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Abstract
Background: Mannose binding lectin (MBL) has an important role in the activation of the complement system
and opsonization of pathogenic microorganisms. Frequent polymorphisms found in the MBL2 gene affect the
concentration and functionality of the protein and are associated with enhanced susceptibility to severe malaria
in African children. Most MBL2 typing strategies were designed to the analysis of selected variants, the significance
of whole haplotypes is poorly known. In this work, a new typing strategy was developed and validated in an
association analysis of MBL2 with adult asymptomatic infection.

Methods: MBL2 allele-specific fragments of 144 healthy Gabonese adults were amplified by using haplotype-
specific sequencing (HSS), a new strategy that combines sequence-specific PCR and sequence-based typing. The
Gabonese were investigated for the presence of Plasmodium falciparum parasitaemia by the amplification of
parasite genes, immunochromatographic antigen detection and microscopic analysis. HSS results were also
compared with a previously used real-time PCR (RT-PCR) method in 72 Euro-Brazilians.

Results: Fourteen polymorphisms were identified beside the commonly investigated promoter (H, L; X, Y; P, Q)
and exon 1 (A, O; O = B, C or D) variants. The MBL2*LYPA/LYPA genotype was associated with the absence of
asymptomatic infection (P = 0.017), whereas the MBL2*LYQC haplotype and YA/YO + YO/YO genotypes were
associated with positive parasite counts in asymptomatic adults (P = 0.033 and 0.018, respectively). The
associations were specific to LYPA (identical to the reference sequence Y16577) and LYQC (Y16578) and would
not have been revealed by standard genotyping, as there was no association with LYPA and LYQC haplotypes
carrying new polymorphisms defined by sequence-based typing. In contrast, HSS and RT-PCR produced very
similar results in the less diverse European-derived population.

Conclusion: In this work, a new typing strategy for a highly polymorphic gene was developed and validated
focusing on the asymptomatic status of P. falciparum-infected adults. In populations with high nucleotide diversity,
it allowed for the identification of associations with fine-scaled haplotypes that would not have been found using
common typing techniques. In this preliminary study, MBL2 haplotypes or SNPs linked to them were found
associated with susceptibility to infection and parasitaemia control of asymptomatic adults.
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Background
Plasmodium falciparum infection causes between one and
two million deaths annually, mostly in African children
less than 5 years of age. This means that every 30 seconds
a child dies of malaria. Those who survive became increas-
ingly immune to severe malaria with each disease episode
[1]. Although the immune mechanisms in older individu-
als clear a large proportion of infected erythrocytes, part of
the parasites can persist in the circulation without causing
symptoms. Semi-immunity seems to be dependent on fre-
quent P. falciparum reinfections and can be lost within a
few weeks if the individual leaves the endemic area [2].
Frequent reinfections nevertheless are associated with
anaemia, secondary bacterial infections and hyper-reac-
tive malarial splenomegaly. Individuals with asympto-
matic parasitaemia may also serve as a reservoir for
transmissible parasites [3].

Several genetic polymorphisms that modulate immune
response were found to be associated with protection
against malaria. They include alleles of the HLA system
[4], of tumour necrosis factor (TNF) (for a review, see [5]),
nitric oxide synthase 2 (NOS2A) [6] and mannose-bind-
ing lectin (MBL2) [7,8]. Mannose-binding lectin recog-
nizes sugar moieties such as mannose and N-acetyl-D-
glucosamine on a wide range of different microorganisms
[9], and on parasites such as Schistosoma mansoni and P.
falciparum [10,11]. Upon binding, it activates the comple-
ment system via interaction with MBL-associated serine
proteases (MASP-1, -2, -3 and Map19) and kills the poten-
tial pathogen by the membrane-attack complex or by
complement-mediated phagocytosis through increased
deposition of opsonic C3 fragments. MBL is also able to
directly opsonize the microorganism for phagocytosis and
to modulate the release of pro-inflammatory cytokines.

MBL2 deficiency is associated with the susceptibility and
severity of many diseases, as well as with protection
against intracellular infections as tuberculosis, leprosy
and leishmaniasis [12-14]. Three single nucleotide poly-
morphisms (SNPs) in the first exon of the gene: MBL2*D
(Arg52Cys), B (Gly54Asp) and C (Gly57Glu) [15,16] are
mainly responsible for the reduction of circulating levels
of MBL oligomers and of functional activity of the protein,
which is very common and widespread in the human spe-
cies. They have been collectively labeled O, whereas the
major alleles at these loci have been called A. The concen-
tration of the protein in serum is further modulated by at
least three SNPs in the promoter region: MBL2*H, L
(located 550 bp before the transcription start site), X, Y
(located 221 bp before the transcription start site) and P,
Q (not coding SNP located 4 bp after the transcription
start site) [17,18]. Linkage disequilibrium between the
SNPs is responsible for eight haplotypes associated with
increasingly lower MBL serum concentration:

 MBL2*HYPA = LYQA = LYPA > LXPA >> HYPD = LYPB =
LYQC = LYPD [7]. Due to the strong concentration-lower-
ing effect of the X/Y and A/O exon 1 variants, HYPA, LYQA
and LYPA are commonly evaluated as a joined diplotype
group "YA". Accordingly, LXPA is analyzed as "XA" and
HYPD, LYPB, LYQC and LYPD as "YO". This approach
nevertheless neglects important hitch-hiking effects that
become evident with the analysis of complete haplotypes,
as well as the functional effects of new SNPs. E.g. 14 addi-
tional allelic haplotypes were recently defined by this
group, most of them similar to LYQA and LYPA, and one
of them was found associated with severe malaria [7].

This new MBL2 typing strategy for physical separation and
sequencing analysis of promoter-exon 1 haplotypes, was
validated by comparing it with real-time PCR (RT-PCR) in
72 Brazilian subjects of another study [19] and focusing
for the first time on adult asymptomatic P. falciparum
infection among 144 Gabonese individuals. The typing
strategy was called haplotype-specific sequencing (HSS)
and showed higher cost-benefit for physical separation of
small-sized haplotypes if compared with cloning [20] and
haplotype-specific extraction (HSE) methods [21]. It also
allowed for the identification of associations with fine-
scaled haplotypes that would not have been found using
other typing techniques in an Afro-derived population.

Methods
Subjects and samples
A total of 144 Gabonese adults that took part of a large
epidemiologic survey to detect the prevalence of asympto-
matic Plasmodium spp. infection in the villages around
Lambaréné, Gabon, were investigated. There were three
individuals with P. malariae, negative for P. falciparum, in
the original study [22]. They were not included in this
study. Seventy-two Euro-Brazilians (Brazilians with major
European ancestry), previously genotyped using RT-PCR
with fluorescent hybridisation probes [19], were also gen-
otyped with HSS to compare typing strategies. They were
healthy blood donors resident in Paraná state, South Bra-
zil, sampled for different association studies. Ethical clear-
ance was obtained from the ethics committee of the
International Foundation Albert Schweitzer Hospital and
from the local medical ethics committee in Brazil.

Parasitaemia detection
At least two experienced technicians independently
counted the parasites in thick blood smears (TBS). They
also performed a rapid diagnostic test (RDT) to detect
markers for all four human pathogenic Plasmodium spe-
cies (NOW® ICT Malaria Test; Binax, Inc., Portland, ME)
and amplified subtelomeric variable open reading frame
(stevor)genes to find submicroscopic parasitaemia by PCR.
The amplification of stevor genes is highly sensitive, allow-
ing the detection of as less as 10 parasites in 1 ml of blood
Page 2 of 7
(page number not for citation purposes)



Malaria Journal 2009, 8:97 http://www.malariajournal.com/content/8/1/97
[23]. Detailed description of the procedures is described
elsewhere [22]. Although PCR is taken as the gold stand-
ard for detecting asymptomatic parasitaemia, sequestered
parasites cannot be detected. Yet the RDT test relies on the
detection of histidine-rich protein 2 (HRP-2), a protein
secreted by the parasite. Due to the long half-life of HRP-
2, a positive RDT result can also be interpreted as evidence
for an infection cleared weeks before sampling. A positive
RDT result was found for six of the PCR negative adults.
Since there could have been a symptomatic parasitaemia
in the recent past of these individuals, they were excluded
from the non-parasitized group and not included in the
asymptomatic group.

Thus the PCR negative group consisted of 62 individuals
(mean age, 30 ± 8 years [range, 18–49 years]) and the PCR
positive asymptomatic group, of 76 individuals (mean
age, 28 ± 7 years [range, 18–47 years]). All individuals
with a positive TBS result were PCR positive as well. Nev-
ertheless 78% of asymptomatic parasitized individuals
would not have been found using only the TBS test. The
same could be stated for 45% of them using only the RDT
test. These figures are in agreement with a larger study
(78% and 48%, respectively) [22].

MBL2 typing
Blood was collected with the anticoagulant ethylenedi-
aminetetraacetic acid and DNA was extracted from
peripheral blood mononuclear cells through standard
salting-out and phenol/chloroform/isoamyl alcohol
methods. A fragment of 1059 nucleotides was amplified
using the forward primers MBLfor (5'-ATGGGGCTAG-
GCTGCTGAG-3') and the reverse primer MBLrev (5'-
CCAACACGTACCTGGTTCCC-3'). Sequence specific
(SSP) PCR products were generated using the same reverse
primer, combined to forward primers specific for variant
H (Hf: 5'-GCTTACCCAGGCAAGCCTGTG-3') or for the
variant L (Lf: 5'-GCTTACCCAGGCAAGCCTGTC-3'); for
the variant X (Xf: 5'-CCATTTGTTCTCACTGCCACC-3') or
for the variant Y (Yf: 5'-CCATTTGTTCTCACTGCCACG-
3'). The PCR product achieved with the primers Hf or Lf
and MBLrev and Xf or Yf and MBLrev were 837 and 508
nucleotides in length, respectively. Hf and Lf were also
combined to specific reverse primers for the variant P (Pr:
5'-CTCAGTTAATGAACACATATTTACCG-3') or for the
variant Q (Qr: 5'-CTCAGTTAATGAACACATATTTACCA-
3'), generating a product of 599 nucleotides. All fragments
were sequenced with the amplification primers or with an
internal exon 1 sequencing primer, MBLint (5'-GAG-
GCCAGGGATGGGTCATC-3'), using Big dye terminator
version 1.1 chemistry (Applied Biosystems, Foster City,
CA). Amplification conditions are described in detail else-
where [24]. The reactions were purified with the Performa
DTR V3 system (Edge BioSystems, Gaithersburg, MD) and
analysed on an automated sequencer (ABI Prism 3100

Genetic Analyzer, Applied Biosystems, Foster City, CA).
New variants (singletons) were verified by reamplification
and resequencing.

Statistical analyses
Genotype and haplotype frequencies were obtained by
direct counting. The haplotype frequency distributions
found in this and in other studies [7,25] were compared
by applying the exact test of population differentiation of
Raymond and Rousset [26]. Deviations from Hardy-
Weinberg equilibrium were tested using the approach
described by Guo and Thompson [27]. These tests were
performed using the software package ARLEQUIN version
3.1 [28]. Possible associations between MBL2 genotypes/
alleles and susceptibility to asymptomatic infection were
analysed with Fisher's exact tests.

Results
The same results were achieved using RT-PCR [19] and
HSS in the 72 Euro-Brazilian samples, except for one indi-
vidual, haplotyped as LYQA using real-time and as LYPA
using this approach. Two heterozygote individuals also
presented unexpected SNPs, which were only revealed by
sequencing: g.388G>A (in the LYPAs1 haplotype) and
g.797C>A (in the LYQCs1 haplotype). In the Gabonese,
14 polymorphisms were identified beside the commonly
investigated promoter (H, L; X, Y; P, Q) and exon 1 (A, O;
O = B, C or D) variants. In contrast to RT-PCR, HSS did not
rely on maximum likelihood algorithms for haplotyping,
but amplified and sequenced allelic fragments of hetero-
zygote individuals in different tubes to determine the
phase of all SNPs (Figure 1).

MBL2 haplotypes identified in this study are listed [see
Additional file 1]. The haplotype distribution of the
Gabonese adults was homogeneous with those of the pre-
viously investigated Gabonese schoolchildren, children
with uncomplicated malaria and with severe malaria [7]
and of Ghanaian children [25]. On average, 38% of the
Gabonese genotypes carried a LYPA-, LYQA- or LYQC hap-
lotype presenting other SNPs than the commonly investi-
gated H, L; X, Y; P, Q and A, O variants. They represent
20% of all haplotypes, which conventionally were called
LYPAs1, LYPAs2, LYPAs3, LYQAs1, LYQAs2, LYQCs1,
LYQCs2, LYQCs3 (s for "similar" to the mentioned haplo-
type). The haplotype with the most frequent O variant in
Africa – MBL2*LYQC – was associated with a positive par-
asite count [14% or 17/124 in non-parasitized vs. 29% or
10/34 in TBS positive individuals, P = 0.033, O.R. = 2.62
(1.1–6.4)]. This association was specific to the LYQC hap-
lotype (identical to the reference sequence Y16578).

Genotype frequencies from both Gabonese groups were at
Hardy and Weinberg equilibrium (table 1). There were
five LYPA/LYPA homozygotes in the adult non-parasitized
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group but none in the asymptomatic group (8% or 5/62
vs. 0% or 0/76, P = 0.017). This association was specific to
LYPA (identical to the reference sequence Y16577): fre-
quencies of all other genotypes with LYPA-similar haplo-
types presented no significant differences. To look for the
effect of X, Y and A, O variants, known to modulate the
concentration of high-order MBL oligomers, the geno-
types were grouped as: YA/YA, YA/XA, XA/XA, XA/YO, YA/
YO and YO/YO (table 1). In agreement with the LYQC
association, there was a significant increase in the fre-
quency of YO/YO and YA/YO genotypes between parasite-
free and asymptomatic parasitized adults having a posi-
tive TBS result [(27% or 17/62 vs. 59% or 10/17, P =
0.018, O.R. = 3.8 (1.2–11.5)].

Discussion
There are numerous published MBL2 genotyping tech-
niques, based on restriction fragment length polymor-
phisms (RFLP) of PCR products [29], sequence-specific
PCR [30,31], denaturing gradient gel electrophoresis of
PCR-amplified fragments [32], real-time PCR with the
hybridization of sequence-specific probes [19] and
sequence-based typing [33]. Most of the earliest tech-
niques are restricted to the identification of the conven-
tional H/L, X/Y, P/Q and A/B/C/D variants and thus of the
HYPA (reference sequence: Y16581), HYPD (Y16582),
LXPA (Y16580), LYPA (Y16577), LYPB (Y16579), LYQA
(Y16576) and LYQC (Y16578) haplotypes. Newer meth-
ods that allow the identification of other SNPs rely on
maximum likelihood methods for phasing. It was estab-

lished in previous work [7] that around 35% of all LYPA
haplotypes in the Gabonese population are not identical
with the reference sequence Y16577. These haplotypes
carry additional variants, the most frequent being
g.388G>A. Around 17% of the LYQA haplotypes are not
identical with Y16576 and around 13% of the LYQC hap-
lotypes are not identical with Y16578 in the same popula-
tion. In contrast, only 1.4% of the Euro-Brazilian group
presented uncommon SNPs. This is mainly due to the
higher heterozygosity and nucleotide diversity of the
MBL2 promoter region in African, compared to non-Afri-
can populations [34]. In order not to lose information, it
is recommended to use of a sequence-based typing tech-
nique in MBL2 disease association studies with Afro-
derived populations.

Phase knowledge also minimizes errors due to haplotyp-
ing algorithms. This could be achieved using cloning or
haplotype-specific extraction (HSE). Both offer the possi-
bility of isolating large fragments, even the whole homo-
logue chromosomes of heterozygote individuals [20].
Cloning is nevertheless time-consuming and requires
expertise with living cells and much more bench work
than HSE, which relies on magnetic beads for haplotype
separation [21]. After haplotype separation, HSE allows
for amplification of genomic haplotype DNA, followed by
further downstream applications. Small-sized haplotypes
as those formed by the MBL2 promoter-exon1 SNPs and
indels are more readily analyzed with HSS, which unifies
physical separation, amplification and partial genotyping
through SSP primers in the same reaction. HSS principles
have also been applied to HLA genes before [35,36].

MBL2 physical haplotyping with SSP primers began in
2002 and led to the discovery of LYPD, a previously unrec-
ognized MBL2 haplotype [30], and to the conclusion that
the linkage disequilibrium of the D variant with the HYP
promoter was not absolute, as formerly assumed. In con-
trast, other haplotypes whose existence was predicted by
statistical algorithms have physically not been confirmed,
including HXPA and LYQB [34].

This work is the first MBL2 association study including
only truly non-parasitized and asymptomatic P. falci-
parum infected adults. In contrast, other authors evaluated
the association of O alleles with asymptomatic infection
in children. The long-lasting asymptomatic status of
infected African children depends on the number of pre-
vious malaria attacks [37]. This could explain why there
was no association of O alleles with asymptomatic infec-
tion in a follow-up study with 158 Gabonese schoolchil-
dren [38], but in a recent study with 480 Ghanaians,
which included PCR-detected asymptomatic individuals
[25]. A reason for absence of association in the first study
could also be the inclusion of submicroscopically parasit-
ized individuals as healthy controls, as well as false heter-

Haplotyping by PCR-SSP fragments sequencingFigure 1
Haplotyping by PCR-SSP fragments sequencing. 
Results are from a LYPA/LYQA sample. Both chromosomes 
were coamplified with the Lf and the generic rev primer 
(rev270 from [7]), and separately amplified using Pr or Qr as 
reverse SSP primers. Vertical arrows in the electrophero-
grams show the g.388G>A (rs7100749) and g.396A>C 
(rs11003124) SNPs. The approximate sites of the primers 
and of the sequences are represented by horizontal arrows 
and traced lines, respectively. In bold: SSP primers.

Pr/Qr revExon 1Hf/Lf

Lf -> rev

Lf -> Pr

Lf -> Qr
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Table 1: MBL2 genotype association with parasitaemia status

PCR- PCR+ PCR+TBS+ PCR- PCR+ PCR+TBS+

Genotype n = 62 n = 76 n = 17 Parasite mia Genotype n = 62 n = 76 n = 17 Parasite mia

LXPA/LXPA 2 1 0 0 LXPA/LYQC 5 7 0 0

XA/XA 2 1 0 0 LXPA/LYQCs1 0 2 0 0

LXPA/LYPA 1 1 0 0 LXPA/LYQCs3 1 0 0 -

LXPA/LYPAs1 0 3 0 0 XA/YO 7 9 0 0

LXPA/LYPAs2 0 1 0 0 HYPA/LYPB 1 0 0 -

LXPA/LYQA 6 3 1 0 (0–3800) HYPA/LYQC 2 3 2 26 (26–165)

LXPA/LYQAs2 1 2 1 0–94 LYPA/LYPB 0 1 0 0

XA/YA 8 10 2 94 (0–3800) LYPA/LYQC 1 2 0 0

HYPA/LYPA 1 2 1 0–45 LYPA/LYQCs1 1 0 0 -

HYPA/LYQA 2 1 0 0 LYPAs1/LYQC 2 1 1 380

LYPA/LYPA 5 0 0 - LYPAs1/LYQCs1 0 2 1 0–2700

LYPA/LYPAs1 1 3 0 0 LYPB/LYQA 0 2 0 0

LYPA/LYQA 4 7 2 33 (0–38) LYPB/LYQAs2 1 1 0 0

LYPA/LYQAs2 2 4 0 0 LYQA/LYQC 4 3 2 12 (0–47)

LYPAs1/LYPAs1 1 1 0 0 LYQA/LYQCs1 1 1 0 0

LYPAs1/LYQA 2 2 0 0 LYQA/LYQCs2 1 0 0 -

LYPAs2/LYQA 1 0 0 - LYQAs2/LYQC 1 2 2 33–340

LYPAs3/LYQA 0 1 0 - YA/YO 15 18 8 106 (0–2700)

LYQA/LYQA 5 7 1 0 (0–1200) LYPB/LYQC 0 1 0 0

LYQA/LYQAs1 1 0 0 - LYQC/LYQC 1 4 1 0 (0–514)

LYQA/LYQAs2 3 2 0 0 LYQC/LYQCs3 0 1 1 16650

LYQAs2/LYQAs2 0 1 0 0 LYQCs1/LYQCs3 1 0 0 -

LYPF/LYQA 0 1 1 183 YO/YO 2 6 2 514 (0–16650)

YA/YA 28 32 5 38 (0–1200) YA/YO + YO/YO 17 24 10 174 (0–16650)

LXPA/LYPB 1 0 0 -

The median values for parasite counts are given, followed by the range in parentheses. Parasitaemia was calculated as parasites per microliter 
(counted parasites/no. of microscopic fields) × 600 [41]. The final result was obtained by calculating the arithmetic mean from parasite count of the 
first and second readings [22]. In bold: significant difference.
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ozygosity results because of incomplete digestion of the
PCR product by the enzymes used in the MBL2 genotyp-
ing method [32].

Asymptomatic P. falciparum infection is highly prevalent
in the Gabonese adult population [22]. It seems to be a
sine qua non condition for the maintenance of semi-
immunity, which is lost within some weeks outside an
endemic area [2]. It could nevertheless also lead to anae-
mia and other secondary complications. In this work, a
significant association of the LYPA/LYPA genotype with
protection against asymptomatic parasitaemia was found.
None of the LYPA-similar haplotypes were associated with
the infection, and so the association would not have been
revealed by conventional MBL2 typing techniques. LYPA
is probably an ancient haplotype, with a wide geographi-
cal distribution. It occurred in nine different African
groups, being less common in East Asian and rare in
Amerindian(-similar) populations [24,34]. In the
Gabonese population, approximately half of the LYPA
(Y16577) haplotypes carry a linked SNP (-1165 G>T),
which could actually be responsible for the observed asso-
ciation. This SNP was only found in African populations
[34]. It is less likely that the association is due to a 3' var-
iant, since the 5' promoter-exon 1 region is separated from
the 3' region by a recombination hot spot [39].

There was also an association of the MBL2*LYQC variant,
YO/YO and YA/YO genotypes with microscopically detect-
able parasites. These preliminary findings in adults corre-
late well with some studies in children. In Ghanaian
infected children, the YO/YO genotype was found to be
associated with higher parasitaemia [40] and grouped
LYQC haplotypesas well as A/O genotypes, with higher
susceptibility to P. falciparum infection [25]. Despite some
similarities between the associations found in adults and
in children, the role of MBL in the immune response
against P. falciparum may also change with the acquisition
of semi immunity as individuals grow older, depending
on the frequency of disease episodes. The replication of
the results in a larger adult setting, as well as functional in
vitro and in vivo studies, would help to clarify this sugges-
tion.

Conclusion
HSS was validated as a fast and highly informative
method for analyzing small-sized haplotypes of polymor-
phic genes in populations with high nucleotide diversity,
as are the vast majority of Afro-derived ethnic groups. It is
more affordable than HSE, which relies on magnetic
beads, and as cloning, which requires living cells. In this
preliminary study, MBL2 haplotypes or SNPs linked to
them were associated with the susceptibility to infection
and with parasitaemia control of asymptomatic adults.
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