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Abstract

difference in a-esterase activity between the two strains.

in the resistant An. arabiensis population of Lower Moshi.

Background: Development of resistance to different classes of insecticides is a potential threat to malaria control.
With the increasing coverage of long-lasting insecticide-treated nets in Tanzania, the continued monitoring of
resistance in vector populations is crucial. It may facilitate the development of novel strategies to prevent or
minimize the spread of resistance. In this study, metabolic-based mechanisms conferring permethrin (pyrethroid)
resistance were investigated in Anopheles arabiensis of Lower Moshi, Kilimanjaro region of north-eastern Tanzania.

Methods: WHO susceptibility test kits were used to detect resistance to permethrin in An. arabiensis. The levels
and mechanisms of permethrin resistance were determined using CDC bottle bioassays and microplate
(biochemical) assays. In bottle bioassays, piperonyl butoxide (PBO) and s,s,s-tributyl phosphorotrithioate (DEF) were
used as synergists to inhibit mixed function oxidases and non-specific esterases respectively. Biochemical assays
were carried out in individual mosquitoes to detect any increase in the activity of enzymes typically involved in
insecticide metabolism (mixed function oxidases, a.- and B-esterases).

Results: Anopheles arabiensis from the study area was found to be partially resistant to permethrin, giving only
87% mortality in WHO test kits. Resistance ratios at KTsq and KTgs were 4.0 and 4.3 respectively. The permethrin
resistance was partially synergized by DEF and by PBO when these were mixed with permethrin in bottle bioassays
and was fully synergized when DEF and PBO were used together. The levels of oxidase and B-esterase activity
were significantly higher in An. arabiensis from Lower Moshi than in the laboratory susceptible strain. There was no

Conclusion: Elevated levels of mixed function oxidases and B-esterases play a role in detoxification of permethrin

Background

Resistance to pyrethroids and other insecticides is an
important threat to the control of malaria in Africa [1-3].
Early detection of insecticide resistance enables more
rational selection of insecticides. In recent years, Ano-
pheline mosquitoes in many parts of Africa have become
resistant to pyrethroids, partly in response to agricultural
application or run off of insecticides into mosquito
breeding sites [2,4-6], but increasingly in response to
selection pressure resulting from the scaling up of long-
lasting insecticide-treated nets and indoor residual
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spraying as malaria prevention tools [3,7-11]. Develop-
ment of resistance may necessitate switching to an alter-
native class of insecticide to enable resumption of control
[3]. Early detection of resistance facilitates more rational
selection of insecticides or may enable timely introduc-
tion of resistance management strategies [12].

There are two broad mechanisms by which insect
pests develop resistance to insecticides. They may pro-
duce increased quantities of enzymes, which either
metabolize the insecticide or sequestrate the molecules
so they cannot function. The second mechanism
involves mutation of the insecticide target-site. This
effectively blocks the action of the insecticide. Both
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types of mechanism have been studied in various species
of insects [12-16].

Levels of insecticide resistance in field populations of
vectors have been shown to vary over relatively small
geographical areas and over different seasons [5,17]. In
Africa, the major foci of pyrethroid resistance are found
in the western and central regions, especially in cotton
growing areas where pyrethroids have been applied
intensively against cotton pests [2]. In Anopheles gam-
biae populations of these areas, reduced target site sen-
sitivity arising from a single point mutation in the
sodium channel gene (kdr) has been implicated as the
predominant mode of resistance [16], although increased
levels of detoxifying enzymes may also play a role [4].
An increase in permethrin tolerance in An. gambiae in
Kenya due to localized use of ITNs has been associated
with both target site insensitivity and elevated levels of
detoxifying mixed function oxidases (MFOs) [18]. In
South Africa, Anopheles funestus developed pyrethroid
resistance after recurrent campaigns of indoor residual
spraying with deltamethrin [3]. Detection of the West
African kdr mutation at low frequency in An. arabiensis
in Lower Moshi, north-eastern Tanzania [19] and the
West African kdr mutation in An. gambiae in Uganda
[20] suggests the kdr gene has spread across the African
continent.

The standard method for detecting resistance in popu-
lations of mosquito vectors is the WHO susceptibility
test [21]. Application of a discriminating concentration
that distinguishes susceptible from resistant mosquitoes
allows accurate detection of resistance when the gene is
dominant. But when resistance is recessive or present at
low frequency discriminating-dose tests based on mor-
tality may lack the necessary precision. In such situa-
tions, the use of knockdown time - expressed as the
time taken for 50% of individuals to be knocked down -
may prove a more sensitive indicator of resistance [22].
Additional information on resistance mechanisms can
be derived from use of synergists, chemicals that inhibit
the enzymes responsible for insecticide metabolism
[9,12-14,23]. By combining synergist with insecticide in
bioassay tests the resistant mosquitoes will return to
apparent susceptibility if the inhibited enzyme is respon-
sible for resistance [23]. Biochemical assays have been
developed that measure enhanced levels of detoxification
enzymes responsible for resistance. These may be per-
formed on individual mosquitoes allowing more sensi-
tive detection of resistance [24-26]. The aim of this
study was to investigate the biochemical mechanisms of
permethrin resistance in field populations of An. ara-
biensis from Lower Moshi in Kilimanjaro region of
north-eastern Tanzania. In this irrigated rice growing
area, An. arabiensis is the predominant vector of
malaria [27]. Preliminary studies suggest an absence of
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kdr-based mechanisms [19] while an oxidase-based
mechanism may be present [28]. Bioassay and biochem-
ical assays were used to determine the contributions of
both mixed function oxidases and non-specific esterases
to the observed permethrin resistance.

Methods

Study area and mosquito collection sites

The study was carried out on mosquitoes from Lower
Moshi, an intensive rice-irrigation area, 37°20'E 3°21'S
and 700 meters altitude, south of Mount Kilimanjaro in
north-eastern Tanzania. Most of the population in the
area is engaged in agriculture. Two rivers, the Njoro
and the Rau provide water for irrigation. There are two
growing seasons, the main one from June to October
and the second one involving sporadic cultivation of
rice from September to February. Anopheles arabiensis
adults were collected during January-April 2007 from
the villages of Mabogini, Rau-Kati, and Chekereni.

Mosquito strains

The two strains used in this study were An. arabiensis
Dondotha, a laboratory insecticide susceptible strain,
and An. arabiensis wild, a field strain from Lower
Moshi, resistant to permethrin, established from collec-
tions of indoor resting adult mosquitoes from animal
houses. The mosquitoes were transferred to the insec-
tary and females induced to lay eggs. The F1 progeny
was divided into two sub samples: one sub sample was
stored at -80°C for biochemical analysis while the other
was used for insecticide and synergist bioassays.

Diagnostic resistance tests

Diagnostic tests were conducted on adult An. arabiensis
using WHO susceptibility test kits [29]. Batches of 25
blood-fed mosquitoes taken directly from field collec-
tions were exposed to 0.75% permethrin test papers
according to WHO procedures with the cylinder placed
in a vertical position [21]. Knockdown was recorded
every ten minutes during the 1 hour exposure. At the
end of the exposure period, mosquitoes were transferred
to recovery tubes and provided with glucose solution,
held for 24 hours after which mortality was recorded.
Four test batches (100 mosquitoes) and one control (25
mosquitoes) were tested during each test run which was
replicated ten times; hence 1000 wild females were
tested for permethrin resistance status. Tests were car-
ried out in parallel on blood-fed insecticide-susceptible
adults of the Dondotha stain of An. arabiensis

Synergy tests

Bottle bioassay calibration was conducted to determine
appropriate concentrations of insecticide and synergist.
Glass bottles of 250 ml capacity were coated with three
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concentrations of permethrin (12.5, 25 or 50 pg per bot-
tle) according to the method of Brogdon and McAllister
[23] and tested against the susceptible strain for 1-hour
to determine the baseline response to permethrin. Ten
replicates of ten mosquitoes were tested against each
concentration for one hour during which knockdown
was recorded at 5 min intervals. The ideal test concen-
tration of insecticide is the lowest one that gives a time-
mortality response from 0 to 100% mortality over a con-
venient test period [23]. To verify that the concentra-
tions of synergist were below toxic levels, a series of
concentrations of s,s,s-tributyl phosphorotrithioate DEF
(range 62.5-250 pg per bottle) and piperonyl butoxide
PBO (range 100-400 pg per bottle) were tested against
the susceptible strain for 60 min.

Synergy tests were conducted on adult progeny of wild
An. arabiensis from Lower Moshi and on the laboratory
susceptible strain. The glass bottles were coated with
permethrin with or without a synergist as described by
Brogdon et al [23]. PBO, an inhibitor of mixed function
oxidases, and DEF, an inhibitor of non-specific esterases,
were the synergists used. Four treatments were com-
pared during each test run: permethrin alone, perme-
thrin plus DEF, permethrin plus PBO or permethrin
plus PBO and DEF together (plus positive and negative
controls). Ten non-blood-fed females, three- to five-day
old were used in each replicate, and each treatment was
tested ten times. Knockdown was recorded at 5-minute
intervals for 60 minutes. Mosquitoes were then trans-
ferred to holding cups, supplied with glucose solution
and mortality recorded after 24 hours.

Biochemical assays

Biochemical assays were used to quantify the levels of
mixed function oxidase and non-specific esterase activity
in individual mosquitoes. Individual 2-5 day old An.
arabiensis adults, reared under insecticide-free condi-
tions and stored at -80°C, were homogenized manually
in sodium phosphate buffer (pH 7.2) inside a 1.5 ml
eppendorf tubes. For the oxidase assays individuals were
homogenized in 100 pl of 0.0625M sodium phosphate
buffer (pH 7.2), which was then diluted by adding 1,400
ul of the sodium phosphate buffer. For esterase assays,
individuals were homogenized in 20 pl of 0.02M sodium
phosphate buffer (pH 7.2) to which 100 pl of distilled
water was added. A hundred microlitres of sodium
phosphate buffer pH 7.2 was added to the aliquots of
mosquito homogenates and 200 pg of 3, 3, 5, 5'-tetra-
methhyl benzidine (TMBZ) solution (0.01 g of 3, 3, 5/,
5'-tetramethhyl benzidine in 5 ml of absolute methanol,
mixed with 0.25M sodium acetate buffer pH 5.0) was
added. Twenty-five microlitres of 3% hydrogen peroxide
was added and the mixture was left for two hours at
room temperature. The oxidase enzyme activity was
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then read at 630 nm. For the esterase assays 20 pl of o-
naphthyl acetate solution (1 ml of 30 mM a-naphthyl
acetate in acetone in 99 ml of 0.02M phosphate buffer
pH 7.2) and 200 pg B-naphthyl acetate solution (pre-
pared as for a-naphthyl acetate solution) were added to
replicates of mosquito homogenates. The enzyme reac-
tion was run for two minutes at room temperature
before the addition of 50 pl of Fast blue stain solution.
The absorbance value for each well was determined at
570 nm.

Statistical analysis

Mortality in WHO resistance tests was corrected for
control mortality using Abbott’s formula [30]. KT5, and
KTys values in the bottle bioassays and resistance ratios
between wild and susceptible strains were estimated
using probit analysis (Polo Plus 1.0, LeOra Software).
Enzyme expression levels between strains were com-
pared using t-tests.

Results

WHO resistance tests

Percentage mortality to permethrin in susceptibility tests
conducted on wild females from the villages of Mabo-
gini, Rau Kati, and Chekereni ranged from 75.5% to
96.1% and showed an average of 87% mortality (cor-
rected for control). Mortality of the laboratory suscepti-
ble strain was 100%. Figure 1 shows mean percentage
knockdown at different time intervals.

Knockdown took considerably longer in tests on the
wild strain: the time for 50% to be knocked down took
28 min in the wild strain but took less than 7 min in
the susceptible strain. The resistance ratios at KT, and
KTgy5 were 4.0 and 4.3 respectively (Table 1).

Bottle bioassays and synergy tests

The best-fit straight line (R* = 0.91) was obtained with
12.5 pg/bottle permethrin. The highest concentration of
synergist that produced no lethal effect was 200 pug PBO
per bottle and 125 ug DEF per bottle. These concentra-
tions of insecticide and synergist were used in subse-
quent synergy tests. Following exposure to permethrin
for 60 minutes, the % mortality rate of 3-5 day old
female mosquitoes of An. arabiensis wild was consis-
tently lower than that observed for the susceptible strain
(Table 2). Knockdown time at KTsy and KTg5 was
higher in the wild than in the susceptible strain and the
resistance ratios were 2.7 folds lower in the bottle bioas-
say than in the WHO resistance tests.

When F1 An. arabiensis mosquitoes were exposed to
permethrin plus PBO or DEF the % knockdown was
much higher than when exposed to permethrin alone
(Figure 2). Permethrin plus PBO consistently recorded
higher % knockdown than permethrin plus PBO and
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Figure 1 Percentage knockdown over time for F1 generation of wild mosquitoes and susceptible strain. Ten replicates were run for each
strain (n = 1069 for F1 Anopheles arabiensis (susceptible), n = 1011 for F1 Anopheles arabiensis (wild).

DEF in replicates. The synergy ratio was relatively
higher when permethrin was synergized by PBO than
when it was synergized by either DEF or both PBO and
DEF (Table 3).

Microplate assays of esterase and oxidase activity

The means and confidence intervals for the optical den-
sity values for o-esterases, B-esterases and mixed func-
tion oxidases are shown in table 4. The mean levels of
mixed function oxidase and beta -esterase activity were
significantly higher for An. arabiensis wild than for the
susceptible strain. However, the mean levels of a-ester-
ase activity were not significantly different between wild
and susceptible strains. Figures 3, 4 and 5 show the dis-
tribution of MFO, a-esterase and B-esterase activity
respectively. The OD cut off points that discriminate
between susceptible and wild strains were 0.165 for
MFOs and 0.45 for B-esterases; the proportion of wild
individuals scoring above these thresholds were 50%
(15/30) for MFOs and 44% (17/39) for B-esterases.
These biochemical proportions are higher than the pro-
portion of mosquitoes that showed phenotypic

Table 1 Susceptibility tests with permethrin

resistance in WHO and bottle bioassay resistance tests
which suggests that a combination of elevated MFO and
elevated esterase activity might be required to give rise
to phenotypic resistance.

Discussion

The study showed that a low frequency of permethrin
resistance mediated by MFOs and B-esterases is present in
An. arabiensis, the predominant malaria vector of Lower
Moshi. The permethrin resistance is probably caused by
the agricultural use of insecticides, especially in the rice
fields, as permethrin-treated nets are not widely used in
Lower Moshi for protection against mosquitoes. In Kenya,
the localized use of permethrin-impregnated nets in
Kisumu did increase the permethrin tolerance of the local
population of An. gambiae sensu stricto [18].

However, there was no evidence that it reduced the
efficacy of permethrin-impregnated nets as a malaria
control measure [31]. The present frequency of resis-
tance in Lower Moshi appears to not impair the effec-
tiveness of permethrin treated nets. A recent field trial
in Moshi shows that while such treated nets kill

Knockdown time (minutes) for permethrin

%24 h mortality [Corrected for control]

KTso (95% C.I) KTss (95% C.I) Permethrin DDT
Susceptible 7(5-8) 16 (15 - 18) 100 [100] 100 [100]
wild 28 (27 - 29) 69 (65 - 74) 88 [87] 100 [100]

Resistance ratios 4.0 43
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Table 2 Bottle bioassay tests with permethrin Table 3 Synergy tests with wild mosquitoes
Knockdown time (minutes) % mortality Treatment Knockdown time Synergy
KTso (95% C)  KTos (95% C.I) (minutes) ratios
Susceptible 17 (15 - 19) 30 (27 - 35) 9 (KTs0) (KTos) (KTso) (KTos)
Wild 26 (24 _ 27> 49 (45 . 54) 78 Permethrin alone 26 (24’27) 49 (45’54)
Resistance ratios 15 16 Permethrin + PBO 15 (13-16) 23 (21-25) 1.7 2.1
Permethrin + DEF 20 (18-22) 33 (30-37) 1.3 1.5
The p-value for KTso and KTgs < 0.001
Permethrin + PBO + DEF 18 (16-20) 28 (26-32) 14 1.8

relatively few host-seeking An. arabiensis that enter
local houses the nets continue to provide personal pro-
tection through the strong excito-repellent activity of
permethrin [32]. Permethrin-treated nets in the form of
the Olyset LLIN are now being scaled up in Tanzania as
national malaria control policy and if the increased cov-
erage selects further for permethrin resistance the effec-
tiveness of the LLIN strategy may ultimately be
undermined. Stump et al [33] recently reported pyre-
throid resistance in the form of kdr from an area of
long-term ITN use in western Kenya. Applying SSOP-
ELISA method, Kulkarni et al [19] reported kdr (wes-
tern variant) at low frequency in An. arabiensis just a
few kilometers from the present study area. Only 2 out
of 642 mosquitoes (0.3%) appeared to carry kdr muta-
tion and only in heterozygous genotype. The kdr
mechanism results from mutations in the voltage-gated
sodium channels, the target-site for DDT and pyre-
throids. Furthermore, there is no DDT resistance in the
study area as recorded in Table 1. The absence of DDT
resistance and the presence of permethrin resistance
suggest insecticide detoxification by enzymes to be the
more important mechanism for permethrin resistance in
Lower Moshi. At the moment kdr is too rare to be

The p-value for KTso and KTgs < 0.001

important but further selection of combined metabolic
and site insensitivity resistance by wider use of LLINs
might constitute a grave threat.

Mixed function oxidases (MFOs) and non-specific
esterases (NSEs) are commonly involved in the detoxifi-
cation of permethrin [34-36]. Elevated levels of such
enzymes are known to enhance permethrin resistance
[24]. Exposure of An. arabiensis (wild) to permethrin
plus DEF or PBO synergists inhibited non-specific ester-
ase and oxidase activities and led to higher mortality
rates than exposure to permethrin alone. This indicates
involvement of both oxidases and esterases in conferring
permethrin resistance. Exposure to permethrin with
PBO and DEF together resulted in an exposure time/
mortality curve equivalent to that of the susceptible
strain of An. arabiensis exposed to permethrin alone,
with KTsq value that is within the KT5q 95%CI of the
susceptible strain. This implies total inhibition of perme-
thrin resistance in the wild strain.

Higher mortality produced in An. arabiensis exposed
to permethrin plus PBO relative to the susceptible strain
exposed to permethrin could be due to significant
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Figure 2 Mortality over time for F1 generation wild mosquitoes exposed to permethrin alone, permethrin + PBO, permethrin + DEF,
permethrin + PBO + DEF (plus permethrin test of susceptible mosquito strain). Each curve is represented by data from ten replicates
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Table 4 Microtitre plate assays of enzyme activity

Optical Density values: Mean (Cl)

o - esterase B - esterase Oxidase

(n = 39) (n = 22) (n = 30)
Susceptible 0.79 (0.52-1.05) 0.26 (0.23-0.30) 0.12 (0.11-0.13)
Wild 0.84 (0.58-1.11) 0.48 (0.36-0.60) 0.17 (0.20-0.14)
Difference  -0.05* -0.22%* -0.06**

(-045, 0.34) (-0.35, -0.08) (-0.08, -0.03)

increase in the cuticular penetration rate of permethrin.
It suggests that the synergist might have caused syner-
gism by an acceleration of permethrin across the cuticle
on addition to increased permethrin detoxification in
the resistant wild mosquito strain. According to Sun
and Johnson [37], some synergists cause synergism
solely by an acceleration of insecticide across the cuticle
(quasi-synergism). The study by Kennaugh et al [38]
shows no evidence for increased permethrin detoxifica-
tion in the resistant strain of Helicoverpa armigera (cot-
ton bollworm) although permethrin resistance could be
eliminated with PBO. This suggests accelerated perme-
thrin penetration through the cuticle as a possible
mechanism for that synergism. In 1995, Gunning et al/
[39] reported an increased rate of esfenvalerate penetra-
tion in the presence of PBO in Helicoverpa armigera.
The lower mortality observed when An. arabiensis was
exposed to permethrin with PBO and DEF together
compared to when exposed to permethrin plus PBO is
probably due to antagonistic effect of DEF to PBO on
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cuticular penetration of the permethrin. In this case,
DEF might have reduced penetration of the permethrin,
hence reducing the time for its detoxification. It could
also be due to esterase inhibition by PBO resulting in
the loss of esterase-mediated sequestration of the per-
methrin. The new assay devised by Khot et al [40]
reveals the blockade of esterases by PBO. This could not
be the case in this mosquito population since the
observed mortality when permethrin was mixed with
PBO alone is significantly different from the observed
mortality when permethin was mixed with both PBO
and DEF.

Elevation of one or more broad substrate spectrum
esterase is a common mechanism of insecticide resis-
tance in Culex species [41]. Although less common in
Anopheles, elevated esterases have been documented
in pyrethroid-resistant An. gambiae from Kenya
[14,15]. In the present study, the association of ele-
vated mixed function oxidases and non-specific
esterases was confirmed biochemically using oxidase
and esterase detection assays. The proportion of An.
arabiensis wild with enzyme levels higher than that for
the susceptible strain did not equate with the phenoty-
pic expression of resistance in WHO test kits or bottle
bioassays. This may mean that elevated MFOs and
esterases must occur together to give rise to phenoty-
pic resistance. This may also indicate that biochemical
tests are unable to correlate fully with phenotypic
resistance or serve as a reliable indicator of metabolic
resistance.
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Figure 3 The distribution of activity of mixed function oxidases in wild and susceptible Anopheles arabiensis adult females. Absorbance
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Figure 4 The distribution of activity of a-esterases in wild and susceptible Anopheles arabiensis adult females. Absorbance values

Conclusion

B-esterase mediated hydrolysis and oxidative detoxifica-
tion by monooxygenases are the predominant mechan-
isms of permethrin resistance in adult An. arabiensis of
Lower Moshi, north-eastern Tanzania. The low fre-
quency of phenotypic resistance is probably due to the

use of insecticides in rice plantations or use of perme-
thrin-treated nets. At the present level of resistance
(0.16% allele frequency for L104F kdr genotype), perme-
thrin-treated nets remain efficacious, but the further
selection of metabolic and kdr mechanisms, also present
in the study area, may in combination prove a graver
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Figure 5 The distribution of activity of B-esterases in wild and susceptible Anopheles arabiensis adult females. Absorbance values
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threat. There may be scope for effective use of LLINs
that incorporate PBO in the fibres. Resistance was asso-
ciated with elevated esterases and MFOs but chemical
assays that detect elevated levels in individual insects
did not necessarily correlate with phenotypic resistance
as detected by WHO resistance test kits or CDC bottle
bioassays.
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