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Abstract

Background: The Zambia Malaria Indicator Survey (ZMIS) of 2006 was the first nation-wide malaria survey, which
combined parasitological data with other malaria indicators such as net use, indoor residual spraying and
household related aspects. The survey was carried out by the Zambian Ministry of Health and partners with the
objective of estimating the coverage of interventions and malaria related burden in children less than five years. In
this study, the ZMIS data were analysed in order (i) to estimate an empirical high-resolution parasitological risk
map in the country and (ii) to assess the relation between malaria interventions and parasitaemia risk after
adjusting for environmental and socio-economic confounders.

Methods: The parasitological risk was predicted from Bayesian geostatistical and spatially independent models
relating parasitaemia risk and environmental/climatic predictors of malaria. A number of models were fitted to
capture the (potential) non-linearity in the malaria-environment relation and to identify the elapsing time between
environmental effects and parasitaemia risk. These models included covariates (a) in categorical scales and (b) in
penalized and basis splines terms. Different model validation methods were used to identify the best fitting model.
Model-based risk predictions at unobserved locations were obtained via Bayesian predictive distributions for the
best fitting model.

Results: Model validation indicated that linear environmental predictors were able to fit the data as well as or
even better than more complex non-linear terms and that the data do not support spatial dependence. Overall the
averaged population-adjusted parasitaemia risk was 20.0% in children less than five years with the highest risk
predicted in the northern (38.3%) province. The odds of parasitaemia in children living in a household with at least
one bed net decreases by 40% (CI: 12%, 61%) compared to those without bed nets.

Conclusions: The map of parasitaemia risk together with the prediction error and the population at risk give an
important overview of the malaria situation in Zambia. These maps can assist to achieve better resource allocation,
health management and to target additional interventions to reduce the burden of malaria in Zambia significantly.
Repeated surveys will enable the evaluation of the effectiveness of on-going interventions.
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Background
Malaria is an endemic disease in Zambia with a national
incidence of 412 per 1,000 inhabitants in 2006. Despite
a drop of the reported cases over the last years, it is still
the leading cause of morbidity and mortality accounting
for 45% of hospitalizations and outpatient department
visits with 6,000-8,000 reported deaths [1]. Through the
National Malaria Strategic Plan (NMSP) 2005-2010, the
Ministry of Health and a network of partners are work-
ing toward scaling up effective malaria control interven-
tions with the goal of substantially reducing malaria-
related burden, especially among vulnerable populations,
such as children under five years of age [2]. Lead by the
Ministry of Health, numerous partners, including the
Global Fund, the President’s Malaria Initiative (PMI),
the World Bank and the Malaria Control and Evaluation
Partnership in Africa (MACEPA) provide support for
scaling up malaria control prevention and treatment ser-
vices throughout Zambia. The national malaria control
programme advocates malaria control through wide-
spread distribution of insecticide-treated mosquito nets,
application of insecticides in homes, preventive treat-
ment for pregnant women and effective treatment of
infected persons [3]. As part of the programme, 5.3 mil-
lion insecticide-treated nets were distributed all over the
country in the years 2006 and 2007 and 85% households
of 15 target district have been sprayed [4]. In addition,
in 2007, 60% of all pregnant women got malaria preven-
tion drug and all pregnant woman who visited a public
clinic received one insecticide-treated net for herself and
every under-five child in the same household [5].
The efforts of malaria reduction require comprehen-

sive baseline maps of malaria risk over the whole coun-
try. These maps can guide malaria control at areas of
highest need, help limited resources to be distributed
more efficiently and assist in the evaluation of the pro-
gress of all intervention programmes. Earlier maps of
malaria risk in Zambia are based on malaria climatic
suitability conditions [6,7], however to date there is no
empirical malaria map for the country. Although histori-
cal survey data have been compiled by the Mapping
Malaria risk in Africa (MARA) project, malaria
risk estimates based on these data will not reflect the
current situation, which is changing due to ongoing
interventions.
In 2006, the Ministry of Health, the Central Statistics

Office (CSO), MACEPA, and partners conducted the
first national Zambia Malaria Indicator Survey (ZMIS).
This is a nationally representative household survey in
children under five to assess the coverage of key malaria
interventions and to measure malaria-related burden [5].
The survey contains geo-referenced parasitological data
for each child that can be used to estimate the malaria

risk and draw accurate maps of the current malaria
situation in Zambia. In addition, the ZMIS collected
information on previous interventions at household level
like bed nets or indoor residual spraying (IRS) and
socio-economic aspects.
In this paper, the ZMIS data of 2006 were analysed

and the first contemporary empirical parasitaemia risk
map for the country was produced. The MIS data are
expected to be correlated in space due to common
environmental exposures, which influence transmission
similarly in neighbouring areas. The standard statistical
methods assume independence of the observations. To
take into account spatial correlation, Bayesian geostatis-
tical models [8] were developed to establish the relation
between the parasitaemia data and environmental/cli-
matic predictors of the disease. In addition, the corre-
sponding non-spatial models were fitted for comparison
purposes. Environmental data were obtained vie remote
sensing (RS). Potential non-linearity in the environment-
malaria relation and elapsing time in the effects of
environmental predictors on parasite risk were modelled
using predictors in categorical scales and fitted by pena-
lized and basis spline (P- and B-splines) functions. Due
to large number of model parameters, Bayesian Markov
chain Monte Carlo (MCMC) simulation was used for
model fit. Model based predictions estimating the risk at
unobserved locations were obtained via Bayesian kriging.
Parasitaemia risk estimates were linked to population
data and the number of children at risk at province
level was calculated.

Methods
The study area and the ZMIS
Zambia is a republic in Southern Africa. Most parts of
the country are high plateau areas covered with savan-
nas and some rivers, valleys and mountains. The country
has a tropical climate with the rainy season occurring
during December and April.
The ZMIS was carried out from May to June 2006,

shortly after the rainy season. The data were obtained
from a nationally representative two-stage cluster sam-
ple [5]. At the first stage 120 standard enumeration
areas (SEA) were randomly selected among about
17,000 SEAs the country is divided. They are located
within 58 out of 72 districts from all 9 provinces in
Zambia. Within each SEA, a random sample of 25
households was chosen resulting in a total of 3,000
households. A household and a women’s questionnaire
were conducted with Personal Digital Assistants (PDA).
In addition, blood samples in children under five were
collected and analysed for anaemia using Hemocue Hb
201 and malaria parasites using Paracheck Pf and thick
and thin blood smears. Households were geo-located
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using the Global Positioning System (GPS). All data
were entered in an ACCESS database.

Socio-economic data
Socio-economic data were obtained from a household
survey carried out during the ZMIS. An asset index was
created as a weighted sum of 59 different household
assets extracted from 17 relevant questions, which were
included in the household survey. The weights were cal-
culated by principle component analysis (PCA) on the
asset indicators [9]. Then the household asset index was
divided into wealth quintiles to create a socio-economic
status analysis variable.

Environmental and population density data
Environmental predictors were extracted from Remote
Sensing (RS) sources at spatial and temporal resolutions
shown in Table 1. This data are available for free at
high spatial and temporal resolution. To take into
account the elapsing time between the climatic suitabil-
ity for malaria transmission and parasitaemia, the cli-
matic data were gathered for different periods (up to
one year) prior to the survey starting from May 2005.
Day and night land surface temperature (LST), normal-
ized difference vegetation index (NDVI) and land cover
types were downloaded from the Moderate Resolution
Imaging Spectroradiometer (MODIS) from the U.S.
Geological Survey (USGS) Land Processes Distributed
Active Archive Center (LP DAAC) [10]. LST data were
extracted as averages over 8-day periods at 1 km spatial
resolution. NDVI was obtained as a 16-day average at a
0.25 km spatial resolution. Land cover data were avail-
able from MODIS for the year 2004 and contained 17
different land cover categories as defined by the Interna-
tional Geosphere-Biosphere Programme (IGBP). They
were grouped into five categories, namely wetlands, for-
ests, urban areas, shrublands and others. At each cluster
location, the land cover covariate was summarized by
the proportion of each land type within a radius of 3
km. During the model fit, the category “others” was

dropped from the analysis, to avoid effects of colinearity.
Daily rainfall estimates (RFE) were taken from Meteosat
7 satellite images and downloaded from the USGS Fam-
ine Early Warning Systems Network (FEWS NET) Afri-
can Data Dissemination Service (ADDS) [11] at 8 km
spatial resolution.
Altitude data were extracted from an interpolated

USGS digital elevation model (DEM) [12] available at a
spatial resolution of 1 km. The digital maps for three
different kinds of water bodies in Zambia (lakes, rivers
and wetlands) and urban/rural regions were acquired
from the HealthMapper database [13]. The distance
from each location to the nearest water body source was
calculated in IDRISI 32 (Clark Labs). Estimates of the
number of persons living in an area of 500 by 500
square meters were downloaded from the LandScan™
Global Population Database [14] for the year 2006. The
percentage of under-five children out of the total Zam-
bia population (17.3%) was obtained from the 2006 data
of the U.S. Census Bureau International Database [15].
The coordinates of the SEAs were calculated by the

average of latitude and longitude over all household
locations within the SEA. These coordinates were used
to link the environmental and malaria data. For the pur-
pose of predicting parasitaemia risk at the unobserved
locations, a grid with cell size of 3 km by 3 km was
overlaid on the Zambia map (resulting in around
100,000 grid cells) and the remote sensing data were
also extracted for the centroids of the grid cells.
The MODIS Reprojection Tool (USGS) was used to

convert the RS data to geo-referenced maps. Further
processing of the environmental data and distance cal-
culation for the water bodies was carried out in IDRISI
32. ArcMap v. 9.1 (ESRI) was used as a mapping tool.
Additional data processing was performed in Stata/SE
9.2 (StataCorp LP).

Statistical models
Most of the climatic RS data are available continuously
in time. Depending on the malaria endemicity, the

Table 1 Source, spatial and temporal resolution of remote sensing (RS) data

Predictor Spatial
Resolution

Temporal
Resolution

Source

Day land surface temperature (day LST) 1 × 1 km2 8 days MODIS

Night land surface temperature (night LST) 1 × 1 km2 8 days MODIS

Normalized difference vegetation index (NDVI) 0.25 × 0.25 km2 16 days MODIS

Land cover 1 × 1 km2 - MODIS

Rainfall estimate (RFE) 8 × 8 km2 daily ADDS

Elevation 1 × 1 km2 - USGS

Region (urban/rural) 1 × 1 km2 - HealthMapper

Water bodies (rivers, lakes & wetlands) 1 × 1 km2 - HealthMapper

Population counts 0.5 × 0.5 km2 - Landscan2006
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duration of the malaria transmission season and envir-
onmental factors, there is an elapsing (lag) time between
the climatic suitability for malaria transmission and the
occurrence of the disease. To determine this period,
which may differ among environmental factors, a lag
time analysis was carried out. A lag time is defined as a
period prior to the survey during which an average
value of the climatic factor was calculated. However, the
first 16 days preceding the survey were excluded
because parasite development in the mosquito takes
around two weeks before the mosquito becomes infec-
tious. For each climatic predictor, a number of analyses
variables were created. These variables represent short
and long term mean averages of the values of the cli-
matic factor at different lag times. For factors extracted
at 1- or 8-day temporal resolution, the lag times were
multiples of 8 days (that is 8, 16, ..., 360). For NDVI
which was extracted at 16 days temporal resolution, the
lag times were multiples of 16 days up to one year. At
the end 45 lag time variables were created for rainfall,
day and night LST and 22 lag time variables for NDVI.
Bivariate logistic regression models were fitted to

assess the relation between the parasitaemia risk out-
come and the environmental lag time variables. For
each climatic factor the lag time variable, which was
further considered in the analysis, was the one giving a
model with the smallest Akaike’s Information Criterion
(AIC). All covariates which were significant in the
bivariate analysis at 15% significance level, determined
by likelihood ratio tests, were included in a multiple
geostatistical logistic regression analysis.
Several geostatistical multiple logistic regression mod-

els were fitted to assess and capture potential non-line-
arity in the malaria-environment relation. These models
included covariates (i) in continuous scales (ii) in cate-
gorical scales with categories based on quartiles and (iii)
fitted by penalized and basis spline (P- and B-splines)
curves (see Additional file 1). The model with the best
predictive ability was chosen via a model validation pro-
cedure. In the geostatistical model specification, spatial
correlation was taken into account by including house-
hold location-specific random effects and assuming that
they derive from a multivariate Gaussian spatial process
with zero mean [8]. The covariance between any pair of
locations was assumed to be an exponential function of
distance between the locations. Covariates and random
effects were modelled on the logit scale of the parasitae-
mia risk parameters. The above geostatistical models
have at least as many parameters as the number of loca-
tions, but model fit is possible via MCMC simulation
methods. Exploratory analyses suggested weak spatial
correlation therefore non-spatial models (having smaller
numbers of parameters) were also fitted. The model
with the best predictive ability was employed to predict

the risk at the unsampled locations via Bayesian kriging.
Predictions were made over a grid of around 100,000
pixels to obtain a parasitaemia risk map for Zambia.

Model fit and validation
A random sample of 89 (training) locations was
selected for model fit, and the predictive ability of the
models was assessed on the remaining 20 (test) loca-
tions. The range of distances from the selected test
locations to the nearest training location varies from
900 m to 76 km, with a median of about 26 km, sug-
gesting that the locations are representative of the
underlying spatial process. Model predictions were
compared using the following three approaches
[16,17]: i) the model with the highest proportion of
test locations falling within the 95% Bayesian confi-
dence (credible) interval (CI) and ii) distance measures
between observed and predicted parasitaemia preva-
lence calculated by the Kullback-Leibler (KL) diver-
gence and an analogue to the c2-test. In particular, for
each test location the posterior predictive distribution
(PPD) was computed using each fitted model. Based
on the PPD, Bayesian confidence intervals were calcu-
lated with probability coverage of 95%. Each credible
interval was examined weather the test locations were
falling within that interval. The model predicting the
largest number of test locations within the 95% CI of
smallest width was considered as the best one. The KL
calculates the mean divergences between the observed
and predicted parasitaemia prevalence on the logit
scales weighted by the observed value. The analogue to
the c2-test is based on the squared distance between
the median of the PPD and the observed parasitaemia
prevalence divided by the observed prevalence. The
model giving the smallest divergence or the smallest
distance is considered as the best model.
A mathematical description of the models used is

given in Additional file 1. The statistical analysis was
carried out in Stata/SE 9.2 (StataCorp LP), Winbugs
(Imperial College and Medical Research Council, UK)
and in specialized software written by the authors in
Fortan 95 (Digital Equipment Corporation) program-
ming language using standard numerical libraries
(Numerical Algorithms Group Ltd).

Results
The MIS included 2364 children under five years of age,
randomly sampled over 120 cluster locations. However,
a sample of only 1324 children at 109 cluster locations
had complete parasitological data linked to a geo-located
household in order to estimate the distribution of para-
sitaemia risk. The study profile is given in Figure 1. The
sample locations with the observed parasitaemia preva-
lence are shown Figure 2.
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The lag time analysis suggested that the following per-
iods preceding the survey are best (in terms of model
fit) for summarizing the climatic factors: 2.7 months for
rainfall, 1 month for NDVI, 1.5 months for day and
night LST. The geographical distributions of the envir-
onmental factors summarized at the above lag times are
displayed in Figure 3.
Non-spatial bivariate logistic regression analyses and

the likelihood ratio test indicated that all RS factors

were significant at 15% significance level (results not
presented). All these variables were further included in
the geostatistical analysis. Exploratory analysis indicated
non-linearity in the relation between the parasitaemia
risk and the following environmental predictors: NDVI,
rainfall, day and night LST. Various Bayesian multiple
logistical regression models (spatial as well as non-spa-
tial) were fitted modelling the non-linearity of the above
factors via spline curves or categorical covariates. In

Figure 1 Study profile of the ZMIS for predicting parasitaemia risk.

Figure 2 Observed parasitaemia prevalence (left) and province names (right). Observed parasitaemia prevalence within district boundaries
at 109 cluster locations used in estimating the distribution of parasitaemia risk in Zambia (left-hand side). The grey dots indicate the 11 clusters
that were excluded from the analysis. Province names are given on the right-hand map.
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Figure 3 Spatial distribution of remotely sensed covariates in Zambia. The climatic factors were summarized over a period preceding the
survey indicated by the lag time analysis (day LST, night LST, NDVI, rainfall). The land use map presents the most frequent land use category in
a buffer of 3 km around every pixel.

Riedel et al. Malaria Journal 2010, 9:37
http://www.malariajournal.com/content/9/1/37

Page 6 of 13



addition all models included, land cover types, region
type (urban/rural), altitude and distance to the nearest
water bodies as categorical covariates. Results on model
validation are presented in Table 2. The B-spline models
were able to predict correctly most of the test locations
(70%) within the 95% CI however the B-spline models
produced always 95% CIs with largest absolute widths.
In comparison, the spatial P-spline model is able to pre-
dict correctly nearly the same proportion of test loca-
tions (65%) within a 95% CI with considerably smaller
width. Among those models predicting 60% of test loca-
tions correctly within a 95% CI, the non-spatial model
with the linear terms had the smallest absolute width.
This model shows additionally the smallest KL diver-
gence, followed by the spatial P-spline model, and the
second smallest c2-value. The spatial model with linear
terms has the smallest c2-value. Based on model valida-
tion results the non-spatial model with the linear terms
was chosen as the final model used for prediction, due
to the very good KL divergence and c2-test results and
the smallest width of the CIs. This model has also the
advantage of a small number of model covariates (com-
pared to the second best model based on spatial P-
splines) avoiding over-parameterization problems. The
model was employed to predict the parasitaemia risk at
unsampled locations and included the following predic-
tors: proportion of each land cover type (excluding the
“other” category) within a 3 km radius around the loca-
tion, categorical covariates for the environmental predic-
tors (altitude, region type and distance to the nearest
water bodies) and linear climatic predictors (NDVI, rain-
fall, day and night LST).
Predictions obtained at around 100,000 pixels via

Bayesian kriging are shown in Figure 4. The predicted
parasitaemia prevalence is ranging between 0.8% and
80.9% based on the posterior predictive distribution,
while the observed data vary between 0.2% and 59.8%.
The overall prevalence (mean of the prediction for every
pixel) is approximately 26.4% with a standard deviation

of 15.2% (observed locations: 22.8% with 16.4% standard
deviation). Relatively low risks areas (<10%) were fre-
quently predicted for North-Western, Western and
Southern province in comparison to the high risk areas
(>50%) mainly found in Eastern province and adjacent
regions. Estimates of the corresponding prediction error
are depicted in Figure 5. The map shows that regions
with high prediction errors have high parasitaemia risk.
These are mainly areas with sparse survey locations.
The parasitaemia risk estimates were combined with

the estimated number of children below five years living
in the areas of the corresponding pixels to calculate the
number of children with parasitaemia. These estimates
are presented in Figure 6 in map form and in Table 3 as
total counts at province level. Taking into account the
population distribution, the average prevalence of para-
sitaemia risk is approximately 20.0%. Lusaka province
has the lowest population-adjusted prevalence level of
7.3% and is the only province with a predicted mean
prevalence of <10%. Northern province has the highest
population-adjusted prevalence of 38.3% followed by
Luapula (30.3%) and Eastern province (27.7%).
To assess the effects of malaria interventions in Zam-

bia after adjusting for climatic and environmental
effects, the above model was fitted again with three
additional covariates: socio-economic status of the
household, indoor residual spraying within the last 12
months and presence of at least one bed net in the
household. These covariates were not used for predic-
tion as accurate estimates of their distribution in Zam-
bia do not exist for 2006. The regression coefficients of
this model (multivariate non-spatial) are given in Table
4 together with the bivariate non-spatial logistic regres-
sion models. In addition, results of the non-spatial
model with linear terms and the second best model
(spatial P-spline) are presented. The results of the
bivariate regression models reflect significant negative
relations with day LST, proportion of urban areas within
a 3 km buffer, the region type with urban areas having
lower parasitaemia risk, distance to the nearest water
body, altitude levels above 1.4 km, socio-economic sta-
tus (4th and 5th quintile), spraying and presence of bed
nets. Positive significant relations were detected with
night LST, NDVI, rainfall within the last 2.7 months
and proportion of wetlands in the surrounding area.
The implementation of the multivariate non-spatial
model indicated a loss of significant covariates. The only
remaining significant parameter was the presence of at
least one bed net in a household which reduces the
odds of parasitaemia in children by 40% (CI: 12%, 61%).
The final prediction model (non-spatial model with the
linear terms) without the additional household specific
covariates showed no significant correlation between the
predictors and the parasitaemia risk. The non-spatial

Table 2 Model validation summary for the spatial (s) and
non-spatial (ns) models

Model CI (width) KL c2

Linear (ns) 60% (0.58) 21.49 4867

Linear (s) 50% (0.59) 22.58 4459

Categorical (ns) 60% (0.69) 30.81 6943

Categorical (s) 60% (0.68) 30.33 6143

P-spline (ns) 60% (0.61) 23.11 8194

P-spline (s) 65% (0.61) 22.29 7417

B-spline (ns) 70% (0.72) 27.59 26698

B-spline (s) 70% (0.72) 28.85 26846

Comparison of Bayesian credible intervals (CI) of 95% probability coverage
with their corresponding width, Kullback-Leibler divergences (KL) and the c2-
test analogue on 20 test locations.
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Figure 4 Predicted parasitaemia risk map for children <5 years in Zambia. The map is based on a Bayesian logistic regression model with
linear terms for day LST, night LST, NDVI and rainfall. The estimates correspond to the median of the posterior predictive distributions computed
over 100,000 pixels.

Figure 5 Prediction error of the parasitaemia risk estimates given in Figure 4.
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variance was around 1.7. The P-spline spatial model
estimates a ratio of spatial to the total variation of
almost 1:2. The minimum distance at which the spatial
correlation is lower than 5% estimated by the spatial
model is 380 meters (95% confidence interval: 210 m,
3,390 m) which is even lower than the resolution of the
grid used for prediction (3 km). This suggests a very
weak spatial correlation and supports the choice of the
non-spatial model as the one with the best predictive
ability.

Discussion
The ZMIS in 2006 was the first nation-wide malaria sur-
vey which combined parasitological data with other

malaria indicators such as bed net use, indoor residual
spraying and household related aspects. The aim of the
survey was to estimate the coverage of interventions and
the malaria related burden in children less than five
years. However, the MIS data are also a very important
source of information for estimating parasitaemia risk at
local scales and thus for identifying the high-risk areas
that require high intervention coverage and continuous
monitoring. Combining parasitaemia risk estimates with
population data, the number of infected children can be
estimated which can help for better resource allocation,
health management and targeted additional interven-
tions to achieve the highest risk reduction for the most
populated areas. Repeated surveys will enable the

Table 3 Predicted number of children <5 years with malaria parasites in the blood (per province)

Province Prev 1
(in %)

Children
<5 years

Infected
Children

95%CI Prev 2
(in %)

Central 26.0 182,847 34,572 21,589 50,252 18.9

Copperbelt 23.3 311,317 37,763 18,572 70,719 12.1

Eastern 37.4 240,137 66,614 46,297 87,219 27.7

Luapula 32.0 125,049 37,943 29,039 47,638 30.3

Lusaka 31.8 275,120 20,134 8,121 46,849 7.3

North-Western 21.0 128,935 29,011 16,200 51,616 22.5

Northern 39.1 277,764 106,322 79,379 135,701 38.3

Southern 18.8 243,743 33,430 19,862 53,854 13.7

Western 14.4 147,229 20,321 12,730 30,232 13.8

Total 26.4 1,932,141 386,110 251,789 574,080 20.0

Estimates are based on the mean and the 95% confidence intervals (CI) of the posterior predictive distribution of the non-spatial model with linear terms.
Prev 1: Model based risk estimates
Prev 2: Model-based population-adjusted prevalence

Figure 6 Estimated number of infected children <5 years per 100 km2.
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evaluation of the effectiveness of on-going interventions.
Already the Zambian Ministry of Health and partners
have completed the second ZMIS in the country in
2008 and planning another follow-up survey in 2010.
Prior to the MIS, compiled historical survey data has

been used to obtain estimates of parasitaemia risk at
high resolution. The mapping malaria risk in Africa
(MARA) project was initiated in 1998 with the aim to
compile published and unpublished malaria survey data
in Africa. MARA is the most comprehensive malario-
metric database compiling data from 1900 up to date.
The MARA data has been analysed using rigorous spa-
tial statistical modelling [17-20] to obtain high-resolu-
tion malaria risk estimates at regional and country-level

in Africa. However, risk estimates of historical data do
not reflect the current malaria situation, which is influ-
enced by on-going interventions. The surveys are not
representative as high risk areas tend to be over-repre-
sented. In addition historical surveys have been con-
ducted between various locations using different
methodologies, including different age groups and car-
ried out at different seasons. On the contrary, MISs do
not suffer from these drawbacks. The MIS locations are
randomly chosen and the data are available at individual
level allowing for estimation of age-specific risk.
Another advantage of the MIS data is the household
level information available which gives the possibility of
differentiating the contribution of climate, socio-

Table 4 Parasitaemia risk predictors of different models

Covariates Bivariate
non-spatial

Multivariate
non-spatial

Prediction
model

Spatial P-spline model

OR (95%CI) OR (95%CI) OR (95%CI) OR (95%CI)

Day LST 0.49 (0.43, 0.57) 0.65 (0.37, 1.15) 0.61 (0.32, 1.17) *

Night LST 1.23 (1.09, 1.40) 1.21 (0.77, 1.88) 1.18 (0.79, 1.77) *

NDVI 2.25 (1.90, 2.66) 1.28 (0.67, 2.73) 1.29 (0.66, 2.77) *

Rainfall 1.56 (1.37, 1.76) 1.21 (0.85, 1.68) 1.18 (0.80, 1.73) *

Land cover covariates

Wetland 1.20 (1.07, 1.34) 0.97 (0.62, 1.55) 0.98 (0.67, 1.48) 0.72 (0.40, 1.37)

Forest 0.96 (0.84, 1.10) 0.72 (0.43, 1.08) 0.72 (0.43, 1.10) 0.64 (0.38, 0.99)

Urban 0.35 (0.25, 0.50) 0.70 (0.38, 1.21) 0.71 (0.37, 1.29) 0.75 (0.33, 1.48)

Shrubland 1.06 (0.94, 1.20) 1.07 (0.76, 1.53) 1.05 (0.71, 1.47) 1.07 (0.72, 1.53)

Region (rural)

urban 0.17 (0.11, 0.25) 0.53 (0.14, 2.03) 0.37 (0.11, 1.13) 0.43 (0.12, 1.50)

Distance to water bodies (<1000 m)

1000-2499 0.71 (0.53, 0.96) 0.73 (0.29, 1.86) 0.71 (0.29, 1.72) 0.55 (0.19, 1.50)

2500-4999 0.54 (0.38, 0.77) 0.61 (0.20, 1.55) 0.60 (0.19, 1.72) 0.49 (0.17, 1.42)

≥ 5000 0.11 (0.04, 0.30) 0.22 (0.03, 1.40) 0.21 (0.03, 1.39) 0.20 (0.02, 1.93)

Altitude (<850 m)

850-1199 0.72 (0.49, 1.06) 0.21 (0.03, 1.70) 0.22 (0.03, 1.80) 0.20 (0.02, 1.92)

1200-1399 0.73 (0.49, 1.09) 0.32 (0.03, 3.27) 0.30 (0.03, 3.29) 0.27 (0.02, 4.81)

≥ 1400 0.48 (0.25, 0.92) 0.74 (0.04, 10.2) 0.57 (0.03, 7.68) 0.32 (0.02, 7.86)

Socio-economic index
(1st quintile)

2nd quintile 1.06 (0.75, 1.50) 1.21 (0.78, 1.92) - -

3rd quintile 0.85 (0.60, 1.22) 1.31 (0.75, 2.23) - -

4th quintile 0.28 (0.17, 0.46) 0.75 (0.33, 1.75) - -

5th quintile 0.09 (0.04, 0.19) 0.40 (0.09, 1.56) - -

Interventions

IRS 0.16 (0.07, 0.36) 1.73 (0.42, 6.90) - -

Bed nets 0.59 (0.46, 0.77) 0.60 (0.39, 0.88) - -

Mean (95%CI) Mean (95%CI) Mean (95%CI)

Range (in km) - - - 0.38 (0.21, 3.39)

s2 (spatial error) - - - 0.98 (0.01, 2.77)

τ2 (measurement error) - 1.77 (0.90, 3.23) 1.71 (0.93, 2.84) 0.82 (0.01, 2.69)

Associations between parasitaemia risk and predictors of the non-spatial model with linear terms and the Bayesian spatial logistic regression P-spline model
presented as odds ratios (OR) with their respective 95% confidence intervals (CI).
*: regression coefficients are based on P-spline curves
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economic characteristics and control interventions to
the overall parasitaemia risk. If in addition these data
are known at high spatial resolution, they can be
included in the geostatistical model to obtain more
accurate predictions of the malaria risk.
This study created the first contemporary empirical

parasitaemia risk map for Zambia. Many existing maps
on malaria transmission rely only on rough geographical
and climatic iso-lines and expert opinions. Until 1998,
none of the maps had a numerical definition, hence the
malaria risk maps were not comparable and trustworthy.
Then, Hay et al [21] produced a climatic map for
malaria transmission in Kenya followed by Craig et al
[22] who developed a climatic suitability malaria risk
map for the whole Africa. Up to now there are only a
few maps containing also empirical data, the first map
of this kind was published in 2000 for Mali by Kleinsch-
midt et al [18]. For Zambia, the first empirical malaria
risk map was produced by Hay et al [23] and is part of
a global risk map based on historical data.
Malaria survey data are expected to be correlated in

space. Spatial correlation at short distances is introduced
by the transmission process driven by the flight range of
the mosquito vector while at wider ranges spatial corre-
lation reflects common exposures to environmental con-
ditions, which influence mosquito survival and longevity.
High spatial resolution risk estimation requires predic-
tion at locations where malaria survey data are not avail-
able. High-resolution environmental data can be
obtained via remote sensing. GIS software has excellent
mapping capabilities and it is a very useful tool for pro-
cessing RS data.
Statistical techniques model the relation between para-

sitaemia risk and risk factors (environmental, possible
interventions, socio-economic factors) via a logistic
regression model, which is further used for prediction.
Standard statistical methods assume independence of
the survey locations. Violating this assumption, when
modelling spatially-correlated malaria survey data may
lead to imprecise estimates of the risk, the significance
of the risk factors and of the prediction error. Similarly,
modelling spatial correlation in weakly correlated data
increases the number of model parameters and
decreases the precision of the estimates. Geostatistical
models take into account spatial correlation by introdu-
cing an additional parameter (random effect) at each
survey location and assume that geographical depen-
dence is a function of distance between locations.
Depending on the number of survey locations these
models can be highly parameterized and they can only
be estimated using Bayesian inference and MCMC
simulation. Bayesian geostatistical models have been
employed in malaria risk estimation by e.g. Diggle et al
[19], Gemperli et al [20,24] and Gosoniu et al [16,17].

However, in this study the Bayesian geostatistical model
has estimated very low spatial correlation dropping to
less than 5% at distances larger than 380 m, which is
lower than the spatial resolution of the pixel size used
for prediction (3 km by 3 km). The non-spatial model
was superior to the fitted spatial models because spatial
correlation is only present at a very local scale indicated
by the flight range of the mosquito rather than environ-
mental covariates. Possible reasons might be on-going
interventions, which determine mosquito densities and
parasitaemia and therefore reduce the influence of envir-
onmental predictors on the mosquito.
Previous models of malaria transmission addressed

non-linearity between the risk of the malaria-related
outcome (in the logit scale) and its predictor solely by
categorizing the non-linear covariates. In this study,
non-linearity is modelled additionally by using different
types of spline curves. The resulting risk estimates sug-
gested that predictions are sensitive to the model fitted.
However, model validation indicated that models based
on linear terms are superior to non-linear models in
Zambia. Even though the P-spline model had the higher
predictive ability at 95% CIs, the linear model was con-
sidered as the one with the best predictive ability due to
the smaller range of these intervals and the results of
the KL divergence and c2-measures between observed-
predicted prevalence data. This model has also the
advantage of an easy interpretability of the regression
coefficients for non-statisticians in comparison to the
spline curve ones.
None of the regression coefficients of the final predic-

tion model were significant. However, they are needed
to determine the mean risk estimate for each location
and excluding them reduces heavily the model predic-
tive ability (results have not been shown). The lack of
significance of the environmental factors is partially
explained by the effects of malaria interventions, which
can have stronger influence on the parasitaemia risk
than the environmental factors. In fact, the spatial
model, which adjusted for different types of interven-
tions, indicated a significant effect of the presence of at
least one bed net in a household in reducing parasitae-
mia risk. Therefore interventions are a major driver of
parasitaemia risk in Zambia and including these data in
the prediction model would increase the accuracy of
model-based risk predictions. Unfortunately, in this
study, the parasitaemia risk could not be predicted con-
ditional on bed net coverage because the geographical
distribution of bed net coverage was not known for the
time of the ZMIS 2006. Intervention data are needed
over the entire study area in order to be used for predic-
tion purposes. Since e.g. MACEPA is putting a lot of
efforts in scaling up malaria interventions in Zambia,
the role of interventions is likely to even increase within
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the next couple of years. Therefore, compilation of
intervention coverage data at high spatial resolution is
becoming essential to create reliable risk maps.
The prediction map indicates high variation of parasi-

taemia risk over the country. In particular, high risk is
predicted a stripe from south to east of Zambia which is
characterized mainly by low altitude, high NDVI, high
day and night LST. The relatively small risk in the south-
west of the country might be influenced by low vegeta-
tion and rainfall while the small risk in the north-west
regions could be due to low day LST and high proportion
of forests. It is also possible that malaria interventions
have been focused on selected areas like the Zambezi
river reducing the parasite prevalence in those areas. It is
interesting to note that the maps have been shown to
local experts who confirmed the depicted risk patterns.
The map of the prediction error of the Bayesian model
could assist in improving precision of the parasitaemia
risk prediction by identifying the areas of high uncer-
tainty where additional survey locations could be ran-
domly distributed in following MIS’s and hence reduce
the error and raise the precision of following studies.
The reduced smoothness of the map might be

explained by the weak spatial correlation which most
likely indicate that interventions counteract the environ-
mental effects. The sampling framework of the MIS may
also tend to underestimate spatial correlation because
the survey clusters are partially driven by population
density, where transmission is largely influenced by
interventions. However the drastic changes within small
distances are highlighting the importance of the high-
resolution maps. If prediction would have been done at
smaller resolution some of the high risk areas would
disappear and the burden would have been underesti-
mated in these regions. For other purposes, which do
not need such high precision, reducing the resolution
can be easily done by combining neighbouring pixels.
The average predicted parasitaemia risk over the

whole country was 26.4%, however after adjusting for
the population size the risk dropped down to 20.0%. It
is striking that although the average risk in Lusaka pro-
vince is the forth highest of all provinces (31.8%), after
taking into account the population density the risk
reduces to 7.3% indicating that the highest risk areas are
the less populated. In fact Lusaka is the province of the
lowest population-adjusted risk. The provinces of Cop-
perbelt, Southern and Western have low population-
adjusted risks (less than 15%). On the other hand
Northern province has the highest population-adjusted
parasitaemia risk followed by Eastern province and Lua-
pula. In addition, Northern province has the highest
number of infected children less than five years old.
Therefore, interventions should be concentrated in the
Northern province especially at the north-eastern border

and in the middle of the province. Further interventions
in Copperbelt and Southern might also have a strong
impact in reducing the overall burden since the total
number of infected children is as high as in Luapula
even though their prevalence is lower than 15%.

Conclusions
The map of parasitaemia risk together with the predic-
tion error and the population at risk give an important
overview of the malaria situation in Zambia. The maps
can be used by decision-makers to allocate resources
and interventions to reach the most persons in the
regions of highest risk to reduce the burden of malaria
significantly for Zambia. The ZMIS of 2008 and 2010
will provide very important information on the changes
of the parasitaemia risk over space and time and help in
the evaluation of the progress of new and established
intervention programmes adjusted for environmental
drivers of the transmission risk.

Additional file 1: Additional information regarding model
formulation and spline curves.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1475-2875-9-37-
S1.PDF ]
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