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Abstract
Background: Anopheles (Kerteszia) cruzii was the most important vector of human malaria in
southern Brazil between 1930–1960. Nowadays it is still considered an important Plasmodium spp.
vector in southern and south-eastern Brazil, incriminated for oligosymptomatic malaria. Previous
studies based on the analysis of X chromosome banding patterns and inversion frequencies in An.
cruzii populations from these areas have suggested the occurrence of three sibling species. In
contrast, two genetically distinct groups among An. cruzii populations from south/south-east and
north-east Brazil have been revealed by isoenzyme analysis. Therefore, An. cruzii remains unclear.

Methods: In this study, a partial sequence of the timeless gene (~400 bp), a locus involved in the
control of circadian rhythms, was used as a molecular marker to assess the genetic differentiation
between An. cruzii populations from six geographically distinct areas of Brazil.

Results: The timeless gene revealed that An. cruzii from Itaparica Island, Bahia State (north-east
Brazil), constitutes a highly differentiated group compared with the other five populations from
south and south-east Brazil. In addition, significant genetic differences were also observed among
some of the latter populations.

Conclusion: Analysis of the genetic differentiation in the timeless gene among An. cruzii populations
from different areas of Brazil indicated that this malaria vector is a complex of at least two cryptic
species. The data also suggest that further work might support the occurrence of other siblings
within this complex in Brazil.

Background
Anopheles cruzii is one of the few mosquito species belong-
ing to the subgenus Kerteszia. Immature stages of this spe-
cies are found associated with water trapped in the

interfoliar space of plants from the Bromeliaceae family,
which are abundant in the Brazilian Atlantic forest [1-3].
Accordingly, the distribution of these bromeliad-breeding
mosquitoes is restricted to the Atlantic forest, which
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stretches from the coast of Rio Grande do Sul State (south-
ern Brazil) to Sergipe State (north-eastern Brazil) [4,5].

The adults are found in a variety of habitats, from sea level
in coastal areas to the mountains. Females are strongly
anthropophilic and preferably bite during the evening
[2,6,7], perhaps biting more than one host to complete
egg maturation, which is epidemiologically relevant for
malaria transmission [8-10].

Between 1930 and 1960, An. cruzii together with Anopheles
bellator and Anopheles homunculus, which also belong to
Kerteszia, were considered the main vectors of malaria
when the disease was endemic in southern Brazil. Vector
control measures have significantly reduced or even inter-
rupted malaria transmission in some areas, but eradica-
tion of the pathogen was not achieved and An. cruzii is still
responsible for several oligosymptomatic malaria cases in
southern and south-eastern Brazil.

The Amazon region is highly endemic for human malaria,
caused by Plasmodium vivax and Plasmodium falciparum,
and imported cases are frequently reported in different
states due to emigration from this region [11,12]. How-
ever, several autochthonous cases were reported in a study
in Santa Catarina State, southern Brazil [12]. In the states
of São Paulo and Rio de Janeiro, as well as in the state of
Bahia, where An. cruzii and Anopheles (Nyssorhynchus) spp.
are considered the main vectors of the disease, respec-
tively [3,7,13,14], several imported and autochthonous
cases of malaria are reported every year in the Atlantic for-
est region [15]. Reinforcing the epidemiological impor-
tance of An. cruzii as a malaria vector in south-east Brazil,
another recent study in Espírito Santo State, including the
locality of Santa Teresa, suggested that this species is the
potential vector of recent autochthonous cases of malaria
in this state [16].

Anopheles cruzii is also a natural vector of simian malaria
in Rio de Janeiro and São Paulo States [17]. Studies on
seasonal and vertical distribution of An. cruzii in coastal
São Paulo State demonstrated high vertical mobility from
ground level to tree tops, with significantly more activity
in the uppermost branch layer of the forest [18]. This
behaviour could be responsible for human infection by
simian Plasmodium species [19,20].

Epidemiological surveillance and the use of control meas-
ures are required to avoid the expansion or introduction
of malaria in areas where vector species are abundant and
susceptible humans are present. Thus, assessment of the
epidemiological status of such localities as well as knowl-
edge concerning the biology, behaviour and the genetic
characteristics of the vector species are relevant to prevent

the occurrence of outbreaks or to lead control strategies,
especially in formerly endemic areas.

Despite its epidemiological importance, there are only a
few population genetic studies of An. cruzii [18,21], and
its taxonomic status is unclear. Anopheles cruzii is polymor-
phic for chromosome rearrangements. Differences in
inversions frequencies, and X chromosome banding pat-
terns from south-eastern and southern Brazil, have sug-
gested the existence of three sibling species [21-24]. On
the other hand, isoenzymes indicated two genetically iso-
lated groups, one from Bahia State (north-eastern Brazil),
and the other from south-eastern and southern Brazil (Rio
de Janeiro, São Paulo and Santa Catarina States) [25].
Finally, in a recent study based on sequence analysis of the
second Internal Transcribed Spacer of the nuclear ribos-
omal DNA (ITS2), the authors found no conclusive evi-
dence for sibling species among samples of An. cruzii from
south-eastern and southern Brazilian localities [26].

The activity and feeding rhythms of insect vectors are very
important to disease transmission. These patterns are con-
trolled by endogenous circadian clocks, which are under
genetic control [27]. Furthermore, clock genes are also
involved in the control of mating rhythms that are poten-
tially important in maintaining sexual isolation between
closely related species [28,29].

The circadian rhythms of malaria vectors belonging to the
subgenus Kerteszia were formerly studied by Pittendrigh
[30] and, recently, these rhythms were also studied in An.
cruzii [31]. The timeless gene is involved in the control of
activity rhythms in Drosophila [27], and controls differ-
ences in mating rhythms between closely related Dro-
sophila species [28].

In the present study, a fragment of ~400 bp of the An.
cruzii timeless gene was used as a molecular marker to
assess intraspecific variability and genetic divergence
among six populations of An. cruzii captured in different
locations within the geographic distribution range of this
species in Brazil.

Methods
Mosquitoes
All mosquitoes used in this study were females captured at
the following localities along the Brazilian Atlantic forest:
Florianópolis, Santa Catarina State (SC) (27°31'S/
48°30'W), Cananéia and Juquitiba, São Paulo State (SP)
(25°01'S/47°55'W and 23°57'S/47°03'W), Itatiaia, Rio
de Janeiro State (RJ) (22°27'S/44°36'W), Santa Teresa,
Espírito Santo State (ES) (19°56'S/40°35'W) and Itapar-
ica Island (Jaguaripe), Bahia State (BA) (13°05'S/
38°48'W) (Figure 1). All mosquitoes were primarily iden-
tified on the basis of their morphology according to Con-
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Anopheles cruzii populationsFigure 1
Anopheles cruzii populations. Localities where the six Brazilian An. cruzii populations were collected. Values in table are 
approximated distances between localities in km. The red arrows on box 4 show the two mountain chains around Itatiaia. The 
upper arrow shows the Serra da Mantiqueira and the lower shows Serra do Mar mountain chains (Source: IBGE and Google 
Maps).
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soli and Lourenço-de-Oliveira [5]. A total of 67
individuals (12 from Florianópolis, 12 from Cananéia, 11
from Juquitiba, 12 from Itatiaia, 6 from Santa Teresa and
14 from Itaparica, Bahia) were used for molecular assays.

Isolation of the An. cruzii timeless gene sequence
To design specific primers for the An. cruzii timeless gene
sequence, genomic DNA was extracted from 10 females
according to Jowett [32]. Initially, a pair of degenerated
primers based on conserved regions of the TIMELESS pro-
teins from Drosophila melanogaster and Anopheles gambiae
named here 5'timdeg03 and 3'timdeg03 was used (Table
1; see also Figure 2) [33]. PCR was carried out with an
Eppendorf Mastercycler® thermocycler using the following
conditions: 15 cycles at 94°C for 60 s, 50°C (decreasing
1°C/cycle) for 90 s and 72°C for 60 s, following 20 cycles
of 94°C for 60 s, 50°C for 90 s and 72°C for 60 s. The
products obtained were then purified and cloned in either
Zero Blunt TOPO PCR cloning kit (Invitrogen) or pMOS
Blue vector blunt-ended cloning kit (Amersham Bio-
sciences). Sequencing of positive clones was carried out in
an ABI Prism 377 or ABI Prism 3730 DNA sequencer at
the Oswaldo Cruz Institute using the ABI Prism Big Dye
Terminator Cycle Sequencing Ready Reaction kit (Applied
Biosystems). The identity of the cloned fragments was
determined by BlastX analysis using the GenBank [34]. To
enlarge the timeless gene fragment in An. cruzii, a specific
forward primer (5'darltim02a) based on a fragment of the
Anopheles darlingi timeless gene (Gentile & Peixoto, unpub-
lished) was used in combination with the specific reverse
primer previously designed for An. cruzii (3'cruziitim03)
in a PCR that amplified a fragment of ~450 bp. This 450
bp fragment from the An. cruzii genome was then purified,
cloned and sequenced as above. After checking the
sequence identity, two new specific forward primers
named 5'cruziitim02 and 5'acbatim02a (Table 1 and Fig-
ure 2) were designed and in combination with the reverse
primer 3'cruziitim03 allowed the amplification of a ~400
bp fragment of the An. cruzii timeless gene.

Interpopulational analysis of the An. cruzii timeless gene
Females were processed individually and genomic DNA
was extracted as above [32]. PCR amplification was car-

ried out for 35 cycles at 94°C for 30 s, 62°C for 60 s and
72°C for 90 s using the proofreading Pfu DNA polymerase
(Biotools) and primers 5'acbatim02a or 5'cruziitim02
and 3'cruziitim03 (Table 1). Negative controls (no DNA
added) were included in all amplification reactions and
pre- and post-PCR procedures did not share equipment or
reagents. After cloning the fragments obtained as above, at
least eight clones of each mosquito were sequenced and
two consensus sequences representing both alleles were
generated. When only one haplotype was observed
among the eight sequences the mosquito was considered
a homozygote. The probability that a heterozygote will be
mistakenly classified as a homozygote with this procedure
is less than 1%. Five mosquitoes were classified as
homozygotes in Itatiaia, none in Florianópolis and one in
each of the other four populations. The sequences
obtained in homozygote mosquitoes were duplicated
prior to analysis. However, the population genetics analy-
sis was also carried out without duplicating the homozy-
gote sequences and the results were very similar.

DNA sequence analysis
The timeless gene fragments were aligned using the GCG
package (Wisconsin Package Version 10.2, Genetics Com-
puter Group) and ClustalX software [35]. Analyses of the
polymorphism and differentiation between populations
were performed using DNASP4.0 [36] and PROSEQ pro-
grams [37]. FST was calculated as described by Hudson et
al [38] and significance was evaluated by 1,000 random
permutations. Phylogenetic analysis was carried out using
MEGA 4.0 [39] using the default parameters.

Results
Isolation of An. cruzii timeless gene fragment
Different PCR schemes were tested to amplify a fragment
of the An. cruzii timeless gene (see Methods). Figure 2
shows an alignment of the predicted amino acid sequence
encoded by this fragment obtained from An. cruzii com-
pared to the TIMELESS protein of other insect species (D.
melanogaster, Aedes aegypti and An. gambiae). A fairly high
degree of inter-specific similarity is observed, but the
putative protein encoded by 5' end of this fragment is var-
iable, presenting some amino acid changes among the
species compared. Figure 2 also shows the approximate
positions of the two introns that occur in this region of the
gene, as well as the location of the primers used to amplify
the fragment from An. cruzii used for the population
genetics analysis described below.

Molecular variation and divergence among An. cruzii 
populations
The geographic distribution of the six Brazilian popula-
tions of An. cruzii used in this study is shown at Figure 1.
Initially, using the primers 5'cruziitim02 and
3'cruziitim03 (see Figure 2), a ~420 bp fragment of the

Table 1: Sequence of primers used to amplify the timeless gene 
fragments

Primers Name Sequence of primers at 5' → 3'

5'timdeg03 AARGARTTYACNGTNGAYTT (forward)
3'timdeg03 GTNACNARCCARAARAARTG (reverse)
3'cruziitim03 GACGTATCGATCTGCACTT (reverse)
5'cruziitim02 CGCTTCAATGCCGCAAATA (forward)
5'acbatim02a GCCGCAAATAAGCACCG (forward)

Degenerate and specific primers used to amplify the timeless gene 
fragments in all Anopheles cruzii populations.
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timeless gene was amplified in all An. cruzii populations
analyzed, with the exception of samples from Bahia State
(Itaparica Island), which revealed a ~400 bp amplification
product, indicating the existence of length variation
among the studied populations. The sample from Bahia,
however, displayed lower amplification in some cases
using these primers, and so a new internal forward primer
named 5'acbatim02a (Table 1) was designed based on the
initial sequences obtained. Using this new primer in con-
junction with 3'cruziitim03, a ~410 bp fragment of time-

less gene was obtained for all An. cruzii populations from
south and south-east Brazil and a ~390 bp from Bahia.

A total of 24 sequences from Florianópolis, 24 from
Cananéia, 22 from Juquitiba, 24 from Itatiaia, 12 from
Santa Teresa and 28 from Itaparica (Bahia State) popula-
tions were obtained. The sequences were submitted to
GenBank (accession numbers: FJ408732 – FJ408865). A
full alignment of all sequences is shown in Additional file
1. Most of the base substitutions were silent or occurred

Timeless protein multiple alignment and primer positionsFigure 2
Timeless protein multiple alignment and primer positions. The putative fragment of An. cruzii TIMELESS deduced pro-
tein is aligned with D. melanogaster, An. gambiae and Ae. aegypt homologues. Arrows point to the approximated positions of the 
primers used in this study. The inverted triangles represent the positions of the two introns.

D. melanogaster   PCNTKPR----NKPRTIMSPMDKKELRRKKLVKRSKSSLINMKGLVQHTP 
Ae. aegypti       PPNQKQRFNAANKSRNPTTIHEKKELRRKKLVKRSKSNIINMKGLMHHAP 
An. gambiae       PSNQKQRFNAANKQRNPVSVQEKKELRRKKLVKRGKSNIINMKGLMHHVP 
An. cruzii        ------RFNAANKHRNPAPAQEKKELRRKKLVKRGKSNIINMKGLMHHVP 
                        *    ** *.  .  :************.**.:******::*.* 
 
 
 
D. melanogaster  TDDDISNLLKEFTVDFLLKGYSYLVEELHMQLLSNAKVPIDTSHFFWLVT 
Ae. aegypti      SDDDISHILKEFTVDFLLKGYGFLVQELHAQLLSDLQVQIDTSHFFWLVT 
An. gambiae      TDDDISHILKEFTVDFLLKGYGYLVHELHTQLLSDLQVQIDTSHFFWLVT 
An. cruzii       TDDDISHILKEFTVDFLLKGYGYLVQELHSQLLSDLQVQIDTS------- 
                 :*****::*************.:**.*** ****: :* ****         

3’timdeg03 3’cruziitim03 

5’cruziitim02 
5’acbatim02a

5’timdeg03 

Table 2: Polymorphisms of all An. cruzii populations

Population n S θ π DT DFL FFL

Florianópolis 24 57
(17)

0.04258
(0.02322)

0.03018
(0.01483)

-1.00660
(-1.24295)

-0.62541
(-1.24456)

-0.87450
(-1.45349)

Cananéia 24 46
(12)

0.03334
(0.01665)

0.02677
(0.01021)

-0.64691
(-1.30282)

-0.47115
(-0.96989)

-0.61709
(-1.24756)

Juquitiba 22 52
(20)

0.03522
(0.02652)

0.03086
(0.02217)

-0.48955
(-0.51723)

-0.47485
(-0.34701)

-0.56076
(-0.46415)

Itatiaia 24 26
(12)

0.01864
(0.01665)

0.01829
(0.01825)

-0.00645
(0.40503)

-0.32168
(0.25917)

-0.25815
(0.35329)

Santa Teresa 12 35
(15)

0.03042
(0.02558)

0.02518
(0.02248)

-0.65598
(-0.41589)

-0.86793
(-0.58337)

-0.92570
(-0.61405)

Bahia 28 24
(9)

0.01661
(0.01099)

0.01035
(0.00571)

-1.31797
(-1.49603)

-0.83982
(-0.91433)

-1.16519
(-1.27249)

n, number of DNA sequences of each population; S, number of polymorphic (segregating) sites; θ, nucleotide diversity based on the total number of 
mutations (Eta); π, nucleotide diversity based on the average number of pair-wise differences; DT, Tajima's [40]D; DFL, Fu & Li's [41]D and FFL, Fu & 
Li's [41]F, based on the total number of mutations. In no cases were Tajima's D-values or Fu & Li's D and F-values significant (P > 0.10 in all cases). 
The values in parentheses were calculated using only coding regions of the timeless gene fragment.
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within the two introns, which show a number of indels. A
few non-synonymous changes were also observed, caus-
ing seven amino acid differences among the sequences.

Table 2 shows the number of DNA sequences of each An.
cruzii population studied (n) and the number of polymor-
phic sites (S). The values in parentheses were calculated
using only coding regions of the timeless gene fragment.
Based on the sequences, two measures of nucleotide
diversity were calculated for each population: π, based on
the average number of pair-wise differences and θ, based
on the total number of mutations (Table 2). The popula-
tion from Bahia was the least polymorphic, showing the
lowest values of θ and π, as well as the smaller number of
polymorphic sites (S). Table 2 also shows the results of
Tajima [40] and Fu & Li [41] tests of natural selection,
based on the total number of mutations of each popula-
tion. In all cases, Tajima's D or Fu & Li's D and F statistics
were non-significant (P > 0.10) indicating no deviations
from neutrality.

Table 3 shows the pair-wise estimates of population dif-
ferentiation (FST) between all An. cruzii populations. In all
cases the FST values were significant, except for the com-
parison between Juquitiba and Santa Teresa when the
coding regions of the timeless gene fragment were used.
Very high FST values were found between Bahia State and
the others (0.8353 – 0.8761). The average number of
nucleotide substitutions per site (Dxy) and the number of
net nucleotide substitutions per site between populations
(Da) are shown in Table 3. The distribution of the four

mutually exclusive categories of segregating sites observed
in each comparison, i.e. the number of polymorphisms
exclusive for each population (S1 and S2), the number of
shared polymorphisms (Ss) and the number of fixed dif-
ferences (Sf) between populations are also included in
Table 3. These polymorphic and fixed sites include some
of the non-synonymous changes observed (see Table 4 for
a detailed description).

The values using only coding regions (shown in parenthe-
ses in Table 3) show some differences compared with
those obtained with the whole sequence. Yet even using
the more conserved coding regions, the values of differen-
tiation between the population from Bahia and all others
revealed a high number of fixed differences and only a few
shared polymorphisms. Among the southern and south-
eastern populations, there were shared polymorphisms
and no fixed differences, suggesting they belong to the
same or to very closely related species.

Divergence time between An. cruzii populations
The estimate of the time of divergence between An. cruzii
populations from Bahia and the others were calculated
using the Da value based on the third codon positions.
This estimate assumed that substitutions rates observed
between An. cruzii from Bahia State and the other popula-
tions originally from southern regions of Brazil are similar
to the estimated rates in the same fragment of the timeless
gene between closely related Drosophila persimilis and Dro-
sophila pseudoobscura, species that diverged around 0.85
millions of years ago (MYA) (FlyBase Accession Numbers

Table 3: Genetic differentiation between all An. cruzii populations

Populations FST P-value Dxy Da Ss Sf S1 S2

1. Florianópolis × Cananéia 0.0548 (0.0622) 0.002 (0.003) 0.0308 (0.0136) 0.0017 (0.0008) 30 (7) 0 (0) 28 (11) 17 (6)
2. Juquitiba × Santa Teresa 0.0693 (0.0487) 0.040 (0.156) 0.0290 (0.0236) 0.0020 (0.0011) 21 (10) 0 (0) 26 (10) 11 (6)
3. Florianópolis × Juquitiba 0.0875 (0.1384) 0.000 (0.000) 0.0333 (0.0216) 0.0029 (0.0030) 21 (8) 0 (0) 37 (10) 26 (12)
4. Cananéia × Juquitiba 0.1077 (0.1849) 0.002 (0.000) 0.0322 (0.0201) 0.0035 (0.0037) 20 (5) 0 (0) 27 (8) 27 (15)
5. Florianópolis × Itatiaia 0.1450 (0.2078) 0.000 (0.000) 0.0293 (0.0213) 0.0042 (0.0044) 16 (7) 0 (0) 42 (11) 11 (6)
6. Florianópolis × Santa Teresa 0.1582 (0.2652) 0.000 (0.000) 0.0325 (0.0256) 0.0051 (0.0068) 14 (8) 0 (0) 44 (10) 18 (8)
7. Itatiaia × Santa Teresa 0.1837 (0.2414) 0.000 (0.000) 0.0265 (0.0273) 0.0049 (0.0066) 10 (6) 0 (0) 17 (7) 22 (10)
8. Juquitiba × Itatiaia 0.2030 (0.2078) 0.000 (0.000) 0.0310 (0.0258) 0.0063 (0.0054) 10 (6) 0 (0) 37 (14) 17 (7)
9. Cananéia × Santa Teresa 0.2154 (0.3152) 0.000 (0.000) 0.0328 (0.0243) 0.0071 (0.0076) 11 (4) 0 (0) 36 (9) 21 (12)
10. Cananéia × Itatiaia 0.2251 (0.2720) 0.000 (0.000) 0.0302 (0.0201) 0.0068 (0.0055) 8 (3) 0 (0) 39 (10) 19 (10)
11. Florianópolis × Bahia 0.8353 (0.8345) 0.000 (0.000) 0.1197 (0.0625) 0.1000 (0.0522) 6 (4) 27 (7) 52 (14) 17 (5)
12. Juquitiba × Bahia 0.8403 (0.7874) 0.000 (0.000) 0.1212 (0.0656) 0.1019 (0.0516) 2 (1) 30 (8) 45 (19) 21 (8)
13. Cananéia × Bahia 0.8506 (0.8703) 0.000 (0.000) 0.1211 (0.0626) 0.1030 (0.0545) 1 (0) 29 (8) 46 (13) 22 (9)
14. Santa Teresa × Bahia 0.8624 (0.7926) 0.000 (0.000) 0.1187 (0.0685) 0.1024 (0.0543) 3 (2) 32 (9) 29 (14) 20 (7)
15. Itatiaia × Bahia 0.8761 (0.8020) 0.000 (0.000) 0.1130 (0.0617) 0.0990 (0.0495) 3 (2) 30 (8) 24 (11) 20 (7)
16. *An. cruzii × Bahia 0.8370 (0.7935) 0.000 (0.000) 0.1187 (0.037) 0.0993 (0.0505) 8 (5) 25 (6) 107 (39) 15 (4)

FST, pair-wise estimates of population differentiation. P-value, significance of FST values (evaluated by 1,000 random permutations). Dxy, average 
number of nucleotide substitutions per site between populations [49]; Da, number of net nucleotide substitutions per site between populations 
[49]. S1, number of polymorphic sites exclusive to the first population shown in the first column. S2, number of polymorphic sites exclusive to the 
second population shown in the first column. Ss, number of shared polymorphisms between the two populations. Sf, number of fixed differences 
between the two populations. The values in parentheses were calculated using only coding regions of the timeless gene fragment. *An. cruzii: all 
populations from south and south-east Brazil together without Bahia population.
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FBtr0185090 and FBtr0282161, respectively) [42]. The
divergence observed for the timeless gene between these
two Drosophila species based on the third codon positions
is 0.03030. Based on the Da value (0.05426), the esti-
mated time of divergence between An. cruzii populations
from south and south-east Brazil and that from Bahia
State, is approximately 1.5 MYA.

Genealogy of the An. cruzii timeless sequences
Figure 3 shows a Neighbour-joining tree of the sequences
from all An. cruzii populations using the Kimura 2-param-
eter distance and the timeless gene sequences. The result-
ing tree showed no clear separation between the
sequences of the populations from Florianópolis,
Cananéia, Juquitiba, Itatiaia and Santa Teresa, but some
differentiation was evident since the sequences do not
appear at random in the tree, especially in the case of Ita-
tiaia. The An. cruzii sequences from the Bahia population,
however, were clearly separated on an isolated branch.

Discussion
Zavortink [4] pointed out morphological differences in
the larval stage of populations of An. cruzii from Rio de
Janeiro and Santa Catarina States, suggesting that An.
cruzii could represent more than a single species. A mod-
erately high FST value between Florianópolis (Santa Cata-
rina State) and Itatiaia (Rio de Janeiro State) populations
was reported here. In addition, comparison of Itatiaia
with the other populations (excluding Bahia) revealed

even higher FST values, perhaps suggesting that this popu-
lation is indeed in a process of differentiation and incipi-
ent speciation. Moreover, sequences from Itatiaia showed
some clustering in the Neighbour-joining tree (Figure 3).
Itatiaia was also the least polymorphic population of
south and south-east Brazil and showed the highest
number of homozygotes suggesting some inbreeding. It is
possible that this reflects a smaller effective size and the
relative isolation of this population, since its location in a
valley between two mountain chains (Serra do Mar and
Serra da Mantiqueira – Figure 1) might reduce gene flow
with other populations.

In a recent review, Ayala and Coluzzi [43] argue that many
siblings are outcomes of recent speciation processes asso-
ciated with paracentric inversions, mostly involving the X
chromosome. Ramirez and Dessen [23,24], studying the
X chromosome banding patterns and inversion frequen-
cies of distinct populations of An. cruzii from south and
south-east Brazil, showed that there are three X chromo-
somal forms (A, B and C), suggesting a process of incipi-
ent speciation acting on An. cruzii populations. Among
the localities analysed in this study, only Juquitiba and
Cananéia were also investigated by Ramirez and Dessen
[23,24]. They observed that in Juquitiba the majority of
mosquitoes had form A and the remainder had form C,
while in Cananéia form B predominated with the remain-
der having form A [23,24]. Although the differentiation in
the timeless gene between these two populations is not

Table 4: Non-synonymous changes on the timeless gene fragment

Polymorphic Sites:

Site Position: Individuals: Codon: Amino acid:

05 (first codon base) Individuals from all populations analysed CCC Proline
Can03a TCC Serine

06 (second codon base) Individuals from all populations analysed CCC Proline
Juq66a; Juq66b; Can06b; Can12b CTC Leucine

08 (first codon base) Individuals from south and south-east populations GCG Alanine
All individuals from Bahia population and Flo37a; Can02b ACG Threonine

18 (second codon base) All individuals from south and south-east populations and Bahia19a; Bahia33a; Bahia20b CAG Glutamine
Individuals from Bahia population CTG Leucine

Fixed Differences:

Site Position: Individuals: Codon: Amino acid:

11 (first codon base) All individuals from Florianópolis, Cananéia, Juquitiba, Itatiaia and Santa Teresa populations CCG Proline
All individuals from Bahia population TCG Serine

188 (first codon base) All individuals from Florianópolis, Cananéia, Juquitiba, Itatiaia and Santa Teresa populations ACG Threonine
All individuals from Bahia population TCG Serine

275 (first codon base) All individuals from Florianópolis, Cananéia, Juquitiba, Itatiaia and Santa Teresa populations TCC Serine
All individuals from Bahia population ACC Threonine

List of non-synonymous changes on the studied timeless gene fragment between An. cruzii populations. Flo: Florianópolis population; Can: Cananéia 
population; Juq: Juquitiba population; Ita: Itatiaia population; San: Santa Teresa population; Bahia: Bahia population.
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high, the FST value is significant and does not contradict
the results of the chromosomal analysis. The relatively
low differentiation in timeless among most populations
from south and south-east Brazil might reflect introgres-
sion at this locus. It would be interesting to analyse the
same populations with an X-linked molecular marker to
see whether a higher level of differentiation is found.

Recently, Malafronte et al [26] compared sequences of
ITS2 (Internal Spacer Region 2) from several An. cruzii
populations from south and south-east Brazil. Although,
they found some differences between sequences from dif-
ferent localities, including Juquitiba and Cananéia, they
considered premature to conclude based on their results
that there are distinct sibling species in the areas they
investigated. Similar results were observed by Calado et al
[44] using PCR-RAPD and PCR-RFLP of the ITS2 region.

Very strong evidence was presented here that confirms the
existence of a different species in Bahia State, a finding
that supports a previous isoenzyme study [25]. The
extremely high FST values detected between this popula-
tion and the other five populations studied, as well as the
higher number of fixed differences observed, show that
Bahia represents a different species. This population also
presented lower levels of variability than those from south
and south-east Brazil, possibly indicating a smaller popu-
lation size or past founder effects. However, although the
isoenzyme heterozygosity reported for Bahia is lower than
Cananéia it is similar to that observed in Florianópolis
[25].

A very rough estimate suggests that the divergence
between the Bahia population and the more southern
populations of An. cruzii possibly occurred around 1.5

Neighbour-joining treeFigure 3
Neighbour-joining tree. Neighbour-joining tree using timeless nucleotide sequences of the Anopheles cruzii populations 
obtained with Kimura 2-parameters distance. Numbers on the nodes represent the percentage bootstrap values based on 
1,000 replications. Flo: Florianópolis population; Can: Cananéia; Juq: Juquitiba; Ita: Itatiaia; San: Santa Teresa; Bahia: Itaparica 
Island population.
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MYA, during the Pleistocene. Climate changes during this
period such as an intense precipitation decrease and more
arid conditions fragmented the Brazilian Atlantic forest
[45] creating refugia that played an important role in the
differentiation among populations of a number of forest
species, such as marmosets [46], tree frogs and many oth-
ers [47]. Forest fragmentation has also been proposed to
explain differentiation among populations of the Atlantic
forest mosquito Sabethes albiprivus [48]. Since An. cruzii is
also a forest-obligate species, it is possible that the Bahia
and southern populations of this species complex suffered
fragmentation due a constriction of the forest. Although
Tajima's D and Fu & Li's D and F statistics were non-sig-
nificant, they were negative in most cases and that is con-
sistent with population expansion following the forest
recovery after the Pleistocene. Analysis of a number of
other molecular markers will allow more precise estimates
of the divergence time between the Bahia population and
those of south and south-east Brazil. It may also help in
determining whether further An. cruzii siblings exist in the
latter area.

Finally, although malaria cases are reported annually in
Bahia State, the main vector implicated in Plasmodium
spp. transmission in this area is An. darlingi and not An.
cruzii, the most important vector in the southern states.
This suggests that the differentiation observed within the
An. cruzii complex might also explain aspects of the vecto-
rial capacity of these mosquitoes, however further studies
are needed to confirm or reject this hypothesis.

Conclusion
Analysis of the molecular polymorphism and genetic dif-
ferentiation of the timeless gene among Brazilian popula-
tions of An. cruzii indicates that this malaria vector is a
complex of at least two cryptic species, one occurring in
the north-east (Bahia State) and another in south and
south-east Brazil. In addition, the data also suggest that
populations of the latter region might also constitute dif-
ferent incipient species and that further work might sup-
port the occurrence of other siblings within this complex
in Brazil.
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