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Abstract

Background: Recently, a growing number of neuroimaging studies have begun to
investigate the brains of schizophrenic patients and their healthy siblings to identify
heritable biomarkers of this complex disorder. The objective of this study was to use
multiclass pattern analysis to investigate the inheritable characters of schizophrenia
at the individual level, by comparing whole-brain resting-state functional
connectivity of patients with schizophrenia to their healthy siblings.

Methods: Twenty-four schizophrenic patients, twenty-five healthy siblings and
twenty-two matched healthy controls underwent the resting-state functional
Magnetic Resonance Imaging (rs-fMRI) scanning. A linear support vector machine
along with principal component analysis was used to solve the multi-classification
problem. By reconstructing the functional connectivities with high discriminative
power, three types of functional connectivity-based signatures were identified: (i)
state connectivity patterns, which characterize the nature of disruption in the brain
network of patients with schizophrenia; (ii) trait connectivity patterns, reflecting
shared connectivities of dysfunction in patients with schizophrenia and their healthy
siblings, thereby providing a possible neuroendophenotype and revealing the
genetic vulnerability to develop schizophrenia; and (iii) compensatory connectivity
patterns, which underlie special brain connectivities by which healthy siblings might
compensate for an increased genetic risk for developing schizophrenia.

Results: Our multiclass pattern analysis achieved 62.0% accuracy via leave-one-out
cross-validation (p < 0.001). The identified state patterns related to the default mode
network, the executive control network and the cerebellum. For the trait patterns,
functional connectivities between the cerebellum and the prefrontal lobe, the middle
temporal gyrus, the thalamus and the middle temporal poles were identified.
Connectivities among the right precuneus, the left middle temporal gyrus, the left
angular and the left rectus, as well as connectivities between the cingulate cortex and
the left rectus showed higher discriminative power in the compensatory patterns.
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Conclusions: Based on our experimental results, we saw some indication of differences
in functional connectivity patterns in the healthy siblings of schizophrenic patients
compared to other healthy individuals who have no relations with the patients. Our
preliminary investigation suggested that the use of resting-state functional
connectivities as classification features to discriminate among schizophrenic patients,
their healthy siblings and healthy controls is meaningful.

Keywords: Schizophrenia, Healthy siblings, Functional magnetic resonance imaging,
Resting-state, Functional connectivity, Multiclass pattern analysis
Background
Schizophrenia is a highly heritable psychiatric disorder, and studies demonstrate that

heritable factors may play an important role in the pathogenesis of schizophrenia [1,2].

Indeed, it has been suggested that genetic factors contribute to 80% of the risk of devel-

oping schizophrenia [3]. In addition, it is supported that the similar genetic back-

grounds between patients with schizophrenia and their healthy siblings result in an

approximately nine-fold higher risk for those siblings to develop schizophrenia than

that of the general population [4-6]. Thus, comparison among patients with schizo-

phrenia, their healthy siblings and healthy controls should provide acbldditional insight

into the pathophysiological mechanism underlying schizophrenia and might be helpful

in further highlighting the genetic contribution to the etiology of schizophrenia.

Recently, a growing number of neuroimaging studies have begun to investigate the

brains of patients with schizophrenia and their healthy siblings for identifying

neuroimaging-based biomarkers of this complex disorder [1,7,8]. Early investigations

using voxel-based methods suggested structural and functional abnormalities in some

brain regions of patients with schizophrenia [9,10]. Other studies suggested that

patients with schizophrenia might suffer from dysfunctional integration between some

special brain regions [2,11-16]. Furthermore, evidence from Diffusion Tensor Imaging

(DTI) also revealed anatomical disconnection in schizophrenic patients [17]. A recent

study using both fMRI and DTI analysis revealed the concurrence of the resting-state

functional disconnectivity and damaged anatomical connectivity in schizophrenia [18].

Further findings suggested that resting-state functional connectivity disturbances vary

by network in schizophrenia [19,20], whereas, the pathophysiological mechanism of

schizophrenia is still uncertain. A recent study suggested that patients with schizophre-

nia and their healthy siblings both show resting-state network alterations [21]; however,

this effect is more difficult to diagnose due to the use of group-level statistical methods.

In the current study, we investigated the whole-brain functional connectivity patterns

of patients with schizophrenia, their healthy siblings and healthy controls at the indi-

vidual subject level.

Multivariate pattern analysis has recently aroused great interest for its capacity of

finding valuable neuroimaging-based biomarkers [7,11,22]. This analysis also very

helpful for clinical diagnosis at the individual level, which can complete previous

group-level statistical analysis studies [23]. Machine learning is an important aspect of

multivariate pattern analysis, and linear and nonlinear learning algorithms have both

been used in pattern analysis of fMRI data [11,24]. Compared with nonlinear
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algorithms, linear algorithms were argued to be more insensitive to overfitting

problems, especially for high feature dimension and small sample size [25]. Another

advantage of linear algorithms is that they can reveal potential neuroimaging-based

biomarkers using reconstruction technique.

In our previous study, multiclass pattern analysis method was used to investigate the

risk for healthy siblings of patients with schizophrenia to develop the disorder based on

whole-brain resting-state functional connectivity [4]. However, nonlinear learning

algorithm cannot reveal connectivities with high discriminative power which could po-

tentially be neuroimaging-based biomarkers underlying the pathophysiological mecha-

nisms of schizophrenia. In the present study, we used a multiclass linear classifier to

explore the whole-brain functional connectivity patterns of patients with schizophrenia,

their healthy siblings and healthy controls. Similar to a previous study [26], we defined

three types of functional connectivity-based signatures: (i) state connectivity patterns,

underlying the nature of the abnormality in the brain network of patients with schizo-

phrenia; (ii) trait connectivity patterns, corresponding to the abnormal functional con-

nectivity shared by patients with schizophrenia and their healthy siblings, providing a

possible neuroendophenotype to help bridge genomic complexity and disorder hetero-

geneity; and (iii) compensatory connectivity patterns, revealing special brain connecti-

vities by which healthy siblings might compensate for an increased genetic risk for

developing schizophrenia.
Methods
Participants

Subjects consisted of twenty-five patients with schizophrenia, twenty-five healthy

siblings and twenty-five healthy controls. Patients with schizophrenia were

recruited from outpatient departments and inpatient units at the Second Xiangya

Hospital of Central South University. All of the patients fulfilled the criteria for

schizophrenia according to the DSM-IV (Diagnostic and Statistical Manual of

Mental Disorders, Fourth Edition). Symptom severity for the patients was assessed

using the positive and negative syndrome scale [27]. No patients had a history of

neurological disorders, substance abuse, or electroconvulsive therapy. Six of the

patients with schizophrenia were medication-free, while the others accepted atyp-

ical psychotropic drugs during the time of scanning (risperidone [n = 10, 2–6

mg/day], clozapine [n = 4, 200–350 mg/day], quetiapine [n = 4, 400–600 mg/day],

and sulpiride [n = 1, 200 mg/day]). Twenty-five healthy siblings who do not fulfill

the DSM-IV criteria for any Axis-I psychiatric disorders were recruited so that

each schizophrenic patient had a corresponding sibling. The patient with schizo-

phrenia and the corresponding sibling were from the same family (they are sisters

or brothers). Twenty-five healthy controls who have no relations with the schizo-

phrenic patients were recruited from Changsha City, China.

One schizophrenic patient and three of the healthy controls were excluded for exces-

sive head motion during scanning acquisition (>1.0 mm translation and/or >2° rota-

tion). The remaining subjects with schizophrenia, healthy siblings, and the healthy

controls were demographically similar with respect to age, gender, and education levels

(Table 1). All of the participants gave their written informed consent to participate in



Table 1 Demographic and clinical profiles of the participants in this study (Mean ± SD)

Characteristics Schizophrenia patient(n = 24) Healthy sibling(n = 25) Healthy control(n = 22)

Sex(males/females) 12/12 15/10 12/11

Education (years) 12.28 ±2.5 12.48 ± 2.52 13.52 ± 2.85

Age (years) 25.36 ±6.32 25.56 ± 6.78 25.48 ± 5.45

PANSS total 87.14 ±12.2

PANSS positive 21.81 ±4.6

PANSS negative 22.38 ±5.3

PANSS general 41.96 ±6.4

PANSS, Positive and Negative Syndrome Scale.

Yu et al. BioMedical Engineering OnLine 2013, 12:10 Page 4 of 13
http://www.biomedical-engineering-online.com/content/12/1/10
the study and were studied under protocols approved by the Second Xiangya Hospital

of Central South University.
Resting experiment and data acquisition

fMRI scans were performed with a 1.5 T GE Signa System (GE Signa, Milwaukee,

Wisconsin, USA) via using a gradient-echo echo planar imaging sequence. The imaging

parameters are as follows: TR = 2000 ms, TE = 40 ms, FOV = 24 cm, FA = 90°, matrix =

64 × 64, slice thickness = 5 mm, gap = 1 mm, slices = 20. In the experiment, the subjects

were instructed to be relaxed, simply to keep their eyes closed and to remain awake and

perform no specific cognitive exercise. Foam pads and earplugs were used to minimize

head motion and scanner noise, respectively. Each functional resting-state session lasted

6 minutes, resulting in 180 volumes.
Data preprocessing

Image preprocessing was performed using the statistical parametric mapping software

package (SPM8, Welcome Department of Cognitive Neurology, Institute of Neurology,

London, UK, http://www.fil.ion.ucl.ac.uk/spm). For each subject, the first 5 volumes of

the scanned data were discarded for magnetic saturation effects. The remaining

volumes were corrected by registering and reslicing for head movement. Then the

volumes were normalized to the standard echo planar imaging template in the

Montreal Neurological Institute space. The resulting images were spatially smoothed

with a Gaussian filter of 8 mm full-width half-maximum kernel and then temporally

filtered with a Chebyshev band-pass filter (0.01-0.08 Hz). The registered fMRI volumes

were further divided into 116 regions according to the anatomically labeled template

previously validated and reported by Tzourio-Mazoyer et al. (2002).

Regional mean time series were acquired by averaging the fMRI time series over all

voxels within each of the 116 regions. We further regressed out the global mean signals

and the effects of the head motions. Then we calculated the Pearson’s correlation coef-

ficients between each pair of regions, resulting in a 6670 dimensional feature vector for

each subject.

Regional mean time series were acquired for each individual by averaging the fMRI

time series over all voxels within each of the 116 regions. For each regional mean time

series, we further regressed out the global mean signals and the effects of translations

and rotations of the head estimated in the course of initial movement correction by

http://www.fil.ion.ucl.ac.uk/spm
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image realignment. The residuals of the above regressions constituted the set of re-

gional mean time series used for further functional connectivity analysis [28]. Then we

calculated the Pearson’s correlation coefficients between each pair of regions, resulting

in a 6670 dimensional feature vector representing the resting-state functional network

for each subject.
Multiclass pattern analysis

Principal component analysis (PCA) was applied to reduce the dimensionality of ori-

ginal feature space [29]. When the dataset of features with high discriminative power

was obtained, support vector machines (SVMs) with linear kernel function were

employed to solve the classification problem [30]. The one-against-rest strategy was

used in designing our classifiers [31]. For a k-class problem, the one-against-rest

method constructed k SVM models (Figure 1). The ith SVM is trained with the training

samples in the ith class with positive labels and other samples with negative labels. The

final output of the one-against-rest method is the class that corresponds to the SVM

with the highest output value. The leave-one-out cross-validation (LOOCV) strategy

was employed to estimate the generalization ability of our classifiers [11]. Statistical sig-

nificance of the classification accuracy was determined by permutation tests [23,32]. In

permutation testing, the class labels of the training data were randomly permuted prior

to training. Cross-validation was then performed on the permuted training set, and the

permutation was repeated 1,000 times. It was assumed that a classifier learned reliably

from the data when the generalization rate obtained by the classifier trained on the real

class labels exceeded the 95% confidence interval of the classifier trained on randomly

relabeled class labels.
Identification of features with high discriminative power

We determined the functional connectivity features with the highest discriminative

power by reconstruction based on the performance of each one-against-rest classifier.

Because each feature influences the classification via its weight, the larger the absolute

magnitude of a feature’s weight is, the stronger it will affect the classification result. For

each one-to-rest classifier, we obtained a weight vector in each LOOCV experiment.

The weight vector for the one-against-rest classifier was finally acquired by averaging

these above weight vectors. We therefore obtained three weight vectors representing

the features’ discriminative power for each one-against-rest classifier. Because we per-

formed the classification in the dimension-reduced subspace, to determine the original

functional connectivities which make significantly contributions to the classification,

we used the method detailed in a previous study [33] to map back each weight vector

to the original high-dimensional space. Thus, for all of the 6670 resting-state functional

connectivities, we obtained the order of their contribution to the classification for each

one-against-rest classifier.
Results
Classification results

Multiclass pattern analysis was employed to perform classification among these three

groups, resulting in an accuracy of 62.0% by LOOCV. The correct classifications of the



Figure 1 Flowchart of our method.
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patients with schizophrenia, the healthy siblings, and the healthy controls were 66.7%,

56%, 63.6%, respectively (Table 2). The permutation test results indicated that the clas-

sifier learned the relationship between the data and the labels with a probability of error

of <0.001.
Functional connectivity with high discriminative power

We selected 5% of total functional connectivities with the highest discriminative power

from each one-against-rest classifier to identify the three types of functional connectivity-

based signatures: the state patterns (Figure 2), the trait patterns (Figure 3), and the com-

pensatory patterns (Figure 4).
Table 2 Confusion matrix for results in leave-one-out cross-validation

Classes Schizophrenia Healthy siblings Healthy controls

Schizophrenia 66.7% 12.5% 20.8%

Healthy siblings 16.0% 56.0% 28.0%

Healthy controls 9.1% 27.3% 63.6%

The rows of this matrix indicate the groups of the subjects (ground truth), and the columns indicate the predictions by
the classifier. The cells in each row contain the proportion of trials in which subjects responded with the category
indicated by the column.



Figure 2 Regions weights and the distribution of the 330 discriminative functional connectivities
responding to the state patterns in bottom and right view. Regions are color-coded by category. The
line colors represent the discriminative power of the connectivities.
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The identified state patterns related to the default mode network (DMN, mainly

containing the parahippocampal gyrus, anterior cingulate cortex (ACC), hippocam-

pus, thalamus, posterior cingulate cortex (PCC), medial prefrontal cortex, angular

gyrus, rectus gyrus, precuneus and middle temporal gyrus), the dorsolateral pre-

frontal cortex-parietal executive control network (ECN) and the cerebellum. In the

state patterns, several brain regions exhibited greater weights than others (i.e., the

hippocampus, the ACC, the PCC, the medial prefrontal cortex, the middle tem-

poral gyrus, the parietal gyrus and some cerebellar regions). For the trait patterns,

functional connectivities between the cerebellum and the prefrontal lobe, the mid-

dle temporal gyrus, the thalamus and the middle temporal poles exhibited high

discriminative power. In the compensatory patterns, connectivities related to the

right precuneus, the left middle temporal gyrus, the left angular and the left rectus

showed higher discriminative power.



Figure 3 Regions weights and the distribution of the 330 discriminative functional connectivities
responding to the trait patterns in bottom and right view. Regions are color-coded by category. The
line colors represent the discriminative power of the connectivities.
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Discussion
Multiclass pattern analysis

To the best of our knowledge, our study provided a novel use for a multiclass pattern

analysis method based on rs-fMRI to investigate the functional connectivity patterns of

the patients with schizophrenia, their healthy siblings and healthy controls.

Multivariate pattern analysis methods can not only find potential neuroimaging-based

biomarkers to differentiate between patients and healthy controls at the individual subject

level, but can also potentially detect exciting spatially distributed information to further

highlight the neural mechanisms underlying the behavioral symptoms of psychiatry disor-

ders. Previous studies have used multivariate pattern analysis to explore structural and

functional alterations in schizophrenia and have obtained satisfactory correct classification



Figure 4 Regions and the distribution of the 330 discriminative functional connectivities
responding to the compensatory patterns in top and left view. Regions are color-coded by category.
The lines are color-coded by the regions the connectivities associated with.
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rates [7,11,34,35]. Our previous study used multiclass pattern analysis to investigate the

brains of patients with schizophrenia and their healthy siblings and suggest that healthy

siblings may have a potentially higher risk for developing schizophrenia compared with

the general population [4]; however, due to the limitation of nonlinear learning algorithms,

this study failed to reveal potential neuroimaging-based biomarkers. In our current study,

we used linear multiclass pattern analysis to address this issue and to focus on exploring

the neuroimaging-based biomarkers. Our classification accuracy for these three groups is

62.0%, which is significantly above the chance level of 33.3%. Permutation tests indicate

that the one-against-rest multiclass classifier learned the relationship between the data

and the labels with a probability of error of <0.001. These results suggested that our me-

thods can capture discriminative resting-state functional connectivity patterns among

patients with schizophrenia, their healthy siblings and healthy controls. From Table 2, we

found that the classification accuracy of healthy siblings of schizophrenic patients was

comparatively lower and that these siblings were more likely than healthy controls to be
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misclassified as patients with schizophrenia, suggesting that the healthy siblings show a

potentially higher risk for developing schizophrenia compared with the general popula-

tion, which was consistent with previous findings [7,21]. In addition, the healthy siblings

were much more likely to be misclassified as the healthy controls than as the patients with

schizophrenia. This result might help to explain the normal daily behaviors exhibited in

the healthy siblings of schizophrenic patients. Our findings also suggested that the con-

nectivity patterns of the patients with schizophrenia, their healthy siblings and the healthy

controls distributed differently throughout the entire brain rather than being restricted to

a few specific brain regions.
State connectivity pattern

The state patterns were mainly associated with the DMN, the ECN and the cerebellum.

A great number of studies have demonstrated abnormalities in the DMN of patients

with schizophrenia [2,36-38]. The DMN plays important roles in task-independent

thought and self-referential processing, and altered connectivity within the DMN may

have implications for cognition and task-related brain activity [39,40]. The hippocam-

pus, the ACC, the temporal lobe, the PCC and the middle temporal gyrus have demon-

strated alterations in connectivity with other brain regions of schizophrenic patients

[20,40]. Ample evidence shows that the prefrontal cortex and the ACC play distinctive

roles in cognitive functions, and the hippocampus has been suggested to be critical in

memory formation [41]. Moreover, the ACC plays crucial roles in monitoring and

detecting conflict in ongoing information processing [42], which may relate to cognitive

functions. Dysfunctions of these above-mentioned brain regions might relate to the

neuropathology of schizophrenia [43]. We also found discriminative connectivities be-

tween regions in the ECN and DMN areas, such as connectivities between the parietal

gyrus and the ACC and PCC. Being somewhat consistent with our findings, impaired

connectivities between components of the DMN and dorsolateral prefrontal cortex

have been previously reported in schizophrenic patients [44]. The state patterns were

also related to connectivities between the cerebellum and some cerebra regions. It has

been suggested that the cerebellum is involved in cognitive and emotional activities

[20]. Aberrant connectivities between the cerebellum and the cerebral cortex may be a

part of the pathophysiology of schizophrenia [45].The state patterns indicated dysfunc-

tional connectivities, which are associated with the manifestation of schizophrenia and

might provide a clue about more complete pathophysiological mechanisms underlying

this psychiatric disorder.
Trait connectivity pattern

Trait patterns include connectivities across the DMN and other networks, as well as

connectivities between the cerebellum and some cerebral regions. A few studies of

schizophrenia have demonstrated impaired functional integration of the cerebellum

[11]. Furthermore, a recent study reported impaired functional connectivities between

the cerebellum and several cerebral regions, such as the thalamus, cingulate gyrus and

inferior frontal gyrus, in patients with schizophrenia and their healthy siblings [46].

Though they are not totally consistent, we identified connectivities between the cere-

bellum and some cerebra regions, including the prefrontal lobe, the middle temporal
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gyrus and the thalamus. A previous study suggests that the prefrontal cortex dysfunc-

tion is associated with a higher risk for conversion to schizophrenia or expression of

the illness [22]. We also discovered that patients with schizophrenia and their healthy

siblings shared connectivities associated with the amygdala. These findings are compa-

tible with a previous finding that revealed amygdala dysfunction in patients with

schizophrenia and their relatives [37]. Although the healthy siblings were indistinguish-

able from healthy controls at the behavioral level, the trait patterns might help to explain

the higher risk for healthy siblings than the general populations to develop schizophrenia.
Compensatory connectivity pattern

We found that the healthy siblings exhibit unique connectivities within left regions of

the DMN. For instance, connectivities have been associated with the left ACC. Previous

sMRI studies demonstrated that white matter integrities in the left ACC are different in

patients with schizophrenia and their healthy siblings [47]. An interesting observation

is that connectivities related to the ACC were also identified in the state patterns. Be-

cause the ACC is critical for cognitive functions, an explanation for our findings could

be that the ACC dysfunction may associate with the neuropathology of schizophrenia,

whereas healthy siblings might benefit from the unique connectivities related to the left

ACC compared with schizophrenic patients. Cautiously, we extended this explanation

and came to the conclusion that the unique connectivities related to the left regions of

the DMN might compensate for an increased genetic risk to develop schizophrenia for

healthy siblings.
Limitations

Due to the limited sample size and the relatively low classification accuracy, our fin-

dings need to be confirmed with a larger sample size in the future. Moreover, some of

the patients with schizophrenia in this study were medicated. Previous studies suggest

that antipsychotic treatments tend to change aberrant connectivity [41]. We are yet

unable to exclude these possible effects of antipsychotic treatment.
Conclusions
Despite these limitations, our classification results, to some extent, suggested that the

multiclass pattern analysis methods can capture discriminative resting-state functional

connectivity patterns among schizophrenic patients, their healthy siblings and healthy

controls. We identified three types of functional connectivity-based signatures: i) relat-

ing to the state of having schizophrenia, ii) reflecting the genetic vulnerability to

develop schizophrenia, and iii) underlying special brain connectivities by which healthy

siblings overcome the genetic risk for developing schizophrenia. Our preliminary inves-

tigation suggested that resting-state functional connectivity is a promising feature for

the classification among the schizophrenic patients, their healthy siblings and the

healthy controls. In addition, on the basis of our experimental results, we saw some

indication of differences in functional connectivity patterns in the healthy siblings of

schizophrenic patients compared to other healthy individuals who have no relations

with the patients. Our conclusions need to be considered with caution and confirmed

by further investigations.
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