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Abstract
Background: Merozoite surface protein-1 (MSP-1) and MSP-2 of Plasmodium falciparum are potential vaccine 
candidate antigens for malaria vaccine development. However, extensive genetic polymorphism of the antigens in 
field isolates of P. falciparum represents a major obstacle for the development of an effective vaccine. In this study, 
genetic polymorphism of MSP-1 and MSP-2 among P. falciparum field isolates from Myanmar was analysed.

Methods: A total of 63 P. falciparum infected blood samples, which were collected from patients attending a regional 
hospital in Mandalay Division, Myanmar, were used in this study. The regions flanking the highly polymorphic 
characters, block 2 for MSP-1 and block 3 for MSP-2, were genotyped by allele-specific nested-PCR to analyse the 
population diversity of the parasite. Sequence analysis of the polymorphic regions of MSP-1 and MSP-2 was also 
conducted to identify allelic diversity in the parasite population.

Results: Diverse allelic polymorphism of MSP-1 and MSP-2 was identified in P. falciparum isolates from Myanmar and 
most of the infections were determined to be mixed infections. Sequence analysis of MSP-1 block 2 revealed that 14 
different alleles for MSP-1 (5 for K1 type and 9 for MAD20 type) were identified. For MSP-2 block 3, a total of 22 alleles (7 
for FC27 type and 15 for 3D7 type) were identified.

Conclusion: Extensive genetic polymorphism with diverse allele types was identified in MSP-1 and MSP-2 in P. 
falciparum field isolates from Myanmar. A high level of mixed infections was also observed, as was a high degree of 
multiplicity of infection.

Background
Malaria is a major human health-threatening disease,
which resulting in approximately 200-300 million clinical
cases and 1-3 million deaths each year worldwide. Plas-
modium falciparum causes the most severe form of the
disease and is responsible for most malaria morbidity and
almost all malaria mortality. Despite enormous efforts for
malaria control and prevention, multiple factors, includ-
ing insecticide resistance in the mosquito vectors, the
lack of effective vaccines, and the emergence and rapid

spread of drug-resistant strains, are contributing to the
global worsening of the malaria situation. Therefore,
there is an urgent need for the development of effective
malaria vaccine. However, extensive genetic diversity in
natural parasite populations is a major obstacle for the
development of an effective vaccine against the human
malaria parasite, since antigenic diversity limits the effi-
cacy of acquired protective immunity to malaria [1-3].
Therefore, it is important to investigate the genetic diver-
sity of malaria parasites, particularly the genetic diversity
of vaccine candidate antigens, in different geographic
regions to develop effective malaria vaccines.

Merozoite surface protein-1 (MSP-1) of P. falciparum is
a major surface protein, with an approximate molecular
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size of 190 kDa, that plays an important role in erythro-
cyte invasion by the merozoite [4]. The protein is a prin-
cipal target of human immune responses [5-7] and is a
promising candidate for a blood stage subunit vaccine
[4,8]. The MSP-1 gene has 7 variable blocks that are sepa-
rated either by conserved or semi-conserved regions.
Block 2, a region near the N-terminal of the MSP-1 gene,
is the most polymorphic part of the antigen and appears
to be under the strongest diversifying selection within
natural populations [4]. Up to now, four different allelic
types of block 2 have been identified: MAD20, K1, RO33,
and MR [9-12].

MSP-2 of P. falciparum is another leading candidate
antigen for subunit malaria vaccine [13]. It comprises
highly polymorphic central repeats flanked by unique
variable domains and conserved N- and C-terminal
domains [1,14]. The MSP-2 alleles generally fall into two
allelic types, FC27 and 3D7, which differ considerably in
the dimorphic structure of the variable central region,
block 3. Due to their polymorphic features, the MSP-1
and MSP-2 genes have been employed as polymorphic
markers in studies of malaria transmission dynamics in
natural isolates of P. falciparum.

The morbidity and mortality rates due to malaria have
been declining gradually in recent years in Myanmar, but
malaria still remains one of the most serious problems
threatening human health in the country, resulting in
approximately 60% of malaria deaths in the South-East
Asia region [15]. Information on the nature and extent of
population diversity within malaria parasites circulating
in the country is essential not only for understanding the
mechanism underlying the pathology of malaria but also
for establishing a proper control strategy. However, only
limited data are available on the genetic diversity of P. fal-
ciparum populations of the country. This study was
designed to analyse the genetic diversity of MSP-1 and
MSP-2 in field isolates of P. falciparum collected in a rural
area outside of Mandalay, Myanmar.

Methods
Blood samples and genomic DNA extraction
A total of 63 P. falciparum infected blood samples used in
this study were collected from patients attending the
Wet-Won station hospital, Pyin Oo Lwin Township,
Mandalay Division, Myanmar during 2004-2006 [16]. All
blood samples were collected after informed consent and
the use of the samples for this study was approved by the
Department of Health, The Union of Myanmar, and the
Ethic Committee of the Centers for Disease Control and
Prevention, Korea. Genomic DNA was extracted from
100 μl of whole blood sample by using a QIAamp Blood
Kit (Qiagen, Valencia, CA, USA) following the manufac-
turer's instruction.

Allelic typing of MSP-1 and MSP-2
The oligonucleotide primers specific for the polymorphic
regions (block 2 of MSP-1 and block 3 of MSP-2) were
designed as described previously [17]. The two genes
were amplified by nested PCR. An initial amplification of
the outer regions of the two genes was followed by a
nested PCR with family-specific primer pairs. All reac-
tions were carried out in a final volume of 40 μl contain-
ing 0.2 mM dNTP, 1 μM of each primer, and 2.5 U of Ex
Taq DNA polymerase (Takara, Otsu, Japan). In the first
round reaction, 4 μl of genomic DNA was added as a tem-
plate. In the nested reaction, 1 μl of the first PCR product
was added. Each amplification profile consisted of initial
denaturation at 94°C for 5 min, followed immediately by
30 cycles of 94°C for 1 min, 55°C for 1 min, and 72°C for 2
min. The final cycle had a prolonged extension at 72°C for
10 min. Each PCR product was electrophoresed on 1.5%
agarose gels and the DNA was visualized by ultraviolet
transillumination after staining with ethidium bromide.
The number and size of the resulting amplified products
were analysed.

Allelic distribution and multiplicity of infection
The prevalence of each allelic type was determined as the
presence of PCR products for the type in the total num-
ber of amplified bands for the corresponding locus. The
multiplicity of infection (MOI), or complexity of infec-
tion, was estimated by the average number of PCR frag-
ments per infected individual, as described previously
[18,19].

Sequencing analysis of MSP-1 and MSP-2
For sequence analysis of MSP-1 and MSP-2, all PCR
products (128 for MSP-1 and 148 for MSP-2) obtained by
allelic typing PCR were purified from the gel and cloned
into the pGEM-T Easy vector (Promega, Madison, WI,
USA). Each ligation mixture was transformed into E. coli
DH5α competent cells and positive clones were screened
for the presence of plasmid with the appropriate insert.
Sequencing reactions were performed using the BigDye
Terminator Cycle Sequencing Ready Reaction Kit in an
ABI 377 automatic DNA sequencer (Applied Biosystems,
Foster City, CA, USA). To verify the sequences, sequence
analysis was performed by analysing at least two plasmid
clones containing each gene insert. Analysis of the pri-
mary structures of the deduced amino acid sequences
was done with DNASTAR (DNASTAR, Madison, WI,
USA). Nucleotide sequences reported in this paper are
available in the GenBank database under accession num-
bers EU445555-EU445557, EU445559-EU445566,
GQ861442-GQ861443, and GQ861445 for MSP-1, and
numbers EU647447-EU647468 for MSP-2.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU445555
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU445566
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GQ861442
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GQ861443
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GQ861445
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU647447
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU647468
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Results
Allelic polymorphism of MSP-1 and MSP-2
Allele typing analysis displayed the highly polymorphic
nature of P. falciparum Myanmar isolates with respect to
MSP-1 and MSP-2. In MSP-1, K1 and MAD20 allele
types were identified, but neither RO33 nor MR allele
type were identified. K1 allele type was identified in 46
blood samples but the majority (63.5%, 40/63) occurred
as mixed infections with the MAD20 allele type. The
remaining 17 samples were identified as single infection
by the MAD20 allele type (Table 1). The length variants
of the amplified product were approximately 120-210 bp
for K1 and 140-250 for MAD20. For MSP-2, both FC27
and 3D7 allele types were identified among the isolates.
The frequency of samples having only FC27 allele type
was 12.7% (8/63), while the frequency having only 3D7
allele type was 19.0% (12/63). Both alleles were found in
68.3% (43/63) of the samples (Table 1). The length vari-
ants of the amplified product were about 260-500 bp for
FC27 and 400-610 bp for 3D7. A large proportion of iso-
lates (50/63 for MSP-1 and 55/63 for MSP-2) showed
more than 2 PCR products for each locus, as visualized
on agarose gel as a double band or multiple bands. The
MOI was 2.03 and 2.35 for MSP-1 and MSP-2, respec-
tively. These results collectively suggest that diverse
allelic polymorphism of MSP-1 and MSP-2 was identified
in P. falciparum isolates from Myanmar and that most of
the infections were mixed.

Sequence analysis of MSP-1
A total of 14 different alleles of MSP-1 were recognized
by sequence analysis of the MSP-1 block 2 region (Figure
1). Sequence analysis also confirmed that they were
grouped into K1 and MAD20. The MAD20 allele type
was more diverse with nine different alleles, compared to

five from the K1 allele type. A limited number of different
tripeptide repeat units (4 for K1 and 4 for MAD-20) were
identified in Myanmar isolates. Most sequence variation
in block 2 of MSP-1 is actually created by rearrangements
of a limited number of building blocks. The overall struc-
ture of some repeat arrays (for example, alleles 4 and 5;
alleles 6, 7, and 9) is remarkably conserved. In the K1 type
alleles, the tripeptide repeat region always started with
SAQ and terminated with SGT, regardless of differences
in the number of tripeptide repeats. Most diversity was
due to duplications or deletions of the repeat motifs SAQ,
SGT and SGP. In the MAD20 type alleles, the repeat
region started with one of two different tripeptide
sequences, SGG or SKG, but always ended with the iden-
tical hexapeptide sequence, SVASGG. The diversity of
the MAD20 allele type was also caused primarily by dif-
ferences in repetitions of SGG, SVT and SVA. The overall
frequencies of individual alleles in P. falciparum Myan-
mar isolates were broadly distributed throughout the
allele types, but allele 4 (38.9%) for K1 type and allele 9
(24.3%) for MAD20 type were predominant.

Sequence analysis of MSP-2
Sequence analysis of MSP-2 block 3 revealed that a total
of 22 distinguishable allele sequences were identified
among P. falciparum isolates from Myanmar. Both types
of FC27 and 3D7, which differ considerably in the dimor-
phic structure of the variable central region, were identi-
fied. A total of seven alleles for FC27 and 15 alleles for
3D7 were observed. The FC27 family showed varying
numbers of structurally conserved R1 (96 bp) and R2 (36
bp) repetitive regions. All FC27 alleles had repetitive
sequences that were related, but not identical to each
other (Figure 2). The R1 regions of all compared alleles of
FC27 type consist of 1-3 copies of the family-specific

Table 1: Allele typing and diversity profiles of P. falciparum isolates from Myanmar based on genetic diversity of MSP-1 
and MSP-2.

No. of samples PCR product size (bp) Frequency
(%)

Multiplicity of 
infection (MOI)

MSP-1

K1 6 120-210 9.5 1.50

MAD20 17 140-250 27.0 1.41

K1 + MAD20 40 63.5 2.38

Total 63 100 2.03

MSP-2

FC27 8 260-500 12.7 1.63

3D7 12 400-610 19.0 1.58

FC27 + 3D7 43 68.3 2.70

Total 63 100 2.35
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repeat unit, ADTIASGSQSSTNSASTSTT-
NNGESQTTTPTA or its variants with the same number
of amino acid residues. The 21 bp E2 repeat unit was well
conserved in all alleles. The R2 region showed polymor-

phic nature with different number of copies (0-4 copies)
of 36 bp repeat unit. All FC27 type alleles shared a non-
synonymous substitution of 6 amino acids (SSGNAP) in
the E3 region, which is resulted from a single indel event

Figure 1 Schematic representation of MSP-1 block 2 of P. falciparum isolates from Myanmar. A total of 15 different alleles, including 5 for K1 
type and 9 for MAD20 type, were identified by sequence analysis of MSP-1 block 2. K1 type alleles differ in the number and arrangement of SAQ, SGT, 
SGA and SGP motifs, while MAD20 type alleles differ in the number and arrangement of SGG, SVT, SKG, and SVA motifs. The total number of each allele 
is indicated.
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Figure 2 Sequence alignment of the predicted amino acid sequences of FC27 allelic types MSP-2 from P. falciaprum isolates from Myanmar. 
The central variable region of allelic types is compared to the reference FC27 (GenBank accession number J03828). Identical residues are indicated by 
dots. Dashes represent gaps introduced to maximize the alignment. The family-specific region (E1-E3) and the two tandem repeats (R1 and R2) are 
indicated. The total number of each allele is indicated.

SIRRSMANEGSNTNSVGANAPN---ADTIASGSQRSTNSASTSTTNNGESQTTTPTAADTIASGSQRSTNSASTSTTNNGESQTTTPTA--------------------------------
·····················K---································----------------------------------------------------------------
·····················K---································----------------------------------------------------------------
······················APN·········S······················----------------------------------------------------------------
·············K·······K---·········S······················----------------------------------------------------------------
······················---···T····························································--------------------------------
················D·K···---·········S······················································ADTIASGSQRSTNSASTSTTNNGESQTTTPTA
····················-----································----------------------------------------------------------------

ADTPTATESISPSPPITTT------------------------------------ESSKFWQCTNKTDGKGEESEKQNELNESTEEGPK
·······K·N·········ESNSPSPPITTTESNSPSPPITTT------------···SSGNAP··········K·K············
·······K·N·········ESNSPSPPITTTESNSPSPPITTT------------···SSGNAP·························
·········N·········ESNSPSPPITTTESNSPSPPITTT------------···SSGNAP··········K·K············
·········N·R·······ESNSRSPPITTTESNSRSPPITTTESNSRSPPITTT···SSGNAP·························
·······K·N·········ESNSPSPPITTTERNSPSPPITTT------------···SSGNAP·························
·········N·········------------------------------------···SSGNAP·························
·······------------------------------------------------···SSGNAP·························
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leading to a change in the open reading frame [14]. The
PNA motif at the 3' end of E1 was duplicated in allele 3.
Several nucleotide substitutions, all leading to non-syn-
onymous amino acid changes in E1, R1, R2, and E3
regions, also contributed to the allelic diversity of FC27
alleles. The 3D7 allele type showed more complicated
variations than FC27 allele type. The R1 had an extremely
polymorphic character, consisting of multiple copies of 4-
10 amino acids that differed in number, sequence, and
length (Figure 3). The R2 poly-threonine stretch, which is
typical for all alleles of the 3D7 family, also showed poly-
morphic patterns among the alleles with different num-
bers (8-14) of threonine residues. Several non-
synonymous amino acid substitutions were also identi-
fied in other family specific regions (E1, E2, and E3) and
the variation is much greater than FC27 type alleles.
Interestingly, duplication of PT motif at the 3' end of
block 2 was identified in alleles 10 and 11. Deletion of 11
amino acids (PKGNGGVQEPN) in E3 region, which is
relatively common in field isolates from other geographi-
cal regions [14], was also found in alleles 8 and 9.

Discussion
The genetic structure of P. falciparum populations plays a
highly important role in the natural acquisition of immu-
nity in malarial infections [2,20]. Therefore, knowledge of

the genetic structure of these populations is necessary to
develop strategies to control the disease, including the
design of effective vaccines against P. falciparum. In this
study, genetic polymorphism of two merozoite surface
proteins, MSP-1 and MSP-2, of 63 P. falciparum isolates
collected in Myanmar, where malaria is endemic or
hypoendemic, was analysed [15]. To our knowledge, no
such study has been done in Myanmar to date, and there-
fore this study provides the first estimate of the genetic
diversity of P. falciparum wild-type isolates circulating in
Myanmar.

Allele-specific PCR typing of MSP-1 (block 2) and
MSP-2 (block 3) showed that P. falciparum populations in
Myanmar have a highly complex genetic diversity. For
MSP-1, both types of K1 and MAD20 with different
length of amplified products (120-210 bp for K1 and 140-
250 bp for MAD20) were identified. Most of the isolates
(63.5%) were mixed infections which harbored both allele
types. Several similar studies in different geographic
areas which used block 2 of MSP-1 as a polymorphic
marker reported important variations in the frequency of
the genotypes. MAD20 (57/63, 90.5%) was the predomi-
nant allele in the P. falciparum population in Myanmar,
which is consistent with the situations in Thailand, Iran,
Pakistan and Colombia [21-24]. On the other hand, in
studies in French Guiana, Kenya and Peru, MAD20 is the

Figure 3 Sequence alignment of the predicted amino acid sequences of 3D7 allelic types MSP-2 from P. falciaprum isolates from Myanmar. 
The central variable region of allelic types is compared to the reference 3D7 (GenBank accession number X53832). Identical residues are indicated by 
dots. Dashes represent gaps introduced to maximize the alignment. The family-specific region (E1-E3) and the two tandem repeats (R1 and R2) are 
indicated. Each repeat unit in R1 is underlined. The poly-threonine stretch is highlightened by shading. The total number of each allele is indicated.

SIRRSMTESNPPT------GASGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGSGD----------------------------GNGANPGADA 
·············------GASGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGSGD------------------------------------------------··········
·············------GASGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGGSAGSGD··········
·········KT··PTPTPTGAGAGAGASGSAGSGDGASGSASGSAGASGSASGSAGASGSASGSAGASGSASGSAGASGSASGSAGASGSASGSAGA------------------
·········KT··PT----GAGAGAGASGSAGSGDGASGSASGSAGASGSASGSAGASGSASGSAGA------------------------------------------------
·········K···------GTGASGSAGSGAGASGSAGSGDGAVASA----------------------------------------------------------R·········
······AV·····------GAGASGRAGSGDGAVASAGSGDGAVASAGSGDGAVASA------------------------------------------------R·········
······E······------GAGASGRAGSGDGAVASAGSGDGAVASA----------------------------------------------------------··········
······AV·····------GVASA---------------------------------------------------------------------------------R·········
······E······------GAGAVAGSGAGAVAGSGAGAVAGSSAGAGAGAVAGSGAGAGAGAVAGSGAGAGAVAGSGAGASA----------------------GN··----··
······E··K···------GASGSAGSGAVASAGSGAVASA----------------------------------------------------------------··········
······E··K···------GASGSAGSGAVASAGSGAVASAGSGAVASA-----------------·--------------------------------------··········
······E······------GAGASGRAGAGASGRAGAGASGRAGSGDGAVASAGSGDGAVASA------------------------------------------··········
······A··KT··------GASGSAGSGAVASAGSGAVASAGSGAVASA--------------------------------------------------------··········
······A··KT··------GASGSAGSGAVASAGSGAVASA----------------------------------------------------------------··········
······AV·····------GAGASGRAGAGAGAGAGASGRAGAGASGRAGSGDGAVASAGSGDGAVASAGSGDGAVASAGSGDGAVASA----------------R·········

ERSPSTPATTTTTTTT------NDAEASTSTSSENPNHNNAETN-----------QANKETQNNSNVQQDSQTKSNVPPTQDADTKSPTAQPEQAENSAPTAEQTESPEL
················------······················-----------·······················································
················------······················-----------·······················································
·G··············------···················K··PKGNGGVQEPN·······················································
·G··············------···················K··PKGNGGVQEPN·······················································
·R··············TTTTTT·············S········PKGNGKVQEPN·······················································
KR··············------·············S········SKGKGEVQEPN·······················································
KR··············TTTTTT······················PKGKGEVQEPNK··T···················································
KR·T············------·············S········PKGKGEVQEPN·······················································
KR··············------···················K··PKGNGGVQEPN·······················································
·G·S············TTT---················K·····PKGKGEVQKPN·······················································
·G·S············TTT---················K·····PKGKGEVQKPN·······················································
KR·T············TTTTTT······················PKGKGEVQEPNK··T···················································
·G·S············TTTTTT···················K··PKGNGGVQEPN·······················································
·G·S············TTTTTT···················K··PKGNGGVQEPN·······················································
KR··············------······················PKGNGKVQEPN·······················································

4
3
3
5
5
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6
5
6
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8
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4
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less frequent type and K1 is the most frequent [11,25,26].
Allele typing for MSP-2 also showed that both FC27 and
3D7 allele types were identified among the isolates. The
frequency of FC27 and 3D7 allele type was 80.9% (51/63)
and 87.3% (55/63), respectively, but a high proportion of
the isolates (68.3%, 43/63) contained both allele types.
Similar frequency patterns are observed in Thailand,
Iran, Pakistan and Cameroon [21,23,24,27], but not in
Brazil, where FC27 type is more prevalent [28]. These
results collectively suggest that diverse allelic variations
of MSP-1 and MSP-2 exist in P. falciparum Myanmar iso-
lates and that most of the infections were mixed. This is
similar to observations made in other endemic areas
[11,17,21,22,27-29].

To further investigate the allelic diversity of MSP-1 and
MSP-2 in P. falciparum isolates from Myanmar, sequence
analysis of MSP-1 and MSP-2 was performed. Sequence
analysis of MSP-1 block 2 showed that a total of 14 alleles
of MSP-1, 5 for K1 type and 9 for MAD20 type, were
identified. Allelic diversity of MSP-1 block 2 in P. falci-
parum Myanmar isolates was due to different numbers of
unique tripeptide repeats, which is similar to previous
studies [14,30]. Sequence analysis of MSP-2 block 3 also
showed high allelic diversity, with seven alleles for FC27
and 15 alleles for 3D7. As reported in previous studies on
parasites from different geographic origins [14,28,30], the
sequences belonging to the FC27 family of P. falciparum
isolates from Myanmar were generally conserved but var-
ied in the number of repeats. The 3D7 displayed more
extensive sequence diversity. Besides the major polymor-
phic characters in the R1 and R2 regions, several non-
synonymous amino acid substitutions were identified in
family specific regions (E1, E2, and E3) of 3D7 type alleles
and the variations make the genetic diversity of 3D7 allele
type much greater than FC27 type alleles. Interestingly,
duplication of PT motif at the 3' end of block 2 was iden-
tified in two 3D7 type alleles (alleles 10 and 11). This pro-
liferation of the PT motif had been identified in non-
Asian parasites previously [14], but it is the first descrip-
tion of PT duplication in Asian parasite. MSP-2 was more
polymorphic than the MSP-1 in P. falciparum isolates
from Myanmar, which is also consistent with previous
studies [17,21,27,31,32].

Although it seems likely that nonreciprocal recombina-
tion events, such as replication slippage and gene conver-
sion, during the mitotic (asexual) replication of the
parasite also play a plausible role in creating allele varia-
tion [6,33], allelic diversity of P. falciparum MSP-1 and
MSP-2 is mainly generated by meiotic recombination
events involving genetically distinct parasite clones that
infect the same mosquito vector [34,35]. Therefore, the
proportion of mixed infections and the number of clones
per individual is one of the pre-requisites to generate new
genotypes and to increase the diversity of the parasitic

population [36]. Multiple clonal infections with different
genotypes of P. falciparum were identified among Myan-
mar P. falciparum isolates in a high proportion (79.4% for
MSP-1 and 87.3% for MSP-2). And a high level of MOI
(2.03 for MSP-1 and 2.35 for MSP-2) was also found.
Sequence analysis of MSP-1 and MSP-2 also showed that
diverse alleles (14 for MSP-1 and 22 for MSP-2) were
identified among the isolates. Although direct compari-
son could be impossible due to the different size of blood
samples used in each study, this is less than holoendemic
areas such as Senegal (33 for MSP-1 and 17 for MSP-2)
[37], Uganda [38] and Gabon (25 for MSP-1 and 19 for
MSP-2) [17] but more than low endemic Asian countries
including Thailand (10 for MSP-1 and 17 for MSP-2) [21]
and Iran (9 for MSP-1 and 11 for MSP-2) [39]. These
extensive allelic variations were also identified in circum-
sporozoite protein (CSP), MSP-1, and MSP-3α [16] and
apical membrane antigen-1 (AMA-1) [40] of P. vivax iso-
lates from Myanmar. The unique geographic location of
Myanmar, which is surrounded by five neighbouring
malaria endemic countries, appears to contribute to the
large diversity of parasite genotypes in this country.
Migration of people within the country and between
neighbouring countries may also introduce a P. falci-
parum population with different alleles to the country,
resulting in an extensive sequence variation in the para-
site. Further studies associated with antibody responses
against MSP-1 and MSP-2 in Myanmar patients are
needed to evaluate the impact of this polymorphism on
the immune response to the antigens, since the genetic
diversity would not necessarily reflect selection acting at
protein level. Studies using a larger number of blood sam-
ples collected from different geographic areas in Myan-
mar are also required not only to determine the
nationwide parasite heterogeneity and detailed malaria
epidemiology but also to implement malarial control pro-
grammes in the country.

Conclusion
A major finding of this study was that P. falciparum field
isolates in Myanmar exhibited a high degree of genetic
polymorphism in MSP-1 and MSP-2. Moreover, most of
the infections were mixed with a high level of MOI. These
results collectively suggested the highly complex popula-
tion structure of the parasite in Myanmar.
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