
REVIEW Open Access

Review and classification of variability analysis
techniques with clinical applications
Andrea Bravi1*, André Longtin2 and Andrew JE Seely1,3,4

* Correspondence: a.
bravi@uottawa.ca
1Department of Cellular and
Molecular Medicine, University of
Ottawa, Ottawa, Ontario, Canada
Full list of author information is
available at the end of the article

Abstract

Analysis of patterns of variation of time-series, termed variability analysis, represents a
rapidly evolving discipline with increasing applications in different fields of science. In
medicine and in particular critical care, efforts have focussed on evaluating the clinical
utility of variability. However, the growth and complexity of techniques applicable to
this field have made interpretation and understanding of variability more challenging.
Our objective is to provide an updated review of variability analysis techniques
suitable for clinical applications. We review more than 70 variability techniques,
providing for each technique a brief description of the underlying theory and
assumptions, together with a summary of clinical applications. We propose a revised
classification for the domains of variability techniques, which include statistical,
geometric, energetic, informational, and invariant. We discuss the process of
calculation, often necessitating a mathematical transform of the time-series. Our aims
are to summarize a broad literature, promote a shared vocabulary that would improve
the exchange of ideas, and the analyses of the results between different studies. We
conclude with challenges for the evolving science of variability analysis.

Introduction
Variability analysis can be defined as the comprehensive assessment of the degree and

character of patterns of variation over time intervals. This analysis found applications in

many different research fields, from weather forecasting [1], to network analysis [2], pro-

cess monitoring [3] and medicine, the subject of this paper. Considering the systemic

host response to trauma, shock, or sepsis as a complex system, Seely et al. broadly

hypothesized that the analysis of multiorgan variability (patterns of variation over time)

and connectivity (patterns of interconnection over space) of physiological signals offer a

means to track the system state of the host response, offering the potential for early

detection of deterioration and improved real-time prognostication [3,4]. Rooted in non-

linear dynamics and physics, the approach of variability analysis has been successfully

applied also for the prediction of mortality after acute myocardial infarction [5,6], detec-

tion of sleep apnea [7,8], assessment of the autonomic nervous system activity [9,10] and

evaluation of the circadian rhythms regulating the body [11,12]. In particular, there is an

increasing interest in the application of variability monitoring to improve clinical out-

comes [13].

There has been extensive research to develop multiple measures of variability and

trying to characterize how variability changes with respect to specific stimuli; however,
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our objective in this paper is to take a step back and assess the array of variability

techniques available today, analyze their properties and clinical applications, and

re-evaluate their classification.

The most specific classification sees several domains of variability such as the time

domain, the frequency domain, the entropy domain and the scale-invariant domain

[13]. However, in many recent papers the classification is often reduced to only time

domain, frequency domain and a more general nonlinear domain [9,14-17]. Therefore,

despite the several years passed, the classification of variability techniques has not sig-

nificantly evolved since the important work of the Task Force for heart rate variability

[18]. The Task Force itself was created to provide guidelines that were out of date. For

instance, they recommended the equipment designed to analyze heart rate variability

to include three specific statistical measures, plus one specific geometrical measure.

A new classification system is therefore needed to create new guidelines; one that is

capable of giving a place to the increased number of techniques that currently are not

classified.

The objective of the present paper is to present the variability techniques currently

available in the biomedical domain, with an emphasis on the ones used for the analysis

of physiological signals in clinical settings. Furthermore, a new classification of these

techniques is proposed with the aim of categorizing the knowledge collected in differ-

ent fields using variability, giving the possibility to new researchers approaching varia-

bility analysis to orient themselves in the analysis of their results, and aiding the

exchange of ideas. The paper starts with the explanation of the proposed classification,

useful for the comprehension of the variability techniques. Then, each technique is

presented, highlighting its assumptions, giving an intuitive explanation of how to com-

pute it, along with examples of application in clinical contexts. The majority of applica-

tions were found related to the study of cardiac diseases. The reason is that, even if the

research for our review did not specifically target the cardiac realm, the heart rate is

the most commonly studied biomedical time series using the techniques described

here, due to the ease of obtaining the data and their relationship with autonomic activ-

ity [18]. The paper concludes with the presentation of two major challenges in variabil-

ity analysis and the conclusions. In the following, “time series” is meant as a set of

measurements of one variable. When the context is the simultaneous measurement of

multiple variables, we will use the term multivariate time series.

Classification
After the work of the Task Force of 1996 [18], there has been considerable development

of novel techniques for variability analysis. As physiologic time-series are remarkably

complex, authors have sought to distill the information into a single measure or graphi-

cal representation that uncovers the underlying complexity. To begin our analysis we

highlight two main categories of variability analysis techniques: Transformations and

Features. Those techniques share in common the potential to manipulate data in order

to identify certain properties of interest. Starting from the former, we here define a

transformation as mathematicians would do, i.e. as a function which maps the samples

of dataset from one set of values to another. Examples of transformation techniques are

Recurrence plots [19,20], Poincaré plots [9] and Symbolic Dynamics [21]; others will be

shown below. The principle underlying transformations is to rearrange data in ways
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allowing the extraction of additional features, otherwise difficult to detect. The payoff is

that the enhancement of a certain type of information weakens the detection of other

types of information.

Several transformations have been devised by a range of scientists for time series

analysis; we categorized them in two different sets due to their conceptual difference.

The first one is what we call the quantitative transformations. All the techniques

belonging to this set make use of specific mathematical models to reshape a time ser-

ies. The second one is the set of qualitative transformations, whose aim is to quantize

the dataset, without imposing particular models on the time series. The potential

advantage of the quantization, which compresses a certain range of values of the data

to a specific value, is that it helps avoiding the problems associated with the noise in

the data, and it can make the analysis more robust to artifacts. However, the clear

result is the loss of potentially valuable information.

The second category of variability techniques is what we called features. This term is

commonly used in signal processing to identify a specific piece of information (feature)

that can be extracted from the potentially available information in the signal. The aim

of variability analysis is to extract a number of features from the data, and if needed

(and possible given the amount and quality of the data) to track their temporal evolu-

tion. Features are not independent from transformations: in many cases, it is required

to apply a transformation to the data before feature extraction, as this enables the

extraction of features otherwise concealed or inaccessible. For example, the Fourier

transform is a transformation, and from it one can extract multiple features like the

total power of the signal, the power at specific frequencies and the power within speci-

fic frequency ranges.

The classification of techniques should ideally be oriented towards identifying

families or groups of techniques which offer similar means of calculation and similar

information content within groups, and distinct representations of the degree and

character of the patterns of variation between groups. In addition, a classification sys-

tem should be all-encompassing (able to incorporate all techniques), and physiologi-

cally relevant (offering assistance to understanding the physiology of healthy variability,

and the pathophysiology of altered variability with illness). Distinct types of informative

content have traditionally been labelled as domains of variability [13-17]. The most

specific classification sees several domains, such as the time domain, the frequency

domain, the entropy domain and the scale-invariant domain [13]. While this classifica-

tion has proved useful, it does not encompass all the techniques of variability analysis

available today. In this paper, we introduce a slightly broader classification in the hope

of stimulating further discussion and research. Our review has identified five different

domains of variability: statistical, for which the associated features describe the statisti-

cal properties of a distribution and which assumes the data are from a stochastic pro-

cess; geometric, which describes those properties that are related to the shape of the

dataset in a certain space; energetic, describing the features related to the energy or

the power of the time-series; informational, describing the degree of irregularity/com-

plexity inherent to the order of the elements in a time-series; invariant, describing the

properties of a system that demonstrates fractality or other attributes that do not

change over either time or space. The chart of the domains, together with the list of

the features analyzed in this review, is reported in Table 1.
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It is worthwhile to compare and contrast prior classifications with the proposed one.

Time domain is divided into statistical and geometric, as was already proposed by the

Task Force. The frequency domain is included together with features like the energy

operators into the more general energetic domain; likewise, the entropy and the scale-

invariant domains have become, respectively, part of the more general informational and

invariant domains. Using terms and notions that are widely spread in the scientific com-

munity (e.g. information, invariance, energy), we hope this new classification enhances

the previous classifications without introducing unnecessary complexity and/or confu-

sion. For example, the predictive-based features find their place in the informative

domain, instead of the more generic nonlinear domain. Similarly, the entropy features

are inserted in the informative domain because they extract the same type of informa-

tion, i.e. about the complexity of the system. Therefore, the number of domains remains

practical, while improving the capability to classify new techniques through its general-

ity. Moreover, despite the generality, the edges between the domains remain well-

defined (e.g. the “time” domain of previous classifications was too generic). Adding the

distinction between features and transformations, needed for clarification purposes, we

believe that the proposed classification system represents a valid alternative to every-

thing else currently available.

We will now analyze the different type of transformations and domains, describing

the assumptions underlying each technique, discussing benefits and limitations.

Transformations
Quantitative

Power spectrum

The power spectrum is a method that assumes the signal under study comes from a sta-

tionary stochastic process. There are several methods to extract the power spectrum of a

signal (i.e. frequency transformations). Among the ones used in clinical settings are the

Blackman-Tuckey’s method [22], the Welch’s method [23], the Burg’s method [24,25],

Yule-Walker’s method [26], the Lomb’s method [27] and the multitaper transform

[28,29]. The performance of these methods in the extraction of the power spectrum

depends on the nature of the dataset under study, and its study represents a research

field per se [30,31]. In general, it is not possible to select one technique to suit any parti-

cular application. Just to provide an example, above the ones cited, the Lomb method is

Table 1 Description of the domains characterizing the features

Types of
domain

Name

Statistical Standard statistical features, form factor, some symbolic dynamics features, turns count.

Geometric Grid counting, heart rate turbulence, Poincaré plots features, recurrence plot features, spatial
filling index.

Informational Approximate entropy, conditional entropy, compression entropy, fuzzy entropy, Kullback-
Leibler permutation entropy, multiscale entropy, predictive-based features, sample entropy,

Shannon entropy, similarity indexes, Rényi entropy.

Energetic Frequency features, energy operators, multiscale time irreversibility, time-frequency features.

Invariant Allan scaling exponent, correlation dimension, detrended fluctuation analysis, diffusion
entropy, embedding scaling exponent, Fano scaling exponent, finite growth rates, Higuchi’s

algorithm, index of variability, Kolmogorov-Sinai entropy, largest Lyapunov exponent,
multifractal exponents, power spectrum scaling exponent, probability distribution scaling

exponent, rescaled detrended range analysis, scaled windowed variance.
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the only one designed to create the power spectrum of an unevenly sampled time series;

as such, it is preferable in the case of RR interval analysis, whenever interpolation should

be avoided [27]. The above being classical signal processing techniques that have been

extensively studied, their detailed analysis would be out of scope in this context; we sug-

gest the interested reader to refer to [32] for a detailed explanation and comparison of

their properties. Similar considerations can be made when higher order spectra (HOS)

are studied. To explain in simple words what HOS are, it must be recalled that the

power spectrum of a signal is equivalent to the Fourier transform of its autocorrelation

function, i.e. the second order moment of the signal (via the Wiener-Khintchin theo-

rem). Whenever the Fourier transform of moments higher than the second one are

desired, a higher order spectrum can be obtained. HOS are particularly suited for the

analysis of nonlinear systems and non-Gaussian signals [33,34].

Time-frequency

All the power spectrum estimation techniques presented so far are based on the

assumption of absence of nonstationarities in the studied signals, implying that their

properties do not change with time. In clinical settings this is not always the case, even

if this rule is often neglected trying to study short-time recordings. To extend this ana-

lysis to nonstationary signals different techniques were introduced (i.e. time-frequency

transformations). The most classical approach involves a windowed analysis of a time

series, i.e. the division of the time series in multiple segments (also called windows).

For every window the power spectrum is computed using the frequency transforma-

tions just cited. A standard is the short-time Fourier transform (STFT) [35], where the

time-frequency transformation is computed just using the Fourier transform of the

considered window. Because those methods relying on a windowed analysis suffer of

the trade-off between frequential and temporal resolution (large windows give high fre-

quential resolution but low temporal resolution, and vice versa), another class of tech-

niques was introduced. The Wigner-Ville transform (WVT) [36] is a technique based

on the Fourier transform of the instantaneous autocorrelation of the signal, and the

wavelet transform (WT) [37,38] is based on the correlation at different scales and time

between the data and a reference signal, called mother wavelet. The former is capable

to give the finest temporal and frequential resolution compared to the other techni-

ques, but is highly sensitive to noise; the second was developed to give high frequential

resolution at low frequencies and high temporal resolution at high frequencies. Time-

frequency transformations are signal processing techniques with a broad literature

behind, therefore their detailed discussion is out of scope.

Integral pulse frequency modulation

The integral pulse frequency modulation (IPFM) is a model hypothesizing that the sym-

pathetic and parasympathetic systems influences on the sino-atrial node can be asso-

ciated to a single modulating signal, which integral generates a beat every time a

threshold is surpassed [30]. Given a RR interval time series, from this model it is possible

to extract the spectrum of the modulating signal, and from it multiple energetic features.

The benefit of the IPFM model is a direct physiological explanation of the variability of a

RR interval time series; the limitations consists in neglecting the effect of other systems

(e.g. respiration, hormonal activity), and imposing a simple model describing the auto-

nomic nervous system regulation of the heartbeat. The features that can be extracted

from the IPFM model correspond to all the ones that will be presented for the power
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spectrum. This model was recently extended to enhance the computing of heart rate

turbulence [39], a geometric feature successfully employed to assess the risk of myocar-

dial infarction.

Phase space representation

The Phase space representation is a transformation mapping a time series into a multi-

dimensional space, where each dimension represents an independent variable describ-

ing the system under study. There are several variants of this transformation [40],

however the most famous is extracted from Takens’ embedding theorem [41]. Taken’s

theorem justifies the transformation of a time series into a m-dimensional multivariate

time series. This is done by associating to each m successive samples distant a certain

number τ of samples, a point in the phase space. This technique is used for the charac-

terization of dynamical systems, and it is mathematically proved that it can be used to

recreate the attractor of the dynamics characterizing the signal (an attractor is a set of

states in which the dynamics converge over time). The main limitation is that the

attractor can be reconstructed on the assumptions that 1) the time series object of

study is without noise and 2) infinitely sampled. Despite this is not the case for clinical

applications, its usefulness is well assessed in the literature. The reason is that the

phase space representation is mathematically equivalent to a multidimensional repre-

sentation of the autocorrelation of the signal, making it useful also when the degree of

determinism of a time series is not clear (e.g. heart rate variability [42]). This transfor-

mation is the starting point of other types of transformation, like recurrence plots,

Poincaré plots, Grid transformation and certain types of Symbolic dynamics.

Recurrence plots

Recurrence plots are a visual representation of all the possible distances between the

points in the phase space [43]. Whenever the distance between two points is below a

certain threshold, there is a recurrence in the dynamics: i.e. the dynamical system vis-

ited multiple times a certain area of the phase space. From this transformation, well

suited for the study of short nonstationary signals, many geometric features can be

extracted.

Poincaré plots

The Poincaré plots are a particular case of phase space representation created selecting

m = 2 and τ = 1; that corresponds to displaying a generic sample n of the time series

as a function of the sample n-1 [9]. This is also known as a return map. The main lim-

itation of this technique is that assumes that a low dimensional representation of a

dynamical attractor is enough to detect relevant features of the dynamics. Despite its

simplicity, this transformation was successfully employed also with high dimensional

systems like the heart rate signals. The benefit is that, given the low dimensionality, it

is possible to easily design and visualize several types of geometric features. A variant

of the Poincaré plot is called the Angle map, which is a Poincaré plots made after that

the transformation of the data into a polar coordinate system [44].

Grid transformation

The Grid transformation corresponds to the representation of the data into a bi-

dimensional phase space (i.e. m = 2, with tunable embedding delay τ) that is divided

into a fixed number of squares called pixels. This process creates a binary image of the

phase space, where 0 is assigned to the pixels that were not visited by the dynamics,

and 1 to the pixels that were visited [45].
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Rhythmometric analysis

The rhythmometric analysis (RA) models the changes inside a time series as a set of

cosine functions with linked frequencies [14,46]. There are three main components in

this kind of model: circadian rhythm (with a given frequency f, considered as the

fundamental frequency of the time series), infradian rhythms (which frequencies are

below f) and ultradian rhythms (which frequencies are multiples of f). Therefore, RA is

a frequential analysis that tries to explain the changes at different time scales of the

data. The main difference with standard frequential analysis is that only particular fre-

quencies are taken into account, and usually there are additional terms in the model

that take into account the variability of the frequencies of the components inside the

model. This transformation can be employed to explain the changes of features over

time, but also to create a purely deterministic version of the original time series that

can be studied more easily because of the absence of noise [14,46].

Point processes

Point processes are a family of stochastic models modeling the time intervals between

successions of events. In this kind of model the information is held only in the inter-

vals between the events, and not in the event per se. An RR interval time series by defi-

nition can be seen as a point process [47-49]. As any stochastic model, a certain

probability distribution, in the case of point processes called Conditional Intensity

Function, is used to draw at which time the next event (i.e. a beat) will take place. To

follow the nonstationarity of the signal, the parameters of the model can be estimated

through adaptive filtering [47-49].

Qualitative

Bin transformation

In the case of a bin transformation, the range of the time series (determined by the

minimal and maximal value of the variable) is divided in a specific number of equally

spaced intervals of arbitrary size. Every time a data point falls in a given interval, the

count in the associated bin is increased by one. In the case of power law analysis the

time series are logarithmically rescaled before or after the bin transformation. This

transformation is commonly employed in the construction of histograms.

Symbolic dynamics

The purpose of symbolic dynamics is to transform a time series into a sequence of speci-

fic symbols. Plenty of possible approaches can be used to coarse-grain a time series,

however the basic idea is always to divide the range of the time series into intervals and

assign to each interval a symbol. This process is usually employed either considering the

signal as a whole or considering windows of the time series. When this process is sepa-

rately applied to windows of the time series, the absolute information held by the signal

is lost (i.e. detrend of the time series), keeping only the information related to its shape.

Symbolic dynamics transformation is often applied in combination with the phase space

representation; this approach corresponds to the division of the phase space into a set of

hypercubes [25].

Being only a way to discretize the dataset, the symbolic dynamics transformation is

associated to features belonging to different domains of variability. A set of features

contains informational domain measures, usually applied also with the bin transforma-

tion (e.g. Shannon entropy, Rényi entropy, similarity based indexes). The other set
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contains statistical features that belong only to the symbolic dynamics. Each set of fea-

tures will be discussed in the appropriate paragraph below.

Features
Statistical

The statistical domain assumes the data is from a stochastic process; the following fea-

tures describe the properties of their distribution. For a summary of the key concepts,

one can refer to Table 2.

Form factor

This feature is based on the standard deviations of the signal and its first and second

derivatives (a derivative represents an infinitesimal change in the signal). The computa-

tion involves the ratio between 1) the ratio of the standard deviations of the second

and the first derivative of the signals, and 2) the ratio of the standard deviations of the

first derivative and of the signal. The Form factor was found useful for the characteri-

zation of vibroarthrographic signals (sounds coming from the movement of the knee-

joint, describing the mechanical properties of articular cartilage surfaces) [50] and the

detection of arrhythmias [51].

Symbolic dynamics features

Those are based on the transformation of a time series into a sequence of symbols

through the association of a range of values with a specific symbol. There are two

types of features characteristic of symbolic dynamics:

- Forbidden words, which counts the number of words (a succession of symbols)

with a given length that do not appear. This technique was applied for the evalua-

tion of heart rate and blood pressure variability in patients with dilated cardiomyo-

pathy [52].

- Percentage of variations, which quantifies the number of variations inside the

words composing a time series. For example, if words of 3 symbols are under

study, the word [a a a] has no variations (all symbols are identical), the word [b b

a] has one variation (two successive symbols are identical), the word [a b a] has

two variations (there are no successive repetitions of symbols). This technique was

Table 2 Summary of the statistical domain

Domain Assumptions Features Feature
Assumptions

Transformation
used

References

The information is held in the
statistical descriptors of the data
distribution (stochastic process)

Form
factor

Gaussian
distribution of the
time series and its

derivatives

[50,51]

Symbolic
dynamics
features

Symbolic
dynamics

[25,26,52-54,86]

Standard
statistical
features

Gaussian
distribution of the

time series

Bins [9,16-18,25,55-63]

Turns
count

Spike-like behaviour
of the time series

[50]
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applied in the characterization of autonomic cardiac modulation during arrhyth-

mias [53] and the characterization of chronic heart failure [54].

Other features used with symbolic dynamics transformations can be found in the

informational domain (such as Shannon entropy, see below).

Standard statistical features

Those features were previously collected by the Task Force in 1996 to study heart

rate variability [18]. They involve mean, standard deviation, counting of the samples

above or below a certain threshold, and other statistical measures that are based on

the distribution of the data and not their order (the list can be found in Table 3)

[16,55-58].

To limit the complexity of the analysis, in the case of heart rate variability those

measures are usually applied to the normal RR interval time series, where the prefix

“normal” indicates the R peaks that are not classified as premature (i.e. ectopic

beats) or extracted from known cardiac electrical dysfunctions (e.g. fibrillation).

Despite their simplicity, the value of these measures has been proven in innumerable

clinical applications like the prediction of sepsis [59], the assessment of the risk of

myocardial infarction and diabetic neuropathies [18,60], the assessment of cardiac

contractility [61], and the classification of cardiac death [25], chronic heart failure

[17], severity of Parkinson’s disease [9], asthma and chronic obstructive pulmonary

disease [57,58,62,63].

Turns count

Turns count records the number of times that the signal is above or below a certain

threshold. This measure can be applied successfully only when specific properties of the

signals are investigated. Following this reasoning, the threshold can be either fixed or

adaptive. An adaptive threshold using the standard deviation of the analyzed signal was

used to classify vibroarthrographic data from different knee-joint pathologies [50].

Table 3 List of Standard statistical features

Short name Description

SDNN Standard deviation of the Normal-Normal (NN) interval.

RMSSD Square root of the mean squared differences between each successive NN interval and
the mean interval.

pNN x The ratio between the number of successive NN intervals that are greater than × and the
total number of NN intervals. Usually × is set either 20 ms or 50 ms [55].

NN x It is the number of successive NN intervals that are greater than x. Usually × is set to 20
ms.

HTI HRV Triangular Index: ratio of the total number of RR intervals to the number of intervals
in the bin with the highest number of intervals The bin width should be around 1/128

seconds (128 Hz is the standard).

TINN The triangular interpolation of the NN interval histogram (TINN) is the width of the base of
the triangle that best approximates the NN interval distribution (the minimum square

difference is used to find such a triangle).

IQRNN Interquartile range of NN. It is the difference between the upper and the lower quartile
values of the NN interval distribution (25% of the samples above and below the median

value) [16].

SDSD Standard deviation of the first derivative of the time series [56].

Conditional
probability

Probability that given certain conditions, a specific event will occur [57,58]
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Geometric

The geometric domain describes the properties that are related to the shape of the

dataset in a certain space. For a summary of the key concepts refer to Table 4.

Grid counting

This feature estimates how much a bi-dimensional attractor fills its phase space, and is

based on the Grid transformation. Essentially, the Grid counting is the number of pixels

visited by the dynamics divided by the number of pixels in the grid. The Grid counting

was applied to the detection of ventricular fibrillation [45,64].

Heart rate turbulence

Heart rate turbulence is a technique applicable only to RR interval time series. It is based

on the evaluation of ventricular premature complexes (VPCs), and studies how VPCs mod-

ify the pattern of an RR interval time series. In normal subjects, the heart rate following a

VPC incurs an early acceleration followed by a late deceleration. Heart rate turbulence

extracts indexes describing those two phenomena through, respectively, the Turbulence

onset and the Turbulence slope. The Turbulence onset is given by the percentage differ-

ence between the two RR intervals preceding and following a VPC, and is an index of early

deceleration. The Turbulence slope is given by the maximum positive regression slope

assessed over any 5 consecutive beats within the first 15 beats after the VPC, and is an

index of late deceleration. The sequence of RR intervals before and after a VPC is called

VPC tachogram. Given the variability between the heart rate pre- and post-VPCs, turbu-

lence onset and turbulence slope are measured over the so-called average VPC tachogram,

i.e. the average of the VPC tachograms over usually 24 hours (at least 5 VPCs are needed).

Heart rate turbulence was primarily applied to risk stratification after myocardial

infarction and to the prediction of risk of heart failure. A list of other applications with

future directions is provided in a recent review [65].

Poincaré plot features

These features are based on an ellipse fitted to the Poincaré plot, which displays sample

n of a time series as a function of sample n-1. These features can be seen as measures of

Table 4 Summary of the geometric domain

Domain Assumptions Features Feature Assumptions Transformation
used

References

The information is held in the
specific position of the points

represented in a reference space
(deterministic system)

Grid
counting

Low dimensionality of
the attractor

Grid
transformation

[45,64]

Heart rate
turbulence

Information is in the
ectopic beats

[65]

Poincaré
plots

features

Low dimensionality of
the attractor

Poincaré plots [4,9,54,61,66,67]

Recurrence
plot

features

The attractor can be
effectively described by
the distances between

its points

Recurrence plots [19,43,68-70]

Spatial
filling index

The attractor is
described by its degree

of sparseness

Phase space
representation

[71,72]
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nonlinear autocorrelation. If successive values in the time series are not linearly corre-

lated, there will be a deviation from a line that is often properly modeled using an

ellipse. The different features involve the centroid of the ellipse, the length of the two

axes of the ellipse, the standard deviation in the direction of the identity line (called

SD2), the standard deviation in the direction orthogonal to the identity line (called SD1)

and their combination, namely cardiac sympathetic index (SD2/SD1) and cardiac vagal

index (log10(16 × SD1 × SD2)). Those features have been successfully applied in the

assessment of cardiac contractility [61], the classification of the severity of Parkinson’s

disease [9], the tracking of aging [4] and the assessment of chronic heart failure [54]. An

additional feature that can be extracted from the Poincaré plot is the central tendency

measure, which is the percentage of points which falls within a certain radius from the

centre of the Poincaré plot of the first difference of the original time series. This feature

was used to classify a variety of heart conditions and assess determinism in electroence-

phalographic signals [66,67].

Recurrence plot features

A Recurrence plot is a visual representation of all the possible distances between the

points constituting the phase space of a time series. There are four main elements char-

acterizing a recurrence plot: isolated points (reflecting stochasticity in the signal), diago-

nal lines (index of determinism) and horizontal/vertical lines (reflecting local stationarity

in the signal). The combination of these elements creates large-scale and small-scale pat-

terns from which is possible to compute several features, mainly based on the count of

number of points within each element. Table 5 provides a list of the main features used

in clinical applications; for further features refer to Marwan et al. [43].

Recurrence plots have found application in the prediction of cardiac arrhythmia [19],

event detection in EEG [43], diabetic autonomic dysfunction assessment [43,68], eva-

luation of the postural instability in patients affected by Parkinson [69], and are applic-

able to the assessment of many other physiological conditions [70].

Spatial filling index

Based on the transformation of the time series in the phase space, this feature is

extracted by first dividing this space into a set of identical hypercubes. The spatial

Table 5 List of Recurrence plot features

Short name Description

%Recurrence Represents the number of recurrences among the total number of possible
recurrences.

%Determinism Represents the number of recurrence points that are part of a diagonal of at least
lminelements (usually lmin = 2), divided by the number of recurrences.

%Laminarity Corresponds to the computation of %Determinism, but considering vertical (or
horizontal) lines instead of diagonal lines.

Trapping Time Represents the number of recurrence points that are part of vertical (or horizontal)
lines, divided by the number of vertical (or horizontal) lines.

%Determinism/%
Recurrence

This ratio is often used to detect transitions of the dynamics.

Segment lengths The mean and maximum lengths of diagonal and vertical (or horizontal) lines.

Shannon entropy Same feature presented in the informational domain, but applied to the distributions
of the lines (either diagonal or vertical/horizontal).

Kolmogorov entropy The slope of the line fitting the log-log plot of the distribution of diagonal lines as a
function of the threshold used to create the recurrence plot.
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filling index represents a measure of the number of points that on average are inside a

hypercube, and describe how much the attractor fills the phase space. SFI was applied

for the classification of normal heart rhythm, arrhythmia, supraventricular arrhythmia

and congestive heart failure [71,72].

Energetic

The energetic domain describes the features related to the energy or the power of the

data. For a summary of the key concepts refer to Table 6.

Energy operators

These features combine the information of multiple points of the time series with non-

linear operations. Two features of this type are the Plotkin and Swamy operator, and

Teager’s operator. The latter is a specific case of the former; it is more sensitive to

noise but mathematically linked to the energy of a sine wave, defined as a function of

the product of its amplitude and its frequency. This fact motivates the name of these

features. Despite the fact that these features were developed for sinusoidal signals, in

clinical settings their application has been extended to signals showing periodicities:

the Plotkin and Swamy operator was applied to segmentation and feature extraction of

EEG signals [73], and the Teager’s operator to the detection of peaks for the estimation

of foetal heart rate from phonocardiographic signals [74].

Frequency and time-frequency features

The frequency features are the ones that can be extracted from any frequency transforma-

tion. The standard approach is to divide the spectrum in different bands (frequency

ranges), and calculate the central frequency in each range, i.e. the peak in the power spec-

trum [18]. Beside the maximum value, other statistics include the integral over specific

bands as well as different types of ratios between the cited features. For example, in the

case of RR interval time series, the power spectrum is usually divided into four bands with

the following frequency ranges: ultra low frequencies < 0.003 Hz, very low frequency

0.003-0.04 Hz, low frequencies 0.04-0.15 Hz, and high frequencies 0.15-0.4 Hz. Some

works do not follow the guidelines, preferring different bands [75]. Common features

involve the power in the low and high frequency ranges, and their ratio [18,60]. The time-

frequency transformations represent the extension of the frequency transformations to the

Table 6 Summary of the energetic domain

Domain
Assumptions

Features Feature Assumptions Transformation
used

References

The information
is held in the
energy of the

signal

Frequency
features

Stationarity of the time series Frequency
transformations

[9,18,22,25,60,61,75]

Time-
frequency
features

Time-frequency
transformations

[9,18,22,25,60,61,75]

Energy
operators

The time series expresses periodicity [73,74]

Multiscale
time

irreversibility

The time series is created from a
dissipative process, which dissipation
can be quantified by the degree of

temporal asymmetry

[76]
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class of nonstationary signals. Because they also describe the energy of the signal at certain

frequencies, the time-frequency features are identical to the frequency features.

Those types of features are among the most used, and their applications involve

among others the assessment of the risk of myocardial infarction and diabetic neuropa-

thies [18,60], the characterization of heart rate variability during haemodyalisis [22], the

assessment of cardiac contractility [61], the classification of cardiac death [25] and the

severity of Parkinson’s disease [9].

Multiscale time irreversibility

Multiscale time irreversibility quantifies the degree of temporal asymmetry of a signal,

i.e. how much energy is dissipated during the development of the process. In time series

analysis, this corresponds to the modification of the statistical properties of a signal

under the operation of time reversal. Multiscale time irreversibility is based on the com-

putation of several differential time series derived from the original one. That means tak-

ing a sample at time i+j and subtracting from it the value of the sample at time i, then

repeating this for all the samples i; the process has to be repeated with different values

of j (representing the scale parameter), creating a set of time series. The percentage of

difference between the increments and decrements inside each time series is computed;

the sum of all these percentages gives the multiscale time irreversibility [76]. Even if cre-

ated for the study of heart rate variability, this measure has not been fully characterized

in specific clinical settings.

Informational

The informational domain describes the degree of irregularity/complexity inherent to

the order of the elements in a time-series. For a summary of the key concepts, refer to

Table 7.

Approximate entropy, Sample entropy and Fuzzy entropy

Approximate entropy (AP) is the negative natural logarithm of the conditional probabil-

ity that a dataset of length N, having repeated itself for m samples within a tolerance r,

will repeat itself again for one extra sample. A window of length m is run along the sig-

nal to generate a set of data vectors of length m. One then computes the number of

times that the Euclidean distance between all pairs of these vectors is less than a thresh-

old r. This is repeated for windows of length m+1, and the logarithm of the ratio of

these two numbers is taken. AP is the precursor of sample entropy (SE); the difference is

that SE excludes the counts where a vector is compared with itself. This avoids the bias

these self-matches introduce in the estimation. Given this improvement, SE should be

always preferred to AP. To avoid the sensitivity to the threshold r, a new entropy called

fuzzy entropy (FE) was developed. All the computational steps are the same, with the

difference that SE uses r to produce a binary classification of the distance between two

windows (zero if they are more distant than r, one otherwise), while FE uses a fuzzy

membership function to evaluate the distance. This continuous function scores as one if

the distance between two windows is infinitesimal and decays exponentially to zero the

more distant are the vectors. This improvement avoids the discontinuity of the binary

classification, therefore lowering the sensitivity to the threshold. Chen et al. analyzed the

three entropies on synthetic datasets, demonstrating the improved performances of FE
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on the characterization of synthetic datasets with different mixtures of determinism and

noise [77].

AP and SE have been applied to several fields like the analysis of the EEG [78], the

fluctuations of the center of pressure in static posturography [79], the characterization

of heart rate variability in patients undergoing sepsis shock [4] and for the classifica-

tion of multiple heart disorders [71]. On the contrary, fuzzy entropy has been applied

mainly in the characterization of EMG signals [80].

Conditional entropy

Consider two random variables, say X and Y. The conditional entropy of Y given X is

defined as the difference between the joint entropy of X and Y (that is the entropy of

the union of X and Y), and the entropy of X. To provide an example, consider a time

series reconstructed in a m-dimensional phase space. X can be the set of points in the

m-dimensional space, and the union of X and Y can be the set of points given by the

reconstruction of the time series in a m+1-dimensional phase space. The entropy used

Table 7 Summary of the informational domain

Domain Assumptions Features Feature Assumptions Transformation
used

References

The information is held in
the degree of complexity,
therefore: distance from

periodicity and stochasticity,
distance from a reference
model, distance from a
precedent pattern within

the data

Approximate
entropy

[4,71,77-79]

Conditional
entropy

Bins [25]

Compression
entropy

[17,81]

Fuzzy
entropy

[77,80]

Kullback-
Leibler

permutation
entropy

Symbolic
dynamics and
phase space
representation

[82]

Multiscale
entropy

The complexity changes
depending on the window
length used in the analysis

[76,83]

Predictive-
based
features

The data follows a model,
and the deviation (prediction

error) from that model
describes changes in the

system.

Multiple [56,84,85]

Sample
entropy

[4,71,77-79]

Shannon
entropy

Bins [25,52,53,56,86]

Similarity
indexes

The comparison of the
properties of two successive

windows allows the
detection of changes in a

time series

Multiple [26,45,87,88]

Rényi
entropy

Bins [25]
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for the calculation of the conditional entropy can be any one reported in this paper. In

[25] the conditional entropy was computed using the Shannon and the Rényi entropies

for the classification of cardiac death.

Compression entropy

Compression entropy is a readjustment of a compression algorithm called LZ77. After

the transformation into symbols, the sequence is compressed and the entropy is com-

puted as a function of the ratio between the length of the compressed signal and the

length of the original signal. This technique was used for the classification of ventricu-

lar tachycardia [81] and chronic heart failure [17].

Kullback-Leibler permutation entropy

The permutation entropy is based on the representation of the time series in a symbolic

phase space. Considering a single point in the phase space, the idea is to substitute to each

coordinate the rank among the coordinates. For example, the vector [0.3 0.2 0.7] would be

substituted to the vector [2 1 3], because 0.2 is the smallest element of [0.3 0.2 0.7], there-

fore it is exchanged with a 1; its largest element 0.7 is exchanged with a 3; and 0.3 is the

element in between, exchanged with a 2. The process is repeated for each point in the

phase space, creating a set of words. Then, the Shannon entropy of the set of words is

computed, creating the so-called permutation entropy. A normalization using the total

number of possible words achievable in that phase space representation, leads to the Kull-

back-Leibler permutation entropy. This technique has been applied to the characterization

of foetal heart rate variability [82].

Multiscale entropy

As defined in [76], “multiscale entropy quantifies the information content of a signal

over multiple time scales”. Consider a non-overlapping window analysis of the original

time series, where the sample mean inside each window is computed. This set of sample

means constitutes a new time series. Repeating the process N times with a set of window

lengths starting from 1 to a certain length N, this will give a set of N time series of sam-

ple means. The multiscale entropy is obtained by computing any entropy measure (sam-

ple entropy is suggested) for each time series, and displaying it as a function of the

number of data points N inside the window (i.e. of the scale). The authors suggested

focusing on the analysis of the resulting curves rather than on extracting a single para-

meter. However, to assist clinical classification in the case of RR interval time series,

they proposed to extract the slopes of the curve over the scales from N = 1 to 5, and

from N = 6 to 20 [83]. Multiscale entropy was also applied to the comparison of sleep-

wake cycles of patients with heart failure, young and elderly [83].

Predictive-based features

A predictive-based feature is any error that a model produces when trying to fit or pre-

dict the data. Models are based on hypotheses; therefore, in the case where the distance

between the signal produced by the model and the real signal (i.e. the error) is high, the

time series is less compatible with the underlying hypotheses of the model. The error

can be evaluated through specific cost functions (e.g. the mean squared prediction error,

prediction gain, sum of the residuals) and can be referred as an index of complexity [84].
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Because the modeling of physiological signals is entirely another field of research, we will

not address this topic further. Examples of this approach applied to RR interval time

series are the usage of the residuals of an autoregressive model [56], as well as of the

prediction error from local nonlinear predictors [84] and predictors based on condi-

tional distributions [85].

Shannon entropy and Rényi entropy

As classical measures taken from information theory, these entropies are estimated

after the transformation of the dataset into bins or a symbolic sequence. Counting the

relative frequency of each bin/word, the Shannon entropy is estimated as the sum of

the relative frequencies weighted by the logarithm of the inverse of the relative fre-

quencies (i.e. when the frequency is low, the weight is high, and vice versa). A general-

ized version of the Shannon entropy is the Rényi entropy, which corresponds to the

sum of the inverse of the relative frequencies elevated to a certain power q ≥ 2.

In the case of the bin transformation, Shannon entropy was applied in the classifica-

tion of the heart rate variability of young/elderly and patients suffering from coronary

artery disease [56]. For the symbolic transformation, Shannon entropy was applied to

the detection of ventricular tachycardia or fibrillation [86], the characterization of auto-

nomic cardiac modulation during arrhythmias [53], and the evaluation of heart rate

and blood pressure variability in patients with dilated cardiomyopathy [52].

Similarity indexes

The similarity indexes are features quantifying the “distance” (i.e. difference) between

two time series, according to different metrics. The two time series can be either two dif-

ferent time series, or two segments from one time series. Usually the distance is calcu-

lated after a qualitative transformation of the dataset, and is expressed as a combination

of the probability distributions of the words/bins or a combination of the entropy of the

words/bins. When a windowed analysis of a single time series is pursued, the idea is to

compare either the similarity between two successive windows, or the similarity between

a window for a given physiological state (e.g. normal) and all the other windows, in

order to track how the system is changing (e.g. moving from physiological to pathologi-

cal). Examples of similarity indexes with associated clinical applications follow: 1) A

similarity index defined as the sum of the product of the bins within the distributions of

each segment was used in the assessment of anesthetic depth [87]; 2) A similarity index

defined as the difference between the Shannon entropies of the symbolic distributions of

each segment was used in the assessment of the effect of aging, atrial fibrillation and

heart failure in heart rate variability [88], and the detection of arrhythmias [26]; 3) Con-

sidering two segments after a grid transformation as two images, it is possible to define

similarity indexes based on image processing. Among the several proposed, one that

worked effectively in the detection of ventricular fibrillation was the count of the pixels

that were visited in both the considered images [45].

Invariant

The invariant domain describes the properties of a system that demonstrates fractality

or other attributes that do not change over either time or space. For a summary of the

key concepts refer to Table 8.
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Allan and Fano scaling exponents

Those two features were created to characterize the fractal properties of a point pro-

cess. The idea is to count the number of events in non-overlapping windows of the

signal of fixed time-length T. The Fano factor at time T is the variance of the number

of events divided by the mean number of events (it also called index of dispersion).

The Allan factor at time T is the ratio between the second order moment of the count

differences between two successive windows, and the mean number of events. The

slope of the line fitting the log-log plot of the factor as a function of T gives, respec-

tively, the Fano and the Allan scaling exponents [49,89]. These parameters were

applied to the characterization of supraventricular arrhythmia and congestive heart

failure [90].

Correlation dimension

The correlation sum of a time series is defined as the number of points in the phase

space that are closer than a certain threshold r [40]. An array of correlation sum values

is then created by repeating the process for a certain range of thresholds. One then

computes the correlation dimension as the slope of the line fitting the log-log plot of

the correlation sum as a function of the threshold. This feature gives a measure of the

dimensionality of the attractor, and was used to study blood pressure and mean cere-

bral blood flow velocity in diabetic autonomic neuropathy [91].

Detrended fluctuation analysis

DFA is a technique quantifying how the fluctuations of a signal scale with the number

of samples of that signal. First, the cumulative version of the time series is created,

where the value of the original time series at a given point is replaced by the sum of

values up to and including that point. The idea is to divide this cumulative time series

into all the possible non-overlapping windows of length m, then detrend each window

and compute the standard deviation within each window (i.e. the magnitude of fluctua-

tions). Each window is detrended by removing the regression line fitting the data. The

average of the standard deviation computed in each window is stored. Repeating the

process for a certain set of window lengths yields a time series that may exhibit scaling

behaviour, i.e. where fluctuations scale according as a power of the window length

[92]. Several features can be extracted from DFA: (1) the slope of a line fitting the log-

log plot of the standard deviation as a function of the window length, which expresses

the so-called Hurst exponent [92]; (2) the local derivative in each point of the log-log

plot [93].

For the heart rate variability (HRV) additional features arise from the division of the

log-log plot in two areas, to extract two scaling exponents. Indeed, in different studies,

two scaling exponents more properly fitted the DFA of the HRV than the standard

slope of the log-log plot. Another particular application of DFA to heart rate variability

uses, instead of the raw data, the magnitude and sign of the derivative of an RR inter-

val time series [94].

DFA is one of the most used techniques in variability analysis, and was applied to the

evaluation of posture, exercise and aging [93], sleep stage classification [94], the predic-

tion of sepsis [4], and classification of asthma and chronic obstructive pulmonary

disease [63].
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Table 8 Summary of the invariant domain

Domain Assumptions Features Feature Assumptions Transformation
used

References

The information is held in
those properties of the time
series that are invariant-i.e.

not supposed to change over
either time or space.

Allan scaling
exponent

The time series is modeled as
a point process, and the ratio
between the second order
moment of the difference
between the number of
events of two successive
windows and the mean

number of events has scale-
invariant properties

Point process [49,89,90]

Detrended
fluctuation
analysis

The standard deviation of the
detrended cumulative time
series has scale-invariant

properties

[4,63,92-94]

Diffusion
Entropy

The time series is modeled as
a family of diffusion processes,
which Shannon entropies has

scale-invariant properties

[54,95-97]

Embedding
scaling

exponent

The variance of the attractor
at different embedding

dimensions has scale-invariant
properties

Phase space
representation

[98]

Fano scaling
exponent

The time series is modeled as
a point process, and the
variance of the number of
events divided by the mean
number of events has scale-

invariant properties

Point process [49,89,90]

Higuchi’s
algorithm

The length of the time series
at different windows has
scale-invariant properties

[54,101-104]

Index of
variability

The time series is modeled as
a point process, and the
variance of the number of
events has scale-invariant

properties

Point process [2]

Multifractal
exponents

Multiple scaling exponents
characterize the time series

Wavelet
transform

[54,105,106]

Power
spectrum
scaling

exponent

Stationarity, the power
spectrum follows a 1/fb like

behaviour

Power spectrum [92]

Probability
distribution
scaling

exponent

The distribution of the data
has scale–invariant properties

Bin
transformation

[63,107]

Rescaled
detrended
range
analysis

The range (difference between
maximum and minimum
value) of a time series has
scale-invariant properties

[92]

Scaled
windowed
variance

The standard deviation of the
detrended time series has
scale-invariant properties

[92]

Correlation
dimension

The time series is extracted
from a dynamical system, and
the number of points in the
phase space that are closer
than a certain threshold has
scale-invariant properties

Phase space
representation

[40,91]
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Diffusion entropy

Assuming the time series is a diffusion-type stochastic process, this measure quantifies

its scaling behaviour over time. The first step is to calculate the diffusion trajectories,

which are particular types of cumulative time series extracted from the original. Then,

the probability distribution at a given cumulative time is built from the values of all

the diffusion trajectories at that time, and the Shannon entropy is computed at that

time. Repeating the procedure for all the times, a set of Shannon entropies as a func-

tion of time is created. The slope and offset of the line fitting the normal-log plot of

the Shannon entropies as a function of the cumulative time gives information regard-

ing the scaling behaviour of the system [95]. This technique was applied to the charac-

terization of congestive heart failure [54,96,97].

Embedding scaling exponent

This technique estimates how the variance of the time series reconstructed in the

phase space changes with the value of the embedding dimension. The variance is com-

puted from the diagonal of the covariance matrix of the time series reconstructed in

the phase space. The slope of the line fitting the log-log plot of the variance as a func-

tion of the embedding dimension gives the embedding scaling exponent. The ESE has

been applied to gait analysis of patients with Huntington’s disease [98].

Finite growth rates and largest Lyapunov exponent

After the representation of the time series in the phase space, the neighbourhood of

each point in the phase space is computed. The idea is to compute how the considered

point and its neighbour separate after a certain time t; the separation is measured

Table 8 Summary of the invariant domain (Continued)

Finite
growth rates

The time series is extracted
from a dynamical system,
which is described by its
dependence on the initial
conditions (how two points
that are close in space and
time separate after a certain
amount of time)-the ratio
between the final and the
initial time is an invariant of

the system

Phase space
representation

[86]

Kolmogorov-
Sinai

entropy

The time series is extracted
from a dynamical system, and
it is possible to predict which
part of the phase space the
dynamics will visit at a time t
+1, given the trajectories up

to time t

Phase space
representation

[40,91]

Largest
Lyapunov
exponent

The time series is extracted
from a dynamical system,
which is described by its
dependence on the initial
conditions (how two points
that are close in space and
time separate after a certain
amount of time)-the distance

grows on average
exponentially in time, and the
exponent is an invariant of the

system

Phase space
representation

[40,41,99,100]
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using the Euclidean distance between the points. The measure used by the finite

growth rates is the ratio between the final (i.e. after t) and the initial distance of the

two points. The repetition of this process to all the points in the phase space gives a

set of ratios, whose average corresponds to the finite growth rates (FGR). This techni-

que was used for the detection of ventricular tachycardia or fibrillation [86].

Consider now that the finite growth rate is computed without the normalization by

the initial distance (therefore, the finite growth rates now represent a final distance). If

all the FGR for any time t are computed, the slope of the line fitting the log-log plot

of the FGR as a function of t gives the largest Lyapunov exponent. The largest Lyapu-

nov exponent expresses the exponential rate of divergence of the trajectories in the

system, starting with two infinitely close points in the phase space [40,41]. Theoreti-

cally, the largest Lyapunov exponent is positive only in the case of chaotic systems, but

this result is not assured when considering noisy time series. This dynamical-invariant

feature was used for gait analysis [99], and congestive heart failure and atrial fibrillation

evaluation [100].

Higuchi’s algorithm

The time series is divided into non-overlapping segments of m samples. Consider the

samples in the i-th position inside each segment. The distance between those samples

can be calculated as their absolute difference. If the normalized sum of all the

distances of the samples in the i-th position is calculated for each position, and then

averaged, the result is a measure of the length of the time series. The Higuchi’s algo-

rithm involves computing the length of the time series over a certain range m. The

slope of the line fitting the log-log plot of the lengths as a function of 1/m gives a

measure of the fractal dimension of the time series, i.e. how the length of the time ser-

ies scales. In the literature many other algorithms are available for the estimation of

the fractal dimension of a time series, although Higuchi’s is one of the most used in

the biomedical domain [101-103]. This technique was applied to detect events in EEG

[104], and characterize heart rate variability in chronic heart failure patients [54].

Index of variability

The index of variability is based on a point process model. The time series is divided

in non-overlapping windows of a given length, and for each window the number of

events is counted. Then, the variance of the number of events for that window length

is computed. The procedure is repeated for different window lengths. The scaling

behaviour is extracted from the derivative of the variance of the number of events as a

function of time. Index of variability was applied to evaluate the scaling properties of

traffic processes in network engineering [2].

Kolmogorov-Sinai entropy

The Kolmogorov-Sinai entropy is a measure expressing the information needed to pre-

dict which part of the phase space the dynamics will visit at a time t+1, given the trajec-

tories up to time t [40]. Consider the natural logarithm of the ratio of the correlation

sum computed for an embedding dimension m, with the correlation sum computed for

an embedding dimension m+1. The plateau of the curve of this ratio as a function of the
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logarithm of the threshold gives the KS entropy. This measure was used to study blood

pressure and mean cerebral blood flow velocity in diabetic autonomic neuropathy [91].

Multifractal exponents

Multifractal time series are characterized by a set of different local scaling exponents

(i.e. different scaling exponents at different times). One of the most used techniques to

evaluate multifractality is the wavelet transform [105]. The idea is to generate the

wavelet transform by using a particular type of mother wavelet, called wavelet leader,

and from it extract the multifractal spectrum. This method was applied to the charac-

terization of heart failure [54,105], and intrapartum diagnosis of fetal asphyxia [106].

Power spectrum scale exponent

This feature represents a classical way to compute the Hurst exponent of a time series,

and is computed as the slope of the line fitting the log-log plot of the power spectrum

of the time series as a function of the frequency. This gives a reliable estimate only

when the underlying process belongs to the fractional Gaussian noise family, and only

for a specific range of the Hurst exponents; otherwise, the use of this feature should be

avoided [92]. Because this technique extracts the Hurst exponent, as DFA does, they

share the same applications. The same applies to the other two measures that were

found more useful in the extraction of the Hurst exponent [92], i.e. scaled windowed

variance and rescaled detrended range analysis. The difference between the four tech-

niques is given only by the reliability of the estimate, which depends on the type of sig-

nal under study.

Probability distribution scaling exponent

The shape of the probability distribution of a time series can be estimated taking the

histogram of the time series, and normalizing it to a unitary area. When the represen-

tation in a log-log plot of the probability distribution shows a linear trend, it is possible

to extract a scaling exponent by fitting a line to the distribution and taking its slope. In

such a case, the tail of the distribution is larger than it would be if the time series had

a Gaussian distribution, making rare events more likely to occur. This technique was

applied to detect maturational changes in the respiration of infants [107]. Similarly, the

scaling exponent can be extracted by fitting a probability density function with scale-

invariant properties (e.g. Pareto or Levy distribution). The latter approach was used to

discriminate between patterns of respiratory impedance in patients with asthma,

chronic obstructive pulmonary disease and controls [63].

Scaled windowed variance

Scaled windowed variance involves the same mathematical steps as DFA, with the dif-

ference that the original times series is studied, rather than its cumulatively integrated

version. Despite the similarity, scaled windowed variance is preferable to DFA when

the underlying process belongs to the fractional Brownian motion family [92].

Rescaled detrended range analysis

Rescaled detrended range analysis is similar to DFA. Instead of calculating the standard

deviation on each window, rescaled detrended range analysis computes the “range”,

defined as the difference between the maximum and the minimum values of the
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samples in the window. RDRA is preferable to DFA when the underlying process

belongs to the family of persistent fractional Gaussian noise [92].

Challenges
The wide array of techniques discussed in our review represents a starting point for

advanced variability analyses. Clearly, more investigations are required to untangle all

the information hidden within biological signal variability. Two grand challenges stand

out, which we believe represent important future goals of variability analysis:

1) Reduction of the dimensionality of variability analysis for a practical use in clinical

settings

Biological variability and variable physiological conditions motivate the use of different

descriptors, capable of describing in the most accurate way possible the system under

study. However, the collection of this huge array of univariate and multivariate techniques

calls for the need to personalize the relevant information for each single subject, consider-

ing specific stress conditions that could be either pathological or not (e.g. physical exer-

cise). A step toward this result would be given by the characterization of the nature and

degree of interdependence between measures of variability in specific clinical situations.

Few studies have tried to face this challenge in a broad way. The reason is that it is still a

common practice to use a selection of few variability measures in order to reduce the

complexity of the study. Indeed, the link between physiology and variability still needs to

be understood more deeply, with the consequence that several researchers prefer to focus

their analysis on small set of techniques. An example, such a characterization has been

provided by Maestri et al. (2007), who performed a correlation analysis including only a

small set of nonlinear, univariate variability techniques applied to the assessment of heart

failure [54]. We believe that a more extensive characterization would enable the selection

of the optimal set of descriptors for a given clinical situation, thereby reducing the com-

plexity of the studies while still preserving all the valuable information. These would form

the basis for advanced types of data reduction and fusion techniques, with the final aim to

converge the different pieces of valuable information in an easy-to-use tool for physicians

and nurses. While this information gets created through research, another approach could

be the introduction of pattern recognition and data reduction methods, with the aim of

creating tools capable of selecting features and thereby extracting information of specific

clinical interest. The complexity of this task is even higher because almost all those techni-

ques require additional choices to properly work (e.g. the principal component analysis

requires a criterion to select the number of components to keep; neural networks require

the definition of the number of neurons to be used, as well as their activation function).

Therefore, a further challenge would be to make those tools capable of operating effec-

tively in an automatic or semi-automatic way, further simplifying the clinical practice. The

design of user friendly algorithms remains a main challenge, and we hope that our review

can help with such developments along the lines of e.g. Jovic et al. [108].

2) Extension of variability analysis to multivariate techniques characterizing multi-organ

variability and connectivity

In the scientific community it is well accepted that the human body is a complex sys-

tem, and its behavior depends on the interactions of its components [13,109-111].
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In spite of this fact, the common approach is to use univariate techniques [112,113],

and this review is a proof of it. Examples of multivariate studies exist, however they

are mainly focused on the evaluation of interactions between at maximum two sys-

tems, like the cardiac and respiratory systems through frequency analysis (spectral,

wavelet...) [114-116], or the evaluation of the differences between heart rate variability

and blood pressure [117], pulse oximeter data [22] and brain activity recorded through

electroencephalography [118]. Multiorgan variability and connectivity, respectively

defined as the ensemble of patterns of variation over time and interconnection over

space, represent new tools to describe the behavior of the human body as a whole

[119]. These tools will likely provide complementary information to that given by stan-

dard univariate techniques, and the simultaneous use of the two approaches together

holds the promise of new clinically valuable results.

Conclusion
Physiological time series are complex entities characterized by a variety of properties,

some of which are often intertwined, such as through a combination of stochasticity and

determinism. This complexity demands the use of a vast array of techniques, capable of

describing in the most accurate way possible the time series under study. In this article

more than 70 variability techniques were presented, explaining with an intuitive

approach the idea behind them, discussing their limitations and associating references

related to their clinical applications. Moreover, a novel way of classifying these variability

techniques was proposed, specifically according to whether they perform transforma-

tions of the data or extract features from the data. The paper further highlights two

grand challenges that the scientific community will face in the context of variability ana-

lysis for clinical applications.
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