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Abstract

Background: Allometry, in general biology, measures the relative growth of a part in
relation to the whole living organism. Using reported clinical data, we apply this
concept for evaluating the probability of ventricular fibrillation based on the
electrocardiographic ST-segment deviation values.

Methods: Data collected by previous reports were used to fit an allometric model in
order to estimate ventricular fibrillation probability. Patients presenting either with
death, myocardial infarction or unstable angina were included to calculate such
probability as, VFp = δ + b (ST ), for three different ST deviations. The coefficients δ
and b were obtained as the best fit to the clinical data extended over observational
periods of 1, 6, 12 and 48 months from occurrence of the first reported chest pain
accompanied by ST deviation.

Results: By application of the above equation in log-log representation, the fitting
procedure produced the following overall coefficients: Average b = 0.46, with a
maximum = 0.62 and a minimum = 0.42; Average δ = 1.28, with a maximum = 1.79
and a minimum = 0.92. For a 2 mm ST-deviation, the full range of predicted
ventricular fibrillation probability extended from about 13% at 1 month up to 86% at
4 years after the original cardiac event.

Conclusions: These results, at least preliminarily, appear acceptable and still call for
full clinical test. The model seems promising, especially if other parameters were
taken into account, such as blood cardiac enzyme concentrations, ischemic or
infarcted epicardial areas or ejection fraction. It is concluded, considering these
results and a few references found in the literature, that the allometric model shows
good predictive practical value to aid medical decisions.

Background
Ventricular fibrillation can be viewed as a probabilistic event that appears biased under

certain pathophysiological and daily life situations. Physicians, in their practice, try to

predict as close as possible how high such probability is. Since most of cardiac deaths

are due to ventricular fibrillation, it can be said that such death, in the end, would be

an event that counts as a ventricular fibrillation. Valentinuzzi, in 2010, has reviewed at

large such arrhythmia and its countermeasures [1]. Empirical tests, as possible quanti-

tative criteria to screen out patients of high risk (that is, searching for a better answer

to the question shall we confine the patient to the coronary unit?) have been attempted

with moderate success, but always the degree of uncertainty is rather large. In such

endeavor, we might try an appealing and old universal scaling, the allometric law,
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although in principle apparently not related to the cardiac risk overall concept, it might

find a place in it and at least deserves to be reminded bringing about first a nice and

well carried out paper by Noujaim et al, in 2004 [2]. In it, it is recalled that from

mouse to whale the electrocardiographic PR interval increases 101 times whereas body

mass (BM) augments 106. This is the first use we found of the allometric law in cardi-

ology encouraging us to proceed further up.

Scaling of many biological processes can be described by the allometric equation,

Y = a(BM)
b, where Y is the biological process and a and b are scaling constants. In gen-

eral, the weights of most individual organs scale as a constant fraction of body mass (i.e.,

the body mass exponent, b equals 1.0). Biological rates (heart rate, respiratory rate) scale

as b close to 0.25. Finally, volume rates (the product of volume and rate) such as cardiac

output, ventilation and oxygen uptake vary as b around 0.75. These emergent patterns

provide insights into body-size dependent ‘principles of design’ that seem to dictate sev-

eral blueprint aspects and function across species among all mammals [3].

Noujaim et al [2] assumed that the heart behaves as a set of “fractal-like” networks tend-

ing to minimize propagation time across the conducting system while ensuring a hemody-

namically optimal atrioventricular activation sequence. With the potential relationship given

above and, subsequently, based on previously published values of PR interval, heart rate, and

body masses of 541 mammals, they reported as best fit the equation PR = 53(BM)
0.24.

Inspired in the latter report, the following question seems pertinent: Would a rela-

tionship similar to the allometric equation be conceivable, say, between the probability

of cardiac risk (or cardiac event or episode, all equivalent terms) and heart weight, or

perhaps other parameter somehow related to the latter, as for example, the number of

cardiac diseased fibers or the ST shift seen in the ECG? The objective of this commu-

nication tries to find an answer to such question. The mentioned ECG deviation

appears as a good candidate because well-known is the fact that the larger the ST step,

in either direction (upward or downward), the larger the compromised myocardial

mass. In some cases, such change includes inverted T-wave, which tends to complicate

the wave-pattern. Many reports confirm this concept, such as Klootwijk, in 1998 [4],

Kléber, in 2000 [5], or Balian et al, in 2006 [6], among others, where often the ST shift

is defined as a change of ST amplitude in one or more leads of at least ± 100 μV from

the baseline ST level, developing within a 10 minute period and persisting for at least

1 minute. However, differences among authors regarding these criteria are frequent.

Methods
Theoretical background

Allometry, in general biology, measures the relative growth of a part in relation to the

whole living organism. The term was first used by Snell, in 1891 [7], to express the

mass of a mammal’s brain as a function of the body mass. The growth velocity of a

component y is related to the growth velocity of another component (or the whole

organism) x in a constant way. This was clearly described by von Bertalanffy in 1957

[8]. Thus, the relative rate of change of a given event y is proportional to the relative

rate of change of body mass or body weight x, i.e.,

dy dt

y
B
dx dt

x

/ /= (1)
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After integration and some easy algebraic manipulation, equation (1) becomes

ln ln lny A B x= + (2)

or

y Ax B= (3)

Originally, y was the weight of an organ (heart, stomach, other) and x was body

weight or mass. The parameters A and B require numerical estimation by an appropri-

ate procedure usually using empirical information. By the same token, let us say that

the probability of fibrillation PF (and we use PF because, as stated above, most of the

cardiac episodes end up in ventricular fibrillation) follows a relationship with the num-

ber of ventricular diseased fibers (NDF) formally equal to (2), i.e.,

P NF DF=  ( ) (4)

Hence, y in equation (3) is replaced by PF in (4), and NDF in the latter takes the place

of x in the former. After all, the number of diseased cardiac fibers (ischemic or

infarcted or both) are part of the cardiac mass. Besides, since the electrocardiographic

ST-segment deviation (ΔST) is a traditional estimator of cardiac injury, it sounds sensi-

ble to state that,

NDF ST= Δ (5)

or in words, the number of diseased ventricular fibers is proportional to the ST-

deviation (Δ indicating precisely “deviation”). Hence,

PF ST=   ( )Δ (6)

After taking logarithms of both sides, the latter equation becomes,

ln (ln ln ) (ln )PF ST= + +    Δ (7)

which can be reduced to,

VF STP = + ( ) (8)

We define VFP as ventricular fibrillation probability, where

   = +ln ln (9)

ST ST= ln Δ (10)

and

VF PP F= ln (11)

Hence, equation (8) in log-log plot would represent the probability of fibrillation as

function of the ECG ST-depression or elevation.
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Numerical procedure

To calculate out the two constants δ and b of equation (8) and later on apply the

mathematical expression for predictive purposes, the probability of the data having

occurred can be estimated by, (a) simply assuming an arbitrary and theoretical set of

coupled pairs of numbers, as for example, a quadratic law of the type w = K z2, that is,

the VFP would be accepted as being proportional to the square of the ST, or (b) using

a particular hypothesis, say, based on clinical data.

Medical experience is obviously the best and most reliable source of information

where from an idea of the probability of fibrillation based on ECG evidence can supply

an excellent lead. For that matter, three sets (i, ii and iii) were used to fit the allometric

equation, two from Hyde et al [9] and another from Kaul et al [10], as follows:

(i) In the first one, 642 patients had been admitted to coronary care unit with pro-

longed chest pain. Due to the exclusion criteria applied by these authors, 469 were

removed leaving a net number of 173 for their study. Besides, they reported survival

rates at 1 and 4 years after the first admission.

(ii) In the second paper (PARAGON-A trial), out of 2,282 patients with chest dis-

comfort within the previous 12 hours, there was a screen out of 694 due to either

missing or not clear enough records leaving a net of 1,588 cases. They were evaluated

at 1 month and 6 months.

(iii) Besides, the latter authors had 8,001 patients (GUSTO-IIb trial) comparing hiru-

din and heparin therapy when unstable angina or acute myocardial infarction was pre-

sent without ST-segment. Out of this total, only 6,301 were evaluated at 1 month and

6 months.

In Hyde et al [9], patients with ≥ 0.5 mm ST-segment depression were classified as

“true depression”. This deviation was subclassified as 0.5 mm, 1 mm or ≥ 2 mm. In

their own words, “ST segment depression was measured using calipers 80 ms after the

J point in intervals of 0.5 mm. ECGs were analyzed blinded to the clinical outcome”.

The ST-segment criteria in Kaul et al [10], instead, rounded out the depression of

0.5 mm to 1 mm, of 1.5 mm to 2 mm, including in the latter larger deviations, distin-

guishing three groups: No ST-segment depression, 1 mm ST-segment depression in

two contiguous leads, and ST-segment depression of 2 mm in two contiguous leads.

The 12-lead ECGs were recorded at a paper speed of 25 mm/s. ST segment depression

was judged to be present if the J point was depressed by ≥1 mm and was followed by a

horizontal or downsloping ST segment for at least 0.08s in one or more of the 12

leads, except for the aVR lead.

Curves presented herein were constructed after the numerical values given in [9,10].

All were resampled with a quadratic interpolation function in steps of 0.025 mm to

improve the resolution. Thereafter, a log-log algorithm was applied to the ventricular

fibrillation probability versus the ST-segment deviation (see equation 6). The para-

meters b and δ and goodness of fit r2 were computed by linear regression and all

quadratic fits used values within the 0.5-2 mm range (see Table 1). It should be

recalled that the standard ECG calibration of 10 mm = 1 mV is used in all the paper.

Results
Figure 1 displays all 6 curves, where there are 2 clearly distinguishable groups: The

lower one corresponds to 1 and 6 months after confinement, as reported by the
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GUSTO-IIb data (dark markers) and by the PARAGON-A study (open markers), both

in the same paper of Kaul et al [10]. As example, for 1.5 mm shift, the predicted prob-

ability at one month ranges from slightly below 11% (GUSTO-IIb) to 15% (PARA-

GON-A). For the same ST shift selected above, the probability values at 6 months

span from 15% (GUSTO-IIb) to a 20% (PARAGON-A). Finally, the upper two curves

describe the behavior at 1 (open squares) and 4 years (dark squares) after the event,

according to Hyde et al [9]. For the same previous ST deviation, the foreseen probabil-

ity range goes from 45% to about 75%. The fitted adjustments pass essentially through

the depicted points.

In Figure 2, instead, we collect the results after averaging out PARAGON’s and GUS-

TO’s data, as reported by Kaul et al [10], respectively, at 1 and 6 months, from bottom

to top, showing also one half of the standard deviation for each data point. Notice the

spread decrease comparing the bottom with the upper curve at any ST value. Besides,

an inverse relationship between ST deviation and standard deviation is manifest, which

speaks of the gradual nature of ST changes and, therefore, points out to the impor-

tance of such amplitude.

Table 1 Coefficients b and δ, in equation (6), and adjusted r-square for all 9 curves

Months b δ Adjusted r-square

PARAGON-A 1 0.42 1.09 0.9884

Kaul et al. [2]
(corresponding to Figure 1)

6 0.45 1.23 0.9917

GUSTO-IIB 1 0.62 0.92 0.9245

Kaul et al. [2]
(corresponding to Figure 1)

6 0.54 1.09 0.9427

Mean PARAGON-A & GUSTO- IIB 1 0.50 1.01 0.9615

Kaul et al. [2]
(corresponding to Figure 2)

6 0.49 1.16 0.9734

12 0.54 1.56 0.9844

Hyde at al. [1]
(corresponding to Figure 1)

48 0.48 1.79 0.9477

Average curve (corresponding to Figure 3) 1 to 48 0.46 1.28 0.9959

Figure 1 Estimated VFp as function of ST shift at different observational windows. All 6 curves drawn
after data from references Hyde et al and Kaul et al [1,2], at 1, 6, 12 and 48 months (see text for details).
For a 2 mm ST-deviation, the full range of predicted risk probability extends from about 12.8% at 1 month
up to 83.5% at 48 months after the original cardiac event.
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Figure 3 is an attempt to reach a single equation for all the data presented in Figure 1.

For that matter, an average value curve is depicted along with its Standard Error of the

Mean (SEM). Dispersion here covers the full time range, i.e., from 1 month to 4 years.

Table 1 summarizes the numerical values for the two parameters characterizing

equation (8).

Figure 2 Average VFp from two studies. Mean ± SD results, obtained from mean PARAGON-A and
GUSTO-IIB.

Figure 3 Overall average curve covering all the reported data. The upper and lower dashed lines
bound the SEM so giving an idea of the possible error in the prediction. Say, for 1.5 mm ST-segment shift,
the VF probability would go from 17% to 32%.
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Discussion
This report has developed an allometric equation simply based on the electrocardio-

graphic ST-segment deviation. The calculated coefficients permit predictions at differ-

ent times after the first cardiac episode or, with a much wider spread, as an overall

quantitative evaluation applying the relationship given in Figure 3. Obviously, the

model must be tested in the clinical environment to better assess its accuracy and pre-

dictive power. In Figure 2, dispersion increases at 1 month after the cardiac episode,

which might be interpreted as the patient still traversing a period of dangerous

instability. Conversely, the upper curve, after a longer time, shows a marked spread

decrease. We read this fact as a stable condition because of compensation.

With the aging process, along perhaps with an increase in the ischemic areas or

deterioration of the myocardial scar tissue, it seems quite acceptable a consequent

increase, too, in the probability of an arrhythmic event, as well depicted in the three

figures, throughout longer observational periods.

It is convenient to underline that the best fit quadratic equation (see Methods) sup-

plies the numerical information needed to estimate the b and δ constants of the allo-

metric law.

This model uses only the ST-segment as criterion, which obviously leaves out other

possible parameters, such as myocardial enzymes (CPK, for example), quantitatively

obtainable by blood sample analysis, or ischemic or infarcted epicardial surface, from

appropriate imaging procedures, or ejection fraction as evaluated by echocardiography.

Other anthropological data, such as patient’s sex and age, could also be included. Any

of these criteria would lead to allometric equations as the one herein reported. One

tempting and difficult approach would try to combine all the mentioned parameters in

a single mathematical model.

The results herein presented foresee a direct application in the clinical environment

to better predict the evaluation of a cardiac patient. However, this kind of validation

remains to be carried out.

Conclusions
The allometric statement seems to maintain interest, especially in general mammalian

biology [11,12] and the results reported here would indicate an attractive line of research

with their consequent clinical tests. Once more, it should be underlined the proportion

basis of the allometric statement, since it numerically links here a specific number of

compromised fibers (ischemic or even dead) with the concept of cardiac risk.
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