I2 ð3Þ

Substitution of the kernel function gives:

JK Ip; μ
� � ¼ ϕ Ip

� �
−ϕ μð Þ�� ��2

¼ ϕ Ip
� �

−ϕ μð Þ� �T ⋅ ϕ Ip
� �

−ϕ μð Þ� �
¼ ϕ Ip

� �T
ϕ Ip
� �

−ϕ μð ÞTϕ Ip
� �

−ϕ Ip
� �T

ϕ μð Þ þ ϕ μð ÞTϕ μð Þ
¼ K Ip; Ip

� �þ K μ; μð Þ−2K Ip; μ
� �

; μ∈ μlf g
ð4Þ

Equation (4) is solved for‖ϕ(Ip) − ϕ(μ)‖2 and substituted in (2). Thus, the kernel-
induced energy function is given by:

E μlf g; δð Þ ¼
X
l∈L

X
p∈Rl

JK Ip; μl
� �þ α

X
p;qf g∈D

r δ pð Þ; δ qð Þð Þ ð5Þ

Now, based on the kernel-induced energy function, the graph cuts algorithm can be
executed to segment images more efficiently.

Kernel principle component analysis

KPCA is a nonlinear feature extractor performed in the feature space F. The basic idea of

the method is to map the data from the input space S to a feature space F via nonlinear

map ϕ:S→F. Because KPCA is able to capture nonlinear features in the data comparing to

linear PCA, it can be used more effectively if a pre-image of the projection in the feature

space is available. Rathi et al. [22] proposed a novel method to reconstruct a unique ap-

proximate pre-image of a feature vector and applied it for statistical shape analysis.

To form the statistical model of shape space S, the pre-image of the projection (in

the KPCA space) of a test point x∈S should be found, as shown in Figure 1 from [25].

Let {x1, Xn}⊂S be a set of aligned training shapes represented by binary mask where 1 is

object and 0 is background and spread as vectors.



Figure 1 The pre-image problem in KPCA.
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First, the N×N kernel matrix K with the radial basis function (gauss function) has to

be computed:

Ki j ¼ k xi; xj
� � ¼ exp

− xi−xj
�� ��2
2σ2

 !
ð6Þ

Second, following Eigen decomposition has to be considered :

HKH ¼ U∑UT ð7Þ

H is the centering matrix given by H ¼ C− 1
N ccT ,C is the N×N identity matrix, c =

[11… 1]T is an N×1 vector, U = [∂1,⋯∂N]
T with ∂i = [ai1,…, aiN]

T is the matrix contain-

ing the eigenvectors and Σ = diag(λ1,…, λN) contains the corresponding eigen values.

Third, given a point x∈S one can compute its projection Pϕ(x)∈F and a subspace is

spanned by the first n eigenvectors given by:

Pφ xð Þ ¼
Xn
k¼1

βkV k þ �φ ð8Þ

N XN a

Where �φ ¼ 1

N∑i¼1φ xið Þ; ~φ is the map centralized by ~φ xð Þ ¼ φ xð Þ−�φ . Vk ¼
i¼1

k iffiffiffiffiffi
λk

p ~φ

xið Þ is the kth orthogonal eigenvector of the covariance matrix in F. The projection of

test point x in F project onto the kth component by Bk. Then βk ¼ 1ffiffiffiffi
λk

p XN
i¼1

ak i~k x; xið Þ

where ~k x; yð Þ ¼< ~φ xð Þ; ~φ yð Þ >¼ k x; yð Þ− 1
N
cTkx−

1
N
cTky þ 1

N2 c
TKc

with kx ¼ k x; x1ð Þ;…; k x; xNð Þ½ �T
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Finally, the method in [22] is used to compute the approximate pre-image x̂:

x̂ ¼
∑N
i¼1~γ i

1
2
2− φ xið Þ−Pφ xð Þk k2� �� �

xi

∑N
i¼1~γ i

1
2
2− φ xið Þ−Pφ xð Þk k2� �� � ð9Þ

And the distance used in feature space in equation (9) is defined as follows:
φ xið Þ−Pφ xð Þk k2 ¼ ~kx þ 2H 1
N
K c−kx i

� �� �T
M~kx þ 1

N2 c
TK cþ Ki i−

2
N
cTkx i ð10Þ

where M ¼
XN
i¼1

1
λi
∂k∂kT , γ = [∂1,…, ∂n]β, ~γ ¼ γ þ 1

N 1−cTγð Þ.

The pre-image x̂ contains the information that is used to form the shape priors. In

following section, the proposed method is presented and summarized.

Proposed method

To mitigate the effect of weak boundary in MR images and to segment abdominal or-

gans from surrounding objects with similar intensities, a novel segmentation method is

proposed. The method incorporates KPCA with KGC enlightened by [23]. KPCA is

used to form the shape priors based on the statistical model proposed by Rathi et al.

[22]. Enlightened by the GCBAC (graph cuts based Active Contours) proposed by Xu

et al. [16], the initial dilation and erosion contour idea is introduced into the method to

locate the position of shape priors. The framework of the segmentation method is

shown in Figure 2.

The proposed segmentation framework can be described in two phases.

Phase I is the pre-segmentation phase. It includes two procedures to form the image data.

First, to form the initial contour, a seed point is chosen inside the target region

manually, and then the region growing algorithm is used to segment the target region

approximately. Based on the result of region growing algorithm, a lot of isolated small

regions in the target region are not segmented correctly. For this reason, the morpho-

logical dilate and erode operation are executed over the pre-segmented contour using

the region growing algorithms. The dilate operation aims to eliminate those isolated

small regions and to form a continuous contour around the target region; the erode op-

eration aims to draw the contour near the real target region after the dilate operation.
Figure 2 The proposed segmentation framework.
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Same morphological structuring element is used for the operation of erode and dilate.

As a result, the initial contour is obtained. However, because of the weak boundary in

the MR images, a further processing is needed to overcome this problem to reach a

more accurate segmentation.

Second step includes obtaining the shape priors. Because of the differences varying

from person to person, and different parameters of MR imaging, the shapes of ab-

dominal organs to be segmented differ from each other. Moreover, the respiratory

movements make the deformation more complex. Since the deformation is nonlin-

ear, the KPCA is used to train the shape templates determined by experts. Before

training the data set, all the shape templates and the initial contour should be

aligned. So the image registration is needed here, and only translating, scaling and

rotating transforms are taken into consideration during the registration process.

Suppose that Xi is the vector of one shape template, one of the shape templates Xj is

to be chosen, the fittest parameters can be obtained through translating tj, scaling

and rotating transform M(sj,θj). The target function is obtained by minimizing the

error measure Ej:

Ej ¼ Xi−M sj; θj
� �

Xj
� 	

−tj
� �T

W Xi−M sj; θj
� �

Xj
� 	

−tj
� � ð11Þ

W is the weight matrix, and the least square method is usually used to solve it.

Commonly, most applications, such as feature extraction and pattern classification,

only need the new features generated by KPCA. However, for some other applications,

reconstructing the pre-image from the KPCA features is needed. In this case KPCA

feature is not necessary to describe the deformation patterns; on the contrary, it is re-

quired to reconstruct the shapes from the KPCA features. For a Gaussian kernel, the

pre-image x̂ can be obtained using Equations (6-10).

Phase II is the segmentation phase. Since the registration is composed of translating,

scaling and rotating transform, and the abdominal organs change from patient to patient,

the result of registration contour does not represent the real boundary of MR images, and

a more accurate segmentation procedure need to be followed. The image data constructs

the graph using energy function (5) in KGC, introducing the shape priors x̂ into the data

term to overcome the weak boundary. This work aims to use the data term for represent-

ing the penalty of pixel attribute to the object or background. Thus, it is assumed that

non-uniform shape priors Pp(O) and Pp(B) represent penalty of the shape priors attribute

to the object or background at a pixel P. A parameter η(0≤η≤1) is also introduced to rep-

resent the weight of relative influence between kernel-induced data term JK and shape

priors, so the new data terms can be written as follows:

Rp Oð Þ ¼ η⋅JK Ip; μO
� �þ 1−ηð Þ⋅Pp Oð Þ ð12Þ

Rp Bð Þ ¼ η⋅JK Ip; μB
� �þ 1−ηð Þ⋅Pp Bð Þ ð13Þ

Since the pre-image has value between 0 and 1, Pp(O) is directly used to represent x̂
and set Pp = (1-Pp(O)). The smooth term used the original term. At last, based on

Equation (5), the new energy function is given by:

E μlf g; δð Þ ¼ ∑
l∈L

∑
p∈Rl

η⋅JK Ip; μl
� �þ 1−ηð Þ⋅Rp lð Þ� �þ α ∑

p;qf g∈D
r δ pð Þ; δ qð Þð Þ ð14Þ
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Where l must be O or B, which stands for object or background. Thus, the multi-

region segmentation of KGC turns to be the binary segmentation of object or back-

ground. The new energy function is used to construct graph, compute min-cut and get

the segmentation.
Experiments
Segmentation is performed on abdominal organs in the abdomen MR images of T1 se-

quence, and the proposed novel segmentation method is validated using the MATLAB

7.11 program on Windows XP with Lenovo PC with Intel (R) Core (TM) 2 Duo CPU,

E7500, and tested using the liver and kidney dataset in abdomen MR images with size

of 462 × 310 pixels. All MR images are obtained by Siemens 3.0T MR imaging equip-

ment and all the shape templates are segmented manually by different experts. The size

of train set is 30.
Validation

First, the original MR images have to be segmented as shown in Figure 3. Figure 3 (a)

is used to segment liver in abdominal organs, and Figure 3 (b) is used to segment both

of the two kidneys in abdominal organs.
(a)  

(b)
Figure 3 Original image, (a)the abdomen MR image of liver; (b)the abdomen MR image of kidney.
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Second, a seed point is placed inside the liver and kidney region in the MR images,

and then the region growing algorithm is used to segment the image approximately.

The result of region growing algorithm is shown in Figure 4. From the Figure 4, it can

be seen that many isolated small regions are not segmented, and boundary leakage and

incorrect segmentation are observed. Many blood vessels exist inside the organ tissues

and the noise caused by MR equipment lead to lots of isolated small regions; mean-

while the soft tissues are very similar and the overlaps between different soft tissues

lead to weak boundary. So, more work is needed to solve this problem.
(a)

(b)

(c)
Figure 4 Region growing algorithm, (a) liver; (b) right kidney; (c) left kidney.
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Third, the morphological dilate and erode operation are implemented to fix the prob-

lem caused by region growing algorithm. The result contour of region growing is di-

lated and then eroded as demonstrated in Figure 5, the yellow contour is the result of

dilation and the blue contour is the result of erosion. The type of morphological struc-

turing element that is used in dilation and erosion is a disk whose radius can be ad-

justed depending on the result of region growing algorithm. In this experiment, the

size of radius is 15 pixels in liver segmentation, and 10 pixels in kidney segmentation.
(a)

(b)

(c)
Figure 5 Dilation (yellow contour) and erosion (blue contour), (a) liver(radius = 15); (b) right kidney
(radius = 10); (c) left kidney(radius = 10).
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Same morphological structuring element is used in the same MR image during the dila-

tion and the erosion operation. The blue contour is close to the real boundary of ab-

dominal organs as can be seen in Figure 5, but boundary leakage is still observable.

Finally, the shape priors are added into the segmentation to guide the contour more

accurate to the real boundary. The size of the training shape template set is 30, and a

registration is performed between initial erosion contour (blue contour) and all shape

templates (green contour). The result is shown in Figure 6. Figure 7 demonstrates the

shape priors which is obtained by training the shape template set using KPCA method.

Finally, KGC is combined with shape priors to segment the region inside initial dilation

contour (yellow contour) based on function (14). The result of segmentation is shown

in Figure 8, from which we can find the boundary leakage is eliminated and the seg-

mentation becomes more correct and accurate.
Quantitative verification

In order to verify the proposed segmentation method, quantitatively experiments are

performed to compare our method and other three methods: DRLSE [11], initial ero-

sion contour, KGC in the initial dilation contour without shape priors. The comparison

is based on two quantitative performance measures: the probabilistic rand index (PRI)

and the variation of information (VoI) [26-29].

The PRI counts the fraction of pairs of pixels whose labels are consistent between the

computed segmentation and the ground truth. The VoI metric defines the distance be-

tween two segmentations like the average conditional entropy. Since the result segmen-

tation boundaries of the proposed method are very close to the ground truth, visible

difference between them cannot be identified, for this reason the PRI and VoI are used

to quantify the segmentation results.

For each segmentation method, a higher value of PRI and a lower value of VoI imply

that the segmentation results are closer to the expert manual segmentation. The statis-

tic data are illustrated in Table 1, and the results of different segmentation algorithms

are shown in Figure 9. As can be seen in the Table 1, no matter whether the abdominal

organ is liver, right kidney or left kidney, the proposed method has the highest PRI

values and the lowest VoI values. As shown in Figure 9, the segmentation with the pro-

posed method has better performance than the other methods. The KGC with shape

priors based on KPCA can overcome the boundary leakage and segment every abdom-

inal organ independently without incorrect segmentation of the similar tissues. It indi-

cates that both for liver and for kidney segmentation, the proposed method is better

than the other methods.
Parameter adjustment

The value of parameter represents the relative influence of KGC data term and shape

priors term. In Figure 8, the value of η increases gradually from liver to right kidney.

Since the incorrect segmentation in the Figure 9(g-i) decreases gradually from liver to

right kidney, the KGC data term weighted in the energy function become high. If η has

a high value, the weight of KGC data term is high too and the weight of shape priors

term is small. For different organs different organs, the value of η can be adjusted to

optimize segmentation performance.



(a)

(b)

(c) 
Figure 6 Shape template set and initial contour registration, (a) liver; (b) right kidney; (c) left kidney.
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(a)

(b)

(c) 
Figure 7 Shape priors, (a) liver; (b) right kidney; (c) left kidney.
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As shown in Figure 10, when =0.65, 0.72 and 0.75, the segmentation of liver, right

kidney and left kidney reach the best accuracy. From the third row of Table 1, the value

of PRI is 0.8903, 0.9808 and 0.9913, and the value of VoI is 2.1212, 0.5351 and 0.3965

from liver to right kidney when using KGC inside initial dilation contour without shape

priors. In another words, the segmentation error decreases from liver to right kidney,

as also shown in Figure 9 (g-i).



(a)

(b)

(c)
Figure 8 Segmentation results of proposed novel method, (a) liver (η=0.65); (b) right kidney
(η=0.72); (c) left kidney (η=0.75).
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As mentioned above, by adjusting the value of parameter η, the segmentation can be

optimized. If the incorrect segmentation proportion of KGC inside initial dilation con-

tour without shape priors is small, the weight of KGC data term is high, so that the

value of η become bigger. On the contrary, if the incorrect segmentation proportion of

KGC inside initial dilation contour without shape priors is high, the value of η should

become smaller. In this way, a satisfying segmentation result can be obtained finally.



Table 1 The PRI and VI of different methods in liver and kidneys

Measures PRI VoI

Liver Right
kidney

Left
kidney

Liver Right
kidney

Left
kidney

DRLSE 0.9808 0.9911 0.9930 1.6648 0.3823 0.3595

Initial erosion contour 0.9155 0.9906 0.9917 1.8772 0.3485 0.3311

KGC in the initial dilation contour without
shape priors

0.8903 0.9808 0.9913 2.1212 0.5351 0.3965

The proposed method 0.9912 0.9983 0.9980 1.6193 0.3205 0.3217
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Discussion
Because of the noise, weak boundary, intensity inhomogeneity and similar intensities

among different abdominal organs, the segmentation of abdominal organs is normally

considered a challenging task. Furthermore, the deformation caused by individual dif-

ference and respiratory movement makes the segmentation task even more difficult.
(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9 The results of different algorithms on liver, right kidney and left kidney from left to right
of each row in order, (a-c) DRLSE; (d-f) initial erosion contour; (g-i) KGC in the initial dilation
contour without shape priors; (j-l)the proposed method (η=0.65, 0.72, 0.75).



(a)

(b)

(c)
Figure 10 The segmentation of different η using the proposed method, from left to right in each
row, (a)liver:η= 0.8, 0.7, 0.65, 0.6; (b) right kidney: η= 0.8, 0.75, 0.72, 0.7; (c) left kidney: η= 0.9, 0. 8,
0.75, 0.7.
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KGC is a fully automatic segmentation algorithm based on graph cuts. If the KGC

algorithm is used alone to segment abdomen MR image, the segmentation result is

not satisfying as shown in the Figure 11 (a). The blood vessels in organ and the over-

laps among abdominal organs affect the segmentation, thus, a fully complete bound-

ary of liver or other organs cannot be obtained. To make the segmentation

procedure focus on a given organ, the initial contour is produced by region growing

algorithm and morphology operation. But this is considered not enough. The seg-

mentation result can be seen from Figure 11(b). For this reason some shape priors

has been used to make the segmentation algorithm more robust and accurate. Since

KPCA can handle nonlinear deformable information, the shape priors based on

KPCA is integrated into KGC. Moreover, if a shelter is placed onto the target’s

boundary, a satisfying segmentation result can be also obtained. This is validated by

experiments as shown in Figure 11 (c).

Additionally, to develop reliable prior knowledge, we should choose patients with

similar age and weight. In this way their shape prior would guide to the correct

segmentation.

On the clinical side, the work assumed that the geometric inaccuracy, such as distor-

tion, does not exist. Because of this, the MR imaging technology has experienced a

rapid development to overcome the magnetic field inhomogeneity. Nowadays, the

image spatial resolution can be very high and geometric distortion of MR images can

be ignored. However, if a more accurate segmentation is needed, geometric distortion

should be corrected at first. This will be investigated in future works.



(a)

(b)

(c)
Figure 11 Comparison of different constraint with KGC on liver, (a) KGC’s segmentation for liver
without initial contour, (b) KGC in the initial dilation contour without shape priors, (c) the proposed
method’s segmentation with shelter.
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Conclusions
In this paper, a novel method is proposed to segment abdominal organs integrating ker-

nel graph cuts with KPCA shape priors after a series of pre-processing on the abdomen

MR images. The morphology operation can eliminate the isolated small region after re-

gion growing algorithm. The kernel graph cuts is a fully automatic segmentation
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algorithm, and it also has global minimization and polynomial time complexity charac-

teristics. The shape priors, generated by pre-image projection via KPCA, can handle

nonlinear deformation. Experiments on liver and kidney segmentation of abdomen MR

image showed that the novel method can obtain satisfying results. The kernel function

used in this method is gauss function, and other kernel functions have not been tested

yet. Currently, the seed point is obtained manually, but automation will be considered

in future works. For the time performance, the algorithm can be parallelized on

Graphic processors to achieve higher performance.
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