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Abstract

Background: The objective of this study is to investigate electromagnetic
compatibility (EMC) of implantable neurostimulators with the emissions from radio
frequency identification (RFID) emitters.

Methods: Six active implantable neurostimulators with lead systems were tested for
susceptibility to electromagnetic fields generated by 22 RFID emitters. These medical
devices have been approved for marketing in the U.S. for a number of intended uses
that include: epilepsy, depression, incontinence, Parkinsonian tremor and pain relief.
Each RFID emitter had one of the following carrier frequencies: 125 kHz, 134 kHz,
13.56 MHz, 433 MHz, 915 MHz and 2.45 GHz

Results: The test results showed the output of one of the implantable
neurostimulators was inhibited by 134 kHz RFID emitter at separation distances of 10
cm or less. The output of the same implantable neurostimulator was also inhibited
by another 134 kHz RFID emitter at separation distances of 10 cm or less and also
showed inconsistent pulsing rate at a separation distance of 15 cm. Both effects
occurred during and lasted through out the duration of the exposure.

Conclusions: The clinical significance of the effects was assessed by a clinician at the
U.S. Food and Drug Administration. The effects were determined to be clinically
significant only if they occurred for extended period of time. There were no
observed effects from the other 5 implantable neurostimulators or during exposures
from other RFID emitters.

Background
In the last several years, radio frequency identification (RFID) technology has become a

popular choice for tracking people, animals, products and goods. This type of technol-

ogy serves the same purpose as bar coding systems and magnetic strip systems, which

is to provide identification. One advantage of RFID technology versus other types of

technologies is the proximity for identification. Another advantage is the information

stored in such systems can be programmed and reprogrammed, providing a robust

way to store information. For example, bar code scanners (readers) need direct line of

sight to identify barcodes. In magnetic strip technology, the magnetic strip cards have

to be swiped through or very close to the reader to be identified. In RFID technology,

RFID readers can be feet away from identification tags and still be able to identify

them. This technology works by emitting and receiving radio and sub-radio frequency

electromagnetic energy. Since RFID technology has gained popularity in many
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industries, an average person could get exposed to the emitted fields from RFID read-

ers when using public transportation, shopping at a grocery store, picking up a package

at a postal service and driving through a toll booth [1,2].

RFID technology is favored for certain uses due to its contactless transfer of data and

storage capacity [1] and is quickly merging into health care and pharmaceutical indus-

tries. The United States Food and Drug Administration (FDA) is encouraging use of a

state-of-the-art technology, such as RFID, that tags product packaging electronically

because it allows manufacturers and distributors to precisely track drug products

through the supply chain [3]. A number of hospitals are adopting RFID technology to

help locate doctors, nurses, patients and expensive medical equipment [4] and RFID

systems have been deployed for tracking items used in the surgical suites, such as,

sponges, needles and surgical instruments [5]. Other RFID systems have capability to

monitor temperature and are being utilized in pharmaceutical industry for temperature

compliance purposes [4]. Overall, RFID systems offer a variety of benefits, including

fast transactions, real time tracking, contactless data transfer, large storage capacity

and continuous temperature monitoring. Some claim that RFID technology can change

the delivery of patient care [6].

Similarly to other sources of electromagnetic energy, the emissions from RFID sys-

tems can be a source for electromagnetic interference (EMI) with medical devices. The

potential risks of EMI with RFID emissions can be illustrated by the study conducted

by van der Togt et. al. that reported potentially hazardous incidents in critical care

medical equipment caused by RFID system emissions. The hazardous incidents were

events that could have a direct physical influence on a patient by unintended change

in equipment function [7]. In a more recent study, Seidman et. al. investigated electro-

magnetic compatibility (EMC) between RFID and implantable pacemakers and implan-

table cardioverter defibrillators (ICDs). The pacemakers and ICDs were exposed to

RFID readers of 134 kHz, 13.56 MHz, and 915 MHz carrier frequencies. The results

showed that during 134 kHz RFID reader emissions, a reaction was observed for 67%

of all pacemaker tests and 47% of all ICD tests. Observed reactions by implantable

pacemakers and ICDs included pacing inhibition, inappropriate pacing, noise reversion

mode, changed pacing rates, inappropriate delivery of antitachycardia pacing, inap-

propriate delivery of high voltage shocks and a change in device programming [8].

Active implantable neurostimulator devices are similar to pacemakers and ICDs that

potentially could be susceptible to electromagnetic interference from RFID emissions.

Unlike implantable pacemakers and ICDs, FDA approved implantable neurostimulators

do not have sensing capability and operate as open loop systems with the patient to

close the loop. Implantable pacemakers and ICDs include cardiac sensing capabilities

in order to sense electrophysiological signals that might make these devices more sen-

sitive to external low frequency RF signals. Due to their sensing capabilities, it is

hypothesized that pacemakers and ICDs might be more likely to misinterpret certain

external RF emissions as an electrophysiological signal.

In recent years, the FDA has received a number of reports suggesting EMI with deep

brain stimulators from various electromagnetic sources [9]. Kainz et. al. described var-

ious sources of EMI, which included a report from a patient with an implantable spinal

cord stimulator who received an electric shock while walking near an article surveil-

lance device [10]. Several incident reports and published literature culminated in the
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1998, the FDA advisory issued a letter to cardiologists, cardiovascular surgeons, emer-

gency physicians, neurologists and neuro surgeons warning about the operation of cer-

tain medical devices, including spinal cord stimulators, may be affected by the

electromagnetic fields produced by anti-theft systems and metal detectors [11]. The

present study extends the investigation of potential EMI effects on implantable neuro-

stimulators with emissions from RFID emitters.

Methods
Materials

Six active implantable neurostimulators were analyzed for EMC with 22 RFID emitters.

Each implantable neurostimulator was approved by the FDA for intended uses that

include: epilepsy, depression, incontinence, Parkinsonian tremor and pain relief. All six

implantable neurostimulators consisted of implantable pulse generators (IPG) and

implantable leads with platinum/iridium electrodes. All implantable neurostimulators

were open loop systems where the physician and patient program and control the sti-

mulation. During testing exposures to the emissions from the RFID, all neurostimula-

tors were carefully monitored for effects of EMI, such as change in stimulating

parameters, changes in programmable settings, change in operating mode, false alarms,

initiation of any unintended operation and changes in programmable parameter set-

tings. Due to the nature of this study and the cooperative agreement set up between

multiple neurostimulator manufacturers and the FDA, the name and the model of

each implantable neurostimulator will be withheld and device under test (DUT) num-

ber assigned. Table 1 lists additional characteristics of the tested implantable

neurostimulators.

Twenty two RFID emitters were used in EMC testing with implantable neurostimula-

tors. LF and HF systems primarily emit magnetic fields while UHF systems primarily

emit electric fields. Table 2 shows the appropriate RF and physical characteristics of all

22 RFID emitters. For Emitters 1-5, the measurements were made with magnetic field

probe Model 1709.001 (Electric Research and Management) and for Emitters 6-13 the

measurement were made with magnetic field probe, Model H3DV7 (SPEAG). For

Emitters 14-16 and 21, 22, the measurements were made with electric field probe,

Model SRM-3000 (NARDA) and for Emitters 17-20, the measurement was made with

electric field probe, Model HI-6105 (ETS-Lindgren). In all measurements, probes were

connected to a robotic arm to maneuver along RFID antennas. The probes were

Table 1 Characteristics of Implantable Neurostimulators

DUT Indication Stimulation
Modality

Longest Lead Length
Tested (cm) a

Number of leads connected to the
neurostimulator

1 Epilepsy and
depression

Bi-polar 43 1

2 Epilepsy and
depression

Bi-polar 43 1

3 Incontinence Bi-polar 41 1

4 Parkinsonian
tremor

Bi-polar 135 2

5 Pain relief Bi-polar 75 2

6 Pain relief Bi-polar 135 2
a In the case of the neurostimulator system tested with lead extensions, the longest length reported includes the length
of the extension lead.
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aligned perpendicularly to RFID antennas and measured field strength along the flat

surface of each antenna.

In general, RFID systems consisted of interrogators (active emitters) and transpon-

ders (active and passive emitters). The interrogators, sometimes called readers, were

designed to read information from transponders. RFID transponders are referred to as

Table 2 Characteristics of RFID emitters

Emitter Emitter/ Reader
Antenna

Dimensions (cm)

Standard Used Emitter Carrier
Frequency
(MHz)

Maximum H-field
(A m-1) at 2.5 cm

a

Maximum E-field
(RMS) (V m-1) at 10

cm

1 Rectangular Loop
114 × 66 × 6.3

__ 0.125 13.3 __

2 Rectangular Loop
3.5 × 4.5 × 0.5

__ 0.125 1.2 __

3 Rectangular Loop
20 × 20 × 2.5

ISO 11785 0.134 269.0 __

4 Rectangular Loop
85 × 50 × 5

__ 0.134 68.0 __

5 Rectangular Loop
85 × 50 × 5

ISO 11785 0.134 162.0 __

6 Rectangular Loop
31 × 31 × 2.8

ISO 18000-3
mode 1

13.56 4.6 __

7 Rectangular Loop
20 × 20 × 0.8

ISO 18000-3
mode 1

13.56 4.9 __

8 Rectangular Loop
31 × 31 × 2.8

__ 13.56 8.6 __

9 Rectangular Loop
31 × 31 × 2.8

ISO 18000-3
mode 1

13.56 8.7 __

10 Rectangular Loop
31 × 31 × 2.8

ISO 18000-3
mode 1

13.56 8.8 __

11 Handheld
19 × 11 ×7.8

ISO 18000-3
mode 1

13.56 7.8 __

12 Patch
2.3 × 2.5 × 0.1

ISO 1443A,
1443B, 15693,

18000-3

13.56 2.4 __

13 Patch
21 × 32 × 1.2

ISO 18000-3
Mode 2

13.56 18.6 __

14 Patch
15.7 × 5.5 × 3

ISO 18000-7 433 __ 0.4

15 Stick length 19.8 ×
diameter 1.4

__ 433 __ ___

16 Patch
38 × 36.5 × 1.5

__ 433 __ ___

17 Patch
31 × 31 × 4.8

ISO 18000-6B 915 __ 79.3

18 Patch
48.5 × 31 × 5

ISO 18000-6B 915 __ 36.2

19 Patch
21 × 21 × 3.5

ISO 18000-6 915 __ 97.3

20 Patch
22.5 × 21 × 5

ISO 18000-6C 915 __ 69.8

21 Stick length 10.5
diameter 0.9

__ 2450 __ 0.02

22 Stick length 11
diameter 0.8

__ 2450 __ 1.0

a Maximum H-field strength at 2.5 cm for Emitters 1-5 was measured using magnetic probe Model 1709.001, Electric
Research and Management. For Emitters 6 - 13, the maximum H-field strength was measured using magnetic probe,
Model H3DV7, Speag. For Emitters 14-16 and 21, 22, the maximum E-field was measured using E-field probe, Model
SRM-3000, NARDA. Measured electric field of Emitters 15 and 16 was below the sensitivity level of the probe. For
Emitters 17-20, the maximum E-field was measured using E-field probe, Model HI-6105, ETS-Lindgren.
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tags are either active or passive devices that transmit their information to reader. For

this study, the term RFID emitter describes the 21 RFID readers and one active RFID

tag. Five of the RFID emitters operated using a carrier frequency between 125 and 135

kHz and are typically used for access control for animals and people. Twelve RFID

emitters operate using a carrier frequency of 13.56 MHz that is typically used in

libraries, passports, payment emitters and smart cards. Three of the tested RFID emit-

ters operated using a carrier frequency of 433MHz that are typically used for asset

tracking. One of the tested RFID emitters operated at a carrier frequency of 915 MHz

that are typically used in retail and military supply chain tracking. Lastly, one RFID

emitter operated at a carrier frequency of 2.45GHz typically limited to niche uses [8].

Due to the nature of this study and the cooperative agreement set up between multiple

RFID manufacturers and the FDA, the name and the model of each RFID emitter will

be withheld and RFID number assigned.

Test Method

The test method for the present study originated from ANSI/AAMI/ISO 14708-3:2008

American National Standard for Implants for Surgery - Active implantable Medical

Devices - Part 3: Implantable Neurostimulators [12]. The standard was recognized for

developing in vitro EMC test protocols for implantable neurostimulators using a torso

simulator tank made of a polyethylene plastic box (58.5 cm × 42.5 cm × 15.2 cm) filled

with 0.27 S/m saline solution to represent static electrical properties of the body. A

non-conductive, non-metallic plastic grid cut from a fluorescent light fixture cover was

used as a support grid for the neurostimulator device and the lead system. The grid

was suspended with plastic legs inside the saline solution that allows adjustable eleva-

tion within the saline. The DUT was submerged 5 mm deep into the saline bath paral-

lel to the surface. Figure 1 demonstrates top view of the test set-up.

Figure 1 Overall Configuration. Configuration of RFID antenna, implantable neurostimulator system and
pick-up lead. The implantable neurostimulator system and the pick-up lead were positioned in the same z-
plane. The RFID antenna was parallel to the neurostimulator system.
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Four out of the six implantable neurostimulators use voltage based stimulation and

were programmed to generate pulses of electrical potential amplitude (4.2-5.2 V), fre-

quency (2-3 Hz), pulse width (210-500 usec). The other two implantable neurostimula-

tors use a current based stimulation and were programmed to output pulses of electrical

current amplitude (1.75 mA), frequency (2 Hz) and pulse width (500 usec). Overall, the

output amplitude of the devices was set to the half of their peak maximum amplitude,

the maximum pulse width and the smallest programmable frequency. These parameters

were chosen to allow the greatest range of observation for detecting disruptions or

changes to the DUT output that could be attributed to RFID emissions exposure.

In the cases where a neurostimulator system had more than two stimulating electrodes

per lead system, the electrodes that were furthest apart were activated for consistency

among all tested systems. If a neurostimulator system had an option of using bi-polar or

unipolar setting, the bi-polar setting was chosen for consistency among all tested neuro-

stimulator systems. If a neurostimulator system had an option of using different lead

lengths, the leads of maximum lengths were chosen due to the expectation that this

would capture a larger portion of the RFID emissions and allow for greater coupling to

the electromagnetic fields into the DUT. A bi-polar pacemaker lead connected to a digi-

tal oscilloscope was placed in the saline bath within a few millimeters from the neurosti-

mulator electrodes to record the output pulses from the DUT.

A non-conductive, non-metallic fiberglass robotic arm was used to maneuver each

RFID emitter parallel to the open surface of the stimulator system. Starting at 60 cm ver-

tical separation distance from the DUT, the robotic arm moved the RFID emitter closer

to the submerged DUT in increments of 5 cm. The closest separation distance between

the DUT and the RFID emitter was 2.5 cm. Figure 2 shows the H-field strengths at per-

pendicular distances apart from the RFID emitter antennas for Emitters 3 and 5.

Test Procedure

Each DUT was configured with IPG placed in the middle of the support grid and the

leads and electrodes wrapped in a spiral around the IPG as specified in the ANSI/

Figure 2 H-field Measurements. Measured maximum H-field strength at 2.5, 5, 10 and 20 cm away from
the antenna for Emitters 3 and 5.
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AAMI/ISO 14708-3:2008 Standard [12]. For consistency, each lead was wrapped twice

around the IPG with the distance between the center of IPG to the furthest electrode

held equal to the following,

distance =
√
((0.09 ∗ lead length2)/π) (1)

The lead system was secured in place with non conductive cotton thread and the

conductivity of the saline bath measured and if needed corrected to 0.27 S/m. The

DUT with the support grid was submerged into the saline tank to a depth of 5 mm.

The bi-polar recording lead was then placed into the saline bath within millimeters

away from DUT. The DUT was programmed and activated and output of the IPG was

verified on the oscilloscope. For each measurement, the robotic arm was raised 60 cm

away from DUT then RFID emitter antenna was placed on top of the robotic arm and

centered directly over the DUT. The RFID emitter was turned on and verified for

proper operation. The robotic arm with RFID antenna were lowered in 5 cm incre-

ments until the separation distance of 5 cm was reached. The robotic arm was then

additionally lowered to 2.5 cm above the DUT for worst case test. Thirteen distances

of separation were verified for exposures. The behavior of the neurostimulator under

each test condition was observed for 15 seconds and recorded. Any change in output

signal was noted as an effect. The same test procedure was repeated for each of the 22

RFID emitters resulting in the total of 1716 observed tests (6 neurostimulator systems

× 22 RFID emitters × 13 tested distances).

Results
EMC was investigated between six implantable neurostimulators and 22 RFID emitters

at 13 distances of separation. A total of 1716 tests were administered. Six tested

implantable neurostimulators did not show any effects when exposed to RFID emitters

with 125 kHz, 13.56 MHz, 433 MHz, 915 MHz and 2.45 GHz carrier frequencies and

continued their normal mode of operation before, during and after exposures.

Seven effects were observed from exposures between RFID carrier frequency of 134

kHz and DUT 3. The output of DUT 3 with lead length of 41 cm was inhibited by

Emitter 3, with a 134 kHz carrier frequency, at separation distances of 2.5, 5 and 10

cm. The output of the same implantable neurostimulator with the same lead length

was also inhibited by Emitter 5, with a carrier frequency of 134 kHz, at separation dis-

tances of 2.5, 5, 10 cm and also showed inconsistent pulsing rate at a separation dis-

tance of 15 cm. All effects were transient occurring only during exposure.

In order to investigate EMC of DUT 3 further, additional tests were performed. The

neurostimulator was tested with shorter lead lengths of 28 cm and 33 cm. The DUT 3

with each lead length was exposed to Emitters 3 and 5 in the same way as described in

the Test Method and Test Procedure sections of this paper. The following effects were

observed,

• DUT 3, lead length of 33 cm exposed to Emitter 3

○ the output was inhibited at 2.5, 5, and 10 cm of separation distance

• DUT 3, lead length of 33 cm exposed to Emitter 5

○ the output was inhibited at 2.5 and 5 cm of separation distance

• DUT 3, lead length of 28 cm exposed to Emitter 3
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○ inconsistent pulsing rate at a separation distance of 10 cm

○ the output was inhibited at 2.5 and 5 cm of separation distance

• DUT 3, lead length of 28 cm exposed to Emitter 5

○ the output was inhibited at 2.5 and 5 cm of separation distance

All DUT effects occurred during and lasted throughout the duration of the particular

separation distance and exposure from RFID emitters. Additionally, Figure 2 shows

measured maximum H-field strength at distances of interest.

Discussion
Effects from EMI were observed when DUT 3 was exposed to the electromagnetic

fields from RFID emitters operating at the 134 kHz carrier frequency. Two major dis-

tinctions between 134 kHz RFID emitters and emitters of higher frequencies are their

carrier frequency and the antenna type. Close to the emitter antennas, also known as

the “near field” region, low frequency antennas emit primarily magnetic fields. This is

the case for tested 134 kHz RFID tested emitters. Emitters 3 and 5 that caused EMI

have magnetic field intensities that are at or above 162 A/m at 2.5 cm away from

antenna. From theory, in the near field region, the strength of the magnetic field

decreases with the cube of a distance [1]. This explains why the same types of effects

did not occur at greater distances of separation.

More effects on the DUT3 were observed at larger distances of separation with Emit-

ter 5 that has H-field strength less than the one of Emitter 3 at 2.5 cm. This could be

due to the effects that larger antennas have. It is true that for RFID antennas with lar-

ger dimensions, the field strength decreases more slowly than for antennas of smaller

dimensions. Figure 2 demonstrates the principal of field strength curve vs. distance of

separation. For example, Emitter 3 has higher field strength at the separation distance

of 10 cm; however, Emitter 5 has higher field strength at 20 cm of separation distance.

This could explain observed effects seen at 15 cm with Emitter 5 and not with Emitter

3.

Additional testing of DUT 3 with lead lengths of 33 cm and 28 cm and Emitters 3

and 5 indicate that the lead length is related to a number of effects. DUT 3 with lead

length of 41 cm, seven effects were observed with the maximum distance of separation

of 15 cm. DUT 3 with lead length of 28 cm, five effects were observed with maximum

distance of separation of 10 cm, therefore the number of observed effects increases

with increased lead length. This effect could be due to the induced current coupling

into the leads and the neurostimulator system. Induced current is proportional to the

area formed by the lead; the larger the area, the greater the electric current in the

system.

One possible explanation for the effects seen with DUT 3 and Emitters 3 and 5 is

related to the telemetry frequency (frequency used to communicate between the neu-

rostimulator and the programmer) and the neurostimulator control design. The tele-

metry frequency of DUT 3 is very near carrier frequency of Emitters 3 and 5.

Additionally, DUT 3 is designed to inhibit stimulation during telemetry process. This

period lasts between 42 - 84 ms depending on the number of ones and zeros in the

data. If the RFID reader emits a pulse every 42 ms (or quicker) than we would expect
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complete inhibition. Depending on timing RFID readers that pulse less frequently

could partially inhibit the neurostimulator.

The clinical significance of the effects was analyzed by a clinician at the FDA. Two

scenarios were considered, short term exposure and extended period of time exposure

from RFID emitters. Short term exposure is equivalent to a patient walking through or

by RFID emitter. Short term exposure could cause temporary effects, in this case only

minor changes or no changes at all would likely be noted by the patient. Extended per-

iod of time exposures are equivalent to a patient spending long periods of time near an

RFID emitter. In this case, long term exposure could cause long term effects that are

clinically significant and therefore making it likely that the patient’s original symptoms

of incontinence to return.

Limitations
There are several limitations of this study that should be discussed. The study was

conducted on a phantom filled with saline solution representing average conductivity

of a human body at all frequencies of interest. During the study, the RFID antennas

were centered over implantable neurostimulator systems, which might not represent

the worst case scenario for square or rectangular antennas since the maximum field

strength is at the corners. Also, the configuration of implantable pulse generator and

the lead system was a generalization across these devices taken from referenced stan-

dard [12] rather than a strict adherence to the way each device would likely be

implanted. This configuration was chosen because it seems close to the worse case sce-

nario for potentially inducing electromagnetic interference and maximizes the area and

number of loops made by the lead system. Another important limitation of this study

is the operation of RFID reader without RFID tag. In our study, we used RFID tags to

verify proper operation of RFID emitters prior to testing and we did not use RFID tags

during dwell time of each test. The presence of an RFID tag could effect the reader’s

modulation. It is also important to mention that few of our tested implantable neuro-

stimulator systems had an option of unipolar stimulation. As we mentioned in Test

Method section, we chose a bi-polar stimulation option for consistency purposes, since

all of our neurostimulators offered such option. The unipolar stimulation option was

not tested which defines anther limitation of this study.

Conclusions
In this study, EMC was investigated among six implantable neurostimulators and 22

RFID emitters. Most of the DUT implantable neurostimulators were unaffected by the

RFID emissions. However, DUT 3 showed repeatable effects that included output inhi-

bition and inconsistent pulsing rate from exposure to 2 different 134 kHz RFID emit-

ters at separation distances from 2.5 cm up to 15 cm. The present study seems

generally consistent with a previously published study of active implantable devices

that showed that EMI is most common for certain medical devices during exposure to

134 kHz frequency RFID emitters [8]. Manufacturers of active implantable devices

need to be aware of the potential and risk of EMI from RFID emitters and design and

their medical devices appropriately. Additionally, RFID industry should take into

account the potential effects on active implantable medical devices when designing sys-

tems, configuring, and locating installation of their systems. Moreover, patients and

Pantchenko et al. BioMedical Engineering OnLine 2011, 10:50
http://www.biomedical-engineering-online.com/content/10/1/50

Page 9 of 10



physicians should all be aware of the possibility of adverse effects of implantable neu-

rostimulators from RFID emitters. In the future, our goal is to increase the number

and variety of tested implantable neurostimulators and simulate RFID emitters to

decrease testing time.

Disclaimer
The mention of commercial products, their sources, or their use in connection with

material reported herein is not to be construed as either an actual or implied endorse-
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