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Abstract

Background: In Burundi, malaria is a major public health issue in terms of both morbidity and mortality with around
2.5 million clinical cases and more than 15,000 deaths each year. It is the single main cause of mortality in pregnant
women and children below five years of age. Due to the severe health and economic cost of malaria, there is still a
growing need for methods that will help to understand the influencing factors. Several studies have been done on the
subject yielding different results as which factors are most responsible for the increase in malaria. The purpose of this
study has been to undertake a spatial/longitudinal statistical analysis to identify important climatic variables that
influence malaria incidences in Burundi.

Methods: This paper investigates the effects of climate on malaria in Burundi. For the period 1996-2007, real monthly
data on both malaria epidemiology and climate in the area of Burundi are described and analysed. From this analysis, a
mathematical model is derived and proposed to assess which variables significantly influence malaria incidences in
Burundi. The proposed modelling is based on both generalized linear models (GLM) and generalized additive mixed
models (GAMM). The modelling is fully Bayesian and inference is carried out by Markov Chain Monte Carlo (MCMC)
techniques.

Results: The results obtained from the proposed models are discussed and it is found that malaria incidence in a given
month in Burundiis strongly positively associated with the minimum temperature of the previous month. In contrast, it
is found that rainfall and maximum temperature in a given month have a possible negative effect on malaria incidence
of the same month.

Conclusions: This study has exploited available real monthly data on malaria and climate over 12 years in Burundi to

derive and propose a regression modelling to assess climatic factors that are associated with monthly malaria
incidence. The results obtained from the proposed models suggest a strong positive association between malaria
incidence in a given month and the minimum temperature (night temperature) of the previous month. An open
question is, therefore, how to cope with high temperatures at night.

Background

In Burundi, malaria is a major public health issue in terms
of both morbidity and mortality with around 2.5 million
clinical cases and more than 15,000 deaths each year.
During the last decade, for example, malaria cases
increased from 550,000 cases in 1991 to 2.8 million in
2001 in a total population estimated at 7 million [1]. In
2001, Burundi was the country most affected by malaria
in the world [2]. Malaria is the single main cause of mor-
tality in pregnant women and children below five years of
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age. Malaria continues to ravage millions of rural Burun-
dians, despite concerted efforts to reduce malaria mortal-
ity [3,4]. This is often attributed to a number of factors,
including poverty, limited access to basic health care and
specialized health facilities, the cost-sharing system, and
the under-funding of the health sector by the govern-
ment. Currently, the government allocates only 2% - 4%
of its national budget towards supporting the health sec-
tor. The direct economic costs of malaria that result from
treatment and from time away from work or school are
enormous, but the overall economic impact of malaria is
likely to be much more substantial than suggested by esti-
mates of direct costs alone [5].
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Due to the severe health and economic cost of malaria
epidemics, there is still a growing need for methods that
will help to understand the influencing factors, allow
forecasting, early warning, so that more effective control
measures may be implemented [6]. Several studies have
been done on the subject yielding different results as
which factors are most responsible for the increase in
malaria. Epidemiology studies on malaria in Africa have
identified, in general, an association between climate
variables and malaria [7,8]. An association between cli-
mate variability and the epidemics of malaria has been
identified in seven sites of East African highlands in Ethi-
opia, Kenya and Uganda [9], suggesting that climate vari-
ability had an important influence in initiating epidemics
in the highlands of East Africa. There was a significant
and positive influence of interactions between maximum
temperature, minimum temperature and rainfall on
malaria transmission. The work of Pemola and Jauhari
[10] investigated the relationship between climate and
malaria incidence using Pearson's correlation analysis.
The authors found a high positive correlation between
monthly parasite incidence and climatic variables (tem-
perature, rainfall and humidity). Gallup and Sachs [11]
have suggested that the location and severity of malaria
are mostly determined by climate and ecology. A signifi-
cant correlation between malaria risk and elevation,
annual maximum temperature and rainfall was also
described [12]. Another study found that variation in the
malaria transmission intensity was strongly associated
with basic climatic factors, noting that even small differ-
ences in climate variation can significantly affect malaria
transmission intensities [13]. Rainfall, temperature and
altitude were the most plausible predictors of malaria
prevalence in Botswana [14].

Others have suggested that malaria was influenced by
factors other than climate. Hay et al [15] suggested that
the association between local malaria resurgence and
regional changes in climate was overly simplistic. Eco-
nomic, social and political factors may explain recent
resurgence in malaria and other mosquito-borne dis-
eases, with no need to invoke climatic changes. Many
variables may affect malaria transmission beside climatic
changes, such as environmental modification, population
growth, limited access to health care, and lack of or
unsuccessful malaria control measures [16]. Although cli-
mate can affect the incidence of malaria, human eco-
nomic activities and malaria control strategies play an
important role in the incidence of the disease [17]. Rela-
tively high rates of malaria morbidity could result from
poor access to health services, inadequate case manage-
ment, overwhelmed health services, poor immunological
competence because of malnutrition, a general disruption
to livelihoods because of often-associated flooding, or a
combination of these factors [18].
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The above-mentioned studies have led to various con-
troversial conclusions when investigating which factors
influence malaria incidence, depending on the country
specificity. This makes it difficult to establish common
determinants of malaria in all countries [19]. In Burundi,
the situation of malaria is poorly documented. Indeed,
very few studies have been published on the malaria prev-
alence in Burundi. Further, published papers concern
only three provinces (Ngozi, Kayanza, Karuzi) [20,21],
where "Médecins-sans-Frontiéres" from Belgium was
active. It is believed that the situation of crisis experi-
enced by Burundi since 1993, followed by a break in
cooperation with some countries led researchers and
international agencies to lose interest on Burundi. So far,
no research on malaria has been carried out throughout
the entire country in order to establish a generalized
framework to investigate this subject.

In this paper, both generalized linear and generalized
additive mixed models are proposed to assess the climatic
factors that are the highly associated with monthly
malaria incidence in Burundi. It is assumed that malaria
incidence in a given month in Burundi can be predicted
by rainfall, temperature and humidity. Rainfall has a great
influence on the mosquito population by increasing the
vegetation density and by providing suitable breeding
pools for the production and maturation of larvae. Tem-
perature has a great influence on the transmission of
malaria, higher temperatures shortening the extrinsic
incubation period [6] and humidity facilitates adult mos-
quito life span [9,22,23].

Methods

Study area

Burundi is located in East-central Africa, between 2°20
and 4°27 of latitude south and between 28°50 and 30°53 of
longitude east; the altitude varies between 775 metres
(Lake Tanganyika) and 2,670 metres (Crest Congo - Nil).
Burundi has generally a tropical highland climate, with a
considerable daily temperature variation in many areas
[24]. Temperature also varies considerably from one
region to another, mainly as a result of differences in alti-
tude. The central plateau is cool, with temperature aver-
aging 20°C. The area near Lake Tanganyika is warmer,
averaging 23°C; the highest mountain areas are cooler,
averaging 16°C. Rain is irregular, falling most heavily in
the north-west [24]. Dry season varies in length, and
there are sometimes longer periods of drought. Most
parts of Burundi receive between 130 and 160 cm of rain-
fall a year [24]. Bounded on the north by Rwanda, in
south-east by Tanzania and in west by the Democratic
Republic of Congo, Burundi covers an area of 27,834 km?
(of which 2,634 km? are occupied by Tanganyika Lake)
and has a population estimated at about 8 million. In
terms of habitat, it remains essentially rural, with 91.6%
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of the population living in rural areas. The urban popula-
tion is 8.4% with an annual growth rate of 5.7%. The
Burundi population is young: 46.1% are under 15 years of
age, while people aged 60 and above represent only 5.4%.
With an average density of 266 inhabitants per km?, a
population growth rate of 3.44% and a total fertility rate
of six children per woman, Burundi is one of Africa's
most densely populated country [3]. Burundi is struc-
tured in 17 provinces. The epidemiological profile can be
summarized as follows. The health system suffers from a
shortage of qualified personnel with one doctor per
34,750 inhabitants and one nurse for 3,500 inhabitants.
17.4% of patients do not have access to health care, while
81.5% of patients are forced to go into debt or sell prop-
erty to pay the health costs. There is a big disparity
between the capital Bujumbura and the remainder of the
country, as 80% of doctors and more than 50% of nurses
are working in Bujumbura. Malaria, which is responsible
for more than 50% of hospital deaths in children under
five years of age and 40% of all consultations in health
centres, is undoubtedly the main public health problem,
the main cause of mortality and morbidity in Burundi [3].

Data description

Malaria data

The goal/aim of this study is to assess which climatic fac-
tors affect malaria incidence in Burundi. Data on malaria
morbidity in Burundi were collected from EPISTAT (Epi-
demiology and Statistics) [25], a department of the
Burundi Ministry of health, in charge of collecting and
storing data on epidemiology all over the country. The
health services collect all monthly notification of malaria
consultations. Malaria morbidity data/number from 1996
to 2007 were collected. This is the period where data are
available in EPISTAT. The well-known nearest neighbour
method is used to fill the (~5%) missing data. The esti-
mated population for each province, for the study period,
was obtained from the Institute of Statistics and Eco-
nomic Studies of Burundi (ISTEEBU) [26]. In this study,
the number of malaria cases for each province was
divided by the total number of population of the province
to obtain the incidence rate. Used are the incidence rates
per 1,000 inhabitants.

Meteorological data

Monthly cumulative precipitation, monthly average of
maximum temperature, monthly average of minimum
temperature, monthly average of maximum humidity and
monthly average of minimum humidity, for the period
1996-2007 were obtained from the Geographic Institute
of Burundi (IGEBU) [27]. The record of these variables
from 1996 to 2007 has remained uniform, with the same
calibration and the same precision. Only 14 stations had
enough data for the desired study period. The missing
data (2% - 3%) were filled by the same method as in
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Malaria data (nearest neighbour and cross-validation).
Data for three provinces (Bubanza, Bujumbura rural and
Cibitoke) were not available for the study period. They
are estimated using ordinary kriging [28].

Modelling the impact of climatic variables on malaria
Generalized linear and generalized additive mixed models
Let ,be a response variable, X = (X, ..., X,)) be a vector of
covariates and 6 and @ unknown parameters. Bayesian
generalized linear models assume that the distribution of
Y belongs to an exponential family, i.e.

pY | X) = exp(y‘)‘(f“” Jc(y,qs) (1)

Here b(.), ¢(.), @ and ¢ determine the specific response
distribution [29-31]. The mean y = E(Y/X, y) is linked to a
linear predictor # by

n=h(m),n =Xy (2)
where / is a known link function and y is a vector of
unknown regression parameters.

In most practical regression applications however, the
assumption of a strictly linear effect (of the covariates) on
the predictor may not be appropriate for continuous
covariates.

Generalized additive mixed models for longitudinal
data generalize (2), by replacing the strictly linear predic-
tor by a structured additive predictor [32]:

Mit :fl(xizl)+-~-+fp(xizp)+”,it7’+8it (3)

where 7, is the predictor, x;,, ..., x;, u;, are the (contin-
uous) covariates values observed for location i at time ¢, ]j
are smooth function and ¢, is the error. For Bayesian
inference, the unknown functions f}, ...., f, in the predictor
(3) and the fixed effects parameter y are onsidered as ran-
dom variables and are supplemented by appropriate prior
assumptions [33]. Defining the vector of the function
evaluations f; = (f(x;), .. fi(%,,))" as the matrix product of
a design matrix X; and a vector of unknown parameters
B ie. f;= X, one obtains the predictor (3) in matrix
notation as

n=Xip+...+X,B; +Uy (4)

where U corresponds to the design matrix for fixed
effects. A prior for a function f; is defined by specifying a

suitable design matrix X;and a prior distribution for the
vector f; of unknown parameters. The general form of the
prior for the ;in (4) is given by
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p(B; [ 1]) < exp —h%ﬂ;xjﬁj (5)
j

where K; is a penalty matrix that shrinks parameters

towards zero or penalizes too abrupt jumps between
neighbouring parameters [32,34]. The variance parame-
ter T ]2 in (5) controls the trade-off between flexibility and
smoothness. Weakly informative inverse Gamma hyper-
priors T ]2 ~IG(aj, b)) are often assigned to T ]2 . Bayesian

inference is based on the posterior of the model given by:

L(y, B1. A By 7)
p

[T (e85 /%%

j=1

DB By Tire Ty [ 7)o

Here L(.) denotes the likelihood which, under the
assumption of conditional independence, is the product
of individual likelihood contributions. Markov Chain
Monte Carlo (MCMC) simulation methods that allow to
draw random samples from the posterior are used to
compute the posterior distribution [35,36].

Model formulation

The aim is to model the dependence of malaria incidence
on covariates including rainfall, minimum and maximum
temperature, minimum and maximum humidity in
Burundi. In the model, the variation of temperature, rain-
fall and humidity within one province is assumed not sig-
nificant. This assumption is dictated by the fact that
provinces in Burundi are small (17 provinces on an area
of 27,834 km?). Taking into account the life cycle of the
parasite (13 days for Plasmodium falciparum) [13] and
the incubation period (seven days to four weeks), it is
assumed that malaria incidence in a given month is asso-
ciated with climatic conditions of the same month and
those of the previous month. Most of those who become
ill in a given month were bitten by mosquitoes in the pre-
vious month. The data are available in different scale and
units (malaria and humidity data are unit-free, rainfall is
measured in centimetres (cm) and temperature in
degrees centigrade (°c)). To avoid the effect of scale in our
modelling, the data are first standardized. Throughout
this study we adopt the following notation for the vari-
ables:R, is the rainfall, T, is the maximum temperature,
T, is the minimum temperature, H, is the maximum
le’ Txp’ Tnp’
H,,are the same variables for the previous month.

humidity, H,, is the minimum humidity and R
H,,
Figure 1 represents the histogram of the standardized

malaria incidences. The histogram is right-skewed, sug-
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Figure 1 Histogram of the standardized malaria incidences data.

gesting that a gamma distribution for the response vari-
able is appropriate. Since some values of the standardized
data are negative, a second transformation is made to the
data by adding a constant (¢ = 2.2) to the response vari-
able to obtain positive values. The following analysis is
then conducted on these new data. In the model, the
response variable Y(malaria incidence) is assumed to
have a gamma distribution (with log-link function), i.e.

p(Y | X, p,5) =r(15)(;] y*! eXp(—;y) (7)

where y > 0 is the mean and s > 0 is the shape parame-
ter. The parameters ¢ and s are related to 6 and @in equa-

tion (1) by u=b(0) = —% and s :% (see [32] for more
details).

Generalized linear model
The following generalized linear model is first fitted using
all the available covariates.

N = E(Yy | Xy, B)

5 10 (8)
Nig = Bo + Zﬂkxkit + z BiXip + €it
k=1 k=6

Here

y,.is the predictor of malaria incidence assumed to have
a gamma distribution,

Y,,is the malaria incidence in province i (i = 1,..,17) and
month (¢ = 1,...,144),

S is a vector of unknown regression parameters S,
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Xy and Xy, are the five climatic covariates (rainfall,
maximum temperature, minimum temperature, maxi-
mum humidity and minimum humidity) for months ¢ and
the previous month p respectively. Finally, 5, is the inter-
cept (accounting for the effects of unmeasured covari-
ates) and ¢, is the error. Variables selection is then
performed based on the Akaike information criterion
(AIC) in a stepwise algorithm; a final model was then
retained. The lowest AIC corresponded to the following
model:

Nie = Bo + BiRyie + BoTaip + BsTapie + BaTopic + €t
)

The regression coefficients §; (k = 0,...,5) are estimated
via Markov Chain Monte Carlo (MCMC) simulation that
allows to draw random samples from the posterior given
by (6).

12,000 iterations of the MCMC are ran with a burn-in
phase of 2,000 iterations. A thinning to the Markov Chain
is applied to reduce autocorrelations, by requiring the
programme to store only every 10th sampled parameter.
This leads to a random sample of length 1,000 for every
parameter in the model [35].

The estimated values of the parameters f3; are presented
in Table 1.

Generalized additive mixed model

Assuming a nonlinear effect of the climatic covariates on
malaria incidence, a generalized additive model (GAM) is
first fitted tothe longitudinal data. The additive approxi-
mation has the following advantages: first, the curse of
dimensionality is avoided because each of the individual
additive terms is estimated using a univariate smoother
[37]. Second, the estimates of the individual terms explain
how the dependent variable changes with the corre-
sponding independent variables [37]. At the beginning,
all the explanatory covariates are used as follows;
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5 10
Nit =B0+ka(xkit)+2fk(xkip)+8it (10)
=1 =6

Here, as above, 7, is the predictor of malaria incidence
in month ¢ and province i, assumed to have a gamma dis-
tribution, X;;, and Xj;, are the five covariates in province i
for month ¢ and the previous month p, respectively, f; are
unknown smooth functions of the covariates, , is the
intercept and ¢, is the error. The effects of two-factors
interaction are assumed to be smaller and are conse-
quently omitted. The main reason is the wish to preserve
the simplicity and easy interpretation of the effects,
which are often lost by including interactions [29,38].

A final model was then selected based on the Akaike
information criterion (AIC) using the algorithm
described in [39]. The algorithm is able to decide whether
a particular covariate is included in the model or not and
whether it enters the model linearly or nonlinearly. More-
over the algorithm selects an appropriate degree of
smoothness of the nonlinear covariate. Model choice and
estimation of the parameters is done simultaneously (see
[39] for more details). The lowest AIC corresponded to
the following generalized additive mixed model (GAMM)
[32]:

0 = ag+ fi(Ryi) + fo(H i) + f5(Tipic)
! +f4(prit) + o Ty + oyl +asT,; +&;

(11)

The regression coefficients a; (k = 0,..,,3) and the non-
linear effect of the continuous covariates are estimated
via Markov Chain Monte Carlo (MCMC) as above. The
effects of the continuous covariates are modelled by cubic
p-splines [40] with 20 equidistant knots and second order
random walk penalty [38,41]. Positive hyperparameters a
= 0.001 and b = 0.0005 for 7 2 are chosen to ensure the
propriety of the posterior [35,40,42]. The sensitivity of

Table 1: Estimates of the coefficients of the linear effects in the generalized linear model.

Parameter Mean Std. Dev. Median 95% Confidence
Interval
By 0.751051 0.0083366 0.750995 [0.734,0.767]
B, -0.028041 0.0099073 -0.028237 [-0.047,-0.008]
B, -0.043121 0.0122528 -0.042746 [-0.067,-0.019]
B; -0.016150 0.0109984 -0.016187 [-0.038, 0.004]
Ba 0.047941 0.00983923 0.048019 [0.029, 0.066]
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the results with respect to changes in the hyperparame-
ters a and b is then checked by re-estimating the model
with different choices for the hyperparameters 4 and b for
each effect in the model by setting

(a =1, b =0.005); (@ = 0.001, b = 0.001); (@ = 0.01, b =
0.005); (@ = 0.001, b = 0.005) (a = 0.0001, b = 0.0001); (a =
0.0001, b = 0.0005) to assess the dependence of results on
minor changes in the model assumptions. The results
showed no significant change.

The models are implemented in BayesX, a public
domain software for Bayesian inference in structured
Additive Regression Models available at http://

www.stat.uni-muenchen.de/~bayesx/bayesx.html.

Results and discussion

The purpose of this study has been to undertake a spatial/
longitudinal statistical analysis to identify important cli-
matic variables that influence malaria incidences in
Burundi. Table 1 presents the estimates of the coefficients
B, from model (9).

In Table 1, f5;, 5, and j3; have negative means. Moreover
B, and f3, have a negative 95% credible interval (CI), sug-
gesting that rainfall and maximum temperature in a given
month have a negative effect on malaria incidence of the
same month. 3, has a positive mean with a positive 95%
CI. This suggests malaria incidence in a given month is
positively and significantly associated with minimum
temperature of the previous month.

The coefficients «a; of the linear part of model (11) are
given in Table 2: a; has negative mean with a negative
95% CI. This suggests that maximum temperature in a
given month has a negative effect on malaria incidence of
the same month. &, and a5 have positive means, moreover
a5 has a positive 95% CI. This suggests that malaria inci-
dence in a given month is positively associated with the
minimum temperature of the same month and (more sig-
nificantly) that of the previous month. The results of the
GAMM are in good agreement with those of the GLM. In
both tables the intercepts (5, and a;) have positive mean
with a positive 95% CI. Moreover, they have the largest
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absolute value. This suggests that variables other than cli-
mate may have a greater influence on malaria incidence.
The extents of nonlinear effects are represented in Figure
2. The upper left plot of Figure 2 suggests that rainfall in a
given month has a negative effect on malaria incidence of
the same month. Other plots show no clear trend.
Overall, both models (GLM and GAMM) suggest that
malaria incidence in a given month in Burundi is signifi-
cantly positively associated with the minimum tempera-
ture of the previous month. Conversely, rainfall and
maximum temperature in a given month are found to
have a negative effect on malaria incidence of the same
month. Possible explanations of these results are the fol-
lowing. Due to the development cycle of the parasite into
mosquitoes and the incubation period, those who
became ill in a given month were bitten by mosquitoes in
the previous month. Minimum temperature is observed
at night and mosquitoes are active only at night; by day-
time they hide themselves in houses or vegetation. This
explains why this factor, which is observed at the same
time (at night) when there is mosquito activity, has a great
influence on malaria transmission. Moreover, when the
night temperature is high, people do not cover them-
selves, increasing the risk of being bitten by mosquitoes.
Maximum temperature has a negative effect because
mosquito's development is interrupted at higher temper-
ature [41]. Too much rainfall may flush away breeding
larvae, reducing the numbers of the disease vectors.

Conclusions

This study has exploited available real monthly data on
malaria, rainfall, temperature and humidity over 12 years
(1996-2007) in the area of Burundi to derive and propose
a regression modelling to assess climatic factors that are
associated with monthly malaria incidence. The regres-
sion is based on the generalized linear model (GLM) and
generalized additive mixed model (GAMM). The results
obtained suggest a strong positive association between
malaria incidence in a given month and the minimum
temperature (night temperature) of the previous month.
An open question is therefore how to cope with high tem-
peratures at night. One possible suggestion in the context

Table 2: Estimated coefficients of the linear effects in the generalized additive mixed model.

Parameter Mean Std. Dev. Median Interval 95% Confidence
a, 0.781362 0.0520609 0.780101 [0.677,0.884]
a, -0.0381613 0.0134649 -0.0380738 [-0.064, -0.0109]
a, 0.0155423 0.0151579 0.0157556 [-0.014, 0.044]
as 0.035133 0.0142763 0.0347205 [0.0064, 0.063]
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Figure 2 Estimates of the nonlinear effects of the continuous co-
variates in model (11) with 95% ClI.

of Burundi would be to popularize the use of bed nets in
order to reduce contact with mosquitoes. In contrast, it is
found that rainfall and maximum temperature in a given
month have a negative effect on malaria incidence of the
same month. It is believed that climatic variables alone
cannot explain the spatio-temporal distribution of
malaria cases in Burundi. An interesting problem under
investigation is extending the results in this work by
incorporating in the proposed model the spatial effect by
accounting for both structured (correlated) and unstruc-
tured (uncorrelated) components.
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