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Abstract

Background: Anopheles albimanus is an important malaria vector in some areas throughout its
distribution in the Caribbean and the Pacific regions of Colombia, covering three biogeographic
zones of the neotropical region, Maracaibo, Magdalena and Chocé.

Methods: This study was conducted to estimate intra-population genetic diversity, genetic
differentiation and demographic history of An. albimanus populations because knowledge of vector
population structure is a useful tool to guide malaria control programmes. Analyses were based on
mtDNA COI gene sequences and four microsatellite loci of individuals collected in eight populations
from the Caribbean and the Pacific regions of Colombia.

Results: Two distinctive groups were consistently detected corresponding to COIl haplotypes from
each region. A star-shaped statistical parsimony network, significant and unimodal mismatch
distribution, and significant negative neutrality tests together suggest a past demographic expansion
or a selective sweep in An. albimanus from the Caribbean coast approximately 21,994 years ago
during the late Pleistocene. Overall moderate to low genetic differentiation was observed between
populations within each region. However, a significant level of differentiation among the
populations closer to Buenaventura in the Pacific region was observed. The isolation by distance
model best explained genetic differentiation among the Caribbean region localities: Los Achiotes,
Santa Rosa de Lima and Moiiitos, but it could not explain the genetic differentiation observed
between Turbo (Magdalena providence), and the Pacific region localities (Nuqui, Buenaventura,
Tumaco). The patterns of differentiation in the populations from the different biogeographic
provinces could not be entirely attributed to isolation by distance.

Conclusion: The data provide evidence for limited past gene flow between the Caribbean and the
Pacific regions, as estimated by mtDNA sequences and current gene flow patterns among An.
albimanus populations as measured by MS loci which may be mainly influenced by semi-permeable
natural barriers in each biogeographical region that lead to the genetic differences and effective
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population sizes detected. The relatively high genetic differentiation in the port city of
Buenaventura may be the result of specific ecological conditions, human migration and activities
and/or differences in effective population sizes. This knowledge could serve to evaluate and
coordinate vector control strategies in these regions of Colombia.

Background

In Colombia, there are up to 100,000 malaria cases
reported annually, approximately 10-20% of the cases in
the Americas [1,2]. Anopheles albimanus is considered an
important malaria vector in rural and periurban areas
throughout its distribution in Colombia, along the Carib-
bean and Pacific Coasts and on San Andres Island [3]. A
recent study showed that after 20 years it continues to be
the predominant species in these coastal regions, account-
ing for 61 and 99% of the total capture of adult mosqui-
toes of the Caribbean and Pacific regions, respectively [4].
These regions represent substantial topographic, climatic
and vegetation contrasts. In particular, the Caribbean
coast is drier and has higher temperatures, while the
Pacific coast is one of the rainiest regions globally, with
high relative humidity and precipitation levels exceeding
5,000 mm/year [5]. The distribution of An. albimanus in
Colombia is particularly remarkable because it includes
coastal areas from three different biogeographic prov-
inces, Maracaibo, Choc6 and Magdalena in the neotropi-
cal Caribbean and Pacific regions of Colombia as
described by Morrone [6].

The Pacific and the Caribbean regions are characterized by
different levels of malaria transmission [1]. The Pacific
region presents moderate to high transmission, while the
Caribbean coast has presented low numbers of malaria
cases and occasional epidemics [7]. Anopheles albimanus
has been incriminated as a vector of Plasmodium falci-
parum and Plasmodium vivax, VK210 and VK247, in the
Pacific region [4,8,9]. Despite its abundance in the Carib-
bean region and the high number of mosquitoes evalu-
ated by Gutierrez et al [4], no infected individuals were
detected, even though it was incriminated epidemiologi-
cally during a malaria outbreak in Guajira department in
which An. albimanus was the predominant species [7].
This species is geographically variable in its infectivity by
Plasmodium species throughout its distribution in the
Americas [10-13].

Multiple factors could explain why An. albimanus has not
been recently incriminated as a malaria vector in the Car-
ibbean region: (i) because the number of human malaria
cases reported from this region is lower than from the
Pacific [1], more focused vector incrimination studies in
this area are needed, (ii) Caribbean populations of An.
albimanus could be more zoophilic because of extensive
cattle ranching [3,5], (iii) different Anopheles species could

be involved in malaria transmission at a local or regional
level in the Caribbean coast [4,14,15], (iv) local adapta-
tion between mosquito host and parasite could exist, as
demonstrated in southern Mexico where reciprocal selec-
tion has led to local adaptation of P. vivax, and parasite
populations are most compatible with their sympatric
mosquito species (e.g., An. albimanus versus Anopheles
pseudopunctipennis) [16], (v) the geographic, ecological
and climatic differences between the regions could pro-
mote population differentiation of An. albimanus in
Colombia and/or, (vi) demographic events could have
influenced the current An. albimanus distribution and its
role as a malaria vector in Colombia.

Interactions between changes in climatic conditions over
large time scales with geographic features, sea level
changes and contemporary factors such as human migra-
tion have influenced the distribution and diversification
of different species [17-22]. For example, it has been sug-
gested that the genetic differences detected in Anopheles
darlingi, another important neotropical malaria vector,
were affected by climate change at the end of the Pleis-
tocene [23], Brazilian Amazon biogeography [24], and
geographic barriers [25,26]. Similarly, studies of An. albi-
manus from Central and northern South America reported
high variation in the intergenic spacers of nuclear ribos-
omal DNA [27] and differentiation between Central and
South America using microsatellite loci and a mitochon-
drial DNA (mtDNA) marker [28,29]. Within Colombia,
isoenzyme analyses revealed higher variability in Carib-
bean populations of An. albimanus than in Pacific popula-
tions and some loci showed significant allele frequency
differences between these regions. However, cytogenetic
data showed the same chromosomal banding patterns in
all populations in the two regions, suggesting con-specifi-
city in Colombia [30].

Several recent mtDNA studies have provided detailed
accounts of species population structure and history
[23,26,31-33], while studies based on highly polymor-
phic microsatellite loci have shown great potential for the
evaluation of gene flow between populations of anophe-
lines at a finer geographical and evolutionary scale
[24,25,34-36]. Such studies have potential applied bene-
fits, guiding and informing mosquito control strategies,
such as the release of genetically modified mosquitoes
refractory to the malaria parasite and the spread of insec-
ticide resistance genes [37,38]. However, no mtDNA anal-
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yses or microsatellite loci information about malaria
vector populations are available in Colombia. The taxo-
nomic status of An. albimanus as a single lineage as
defined by De Queiroz [39] is not disputed; however,
additional detailed studies of inter-population genetic
diversity could provide essential information about both
historical and current distributions and processes affect-
ing this species. Therefore, a focused population genetics
and micro-evolutionary study of this important vector
was conducted, using mtDNA cytochrome oxidase subu-
nit I (COI) gene and four microsatellite markers, to
address the hypothesis that historical and contemporary
ecological and demographic processes may have led to
some level of population differentiation of An. albimanus
in the Caribbean and Pacific regions of Colombia. These
data provide evidence for restricted past gene flow
between the Caribbean and Pacific regions of Colombia
as estimated by COI analysis, and contemporary gene
flow among the regions as measured by four microsatel-
lite markers (MS).

Methods

Sampling strategy

Adult An. albimanus specimens were collected from March
2005 to November 2007 in seven localities on the Carib-
bean and the Pacific coasts of Colombia (Figure 1, Table

Table I: Anopheles albimanus collection data

http://www.malariajournal.com/content/8/1/259

1): Los Achiotes (ACH), Moiiitos (MON), Santa Rosa de
Lima (SRL), Nuqui (NUQ), Pizarro (PIZ), Buenaventura
(BUE) and Tumaco (TUM). For details on sampling strat-
egy and species identification see Gutiérrez et al [4]. Addi-
tional specimens collected in 2007 (Gutierrez et al,
unpublished data) from Turbo (TUR), Antioquia, were
also included (Figure 1, Table 1). Human landing catches
of adults were conducted under an informed consent
agreement using a protocol and collection procedures that
were reviewed and approved by a University of Antioquia
(SIU-UdeA) Institutional Review Board. ACH, SRL and
MON are in the Maracaibo biogeographic province, NUQ,
PIZ, BUE, and TUM are in the Choc6 biogeographic prov-
ince and TUR is in the Magdalena biogeographic province
[6]. For COI sequencing samples from all sites were used,
with individuals from Alto Guandipa in Mosquera (MTU)
and La Ensenada in Santa Barbara (STU), both sites in
Tumaco, analysed as a single population (indicated as
TUM; Figure 1A). For MS analysis, PIZ was excluded
because there were not enough specimens with successful
PCR amplification; STU and MTU from Tumaco were ana-
lysed separately because they are ~50 km apart (Figure
1B). Approximately 50% of the mosquitoes (randomly
selected) included in this study were confirmed as An.
albimanus using an ITS2-PCR-RFLP based assay [40,41].

Department Locality (Abbreviation)

Collection site*

Collection date
(monthlyear)

Location
(longitude/latitude)

Caribbean Region

Magdalena Los Achiotes (ACH)
Bolivar Santa Rosa de Lima (SRL)
Cienaga
Hatillo
Cérdoba Moiiitos (MON)
Tierra Blanca
Santander de la Cruz
Antioquia Turbo (TUR)
Yarumal
Camerun
Pacific Region
Choco Nuqui (NUQ)
Pangui
Pangui viejo

Pizarro (PIZ)
Buenaventura (BUE)
Barrio La unién

La Barra

Puerto Espafia
Tumaco (TUM)

Alto Guandipa

La Ensenada

Valle del Cauca

Narifo

I1°15"N, 73°36' W 8/2005, 2, 6/2006
7-10/2005, 2-3, 6/2006
10°26' N, 75°21' W
10°25' N, 75°22' W
9°15' N, 76°06' W
9°13'N, 76°08' W
9°11'N, 76°10' W

8-9/2005, 6-8, 11/2006

11/2007
8°07' N, 76°44' W
8°08' N, 76°43' W

5°42'N, 77°16' W
5°39'N, 77°18' W
5°40'N, 77°17' W
4°57'N, 77°21' W

3-6, 8-9, 11/2005, 2-3, 6/2006

6/2005
6, 10/2005, 2, 8/2006
3°51'N, 77°0' W
3°57'N, 77°22'W
4°02' N, 77°26' W
12/2005, 10/2006
2°29'N, 78°26' W
2°27'N, 77°58' W

* For each locality the name of the collection site is given. Collectors: Naranjo, N.; Gutiérrez, L.; Cienfuegos, A.; Cérdoba, L.; Solano, U.; Pinto, J.;
Aviles, P.; Pozo, C.; Garcia, L.; Quifiones, J. The specific collection sites are 2-11 km apart; two collection sites from TUM are ~50 km apart: Alto

Guandipa, Mosquera (MTU) and La Ensenada, Santa Barbara (STU).
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A) Distribution of collection localities of An. albimanus. Altitude (meters) is based on a gray scale, and the distance scale
is in km, B) Vegetation conditions of the Caribbean and the Pacific regions of Colombia, C) Temperature zones (according to
Thornthwaite System) and moisture index, D) Average multi- annual precipitation (mm), E) Average multi- annual tempera-
ture (°C). Figures B to E were adapted from IGAC, with permission [5].
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DNA extraction, COIl gene amplification and sequencing

DNA was extracted from individual mosquito abdomens
following a salt precipitation protocol [42]. The DNA was
then resuspended in 25 pL of TE buffer (10 mM Tris, 1.0
mM EDTA) and stored at -20°C. A 1,300-bp segment of
mtDNA COI gene was amplified by PCR using primers
UEA3 5'-TAT AGC ATT CCC ACG AAT AAA TAA-3' and
UEA10 5'-TCC AAT GCA CTA ATC TGC CAT ATT A-3'
[43]. The PCR was performed in 25 pL containing 2 pL of
DNA, 0.2 uM each primers, 1x reaction buffer, 1.5 mM
MgCl,, 0.1 mM each dNTP, and 1 U Taq polymerase (Bio-
line, London, UK). The cycling conditions were: 5 min
denaturation at 94°C, followed by 36 cycles of 1 min
denaturation at 94°C, 1 min annealing at 50.2°C, and 1
min 15 seconds extension at 72°C, ending with a final
extension at 72°C for 7 min. The PCR products were puri-
fied using the Wizard SV Gel and PCR Clean-Up System
(Promega, Madison, WI), following the protocol recom-
mended by the manufacturer. Both strands of the purified
PCR products were sequenced, with a region of ~600-bp
overlap, for 220 individuals. Only DNA sequence seg-
ments with higher than 30 Phred values [44,45] were used
in the analyses. The forward and reverse chromatograms
were manually corrected using the electropherogram
viewer Chromas Lite® [46]. Sequences from each mos-
quito were assembled by pairwise alignment using
BioEdit Sequence Alignment Editor [47], then multiple
alignment was performed using ClustalX [48]. Unique
haplotypes were determined using DAMBE, version
4.5.68 [49]; identical sequences were considered to be a
single haplotype.

Microsatellite genotyping

The An. albimanus mosquitoes genotyped from each local-
ity were selected randomly. Four di-nucleotide microsatel-
lite (MS) loci described for An. albimanus by Molina-Cruz
et al [29], were genotyped: 6-41, 1-90, 2-14 and 2-25. Each
locus was amplified by PCR performed in a 25 pL volume
containing 1 puL of DNA, 0.25 uM of each primer, 1x reac-
tion buffer, 2.5 mM MgCl, (6-41, 1-90, 2-14) or 2.0 mM
MgCl,(2-25), 0.2 mM for each dNTP, and 1 U Taq
polymerase (Bioline, London, UK). PCR additives were
used as follows: 5% DMSO for reactions 1-90 and 2-25
and 0.5 pg/ml BSA for reaction 2-14. For all reactions, the
cycling conditions were: 5 min denaturation at 95°C, fol-
lowed by 35 cycles of 30 sec denaturation at 94°C, 20 sec
annealing at 62°C (6-41), 50°C (1-90), 55°C (2-14),
58°C (2-25), and 30 sec extension at 72°C, ending with a
final extension at 72°C for 10 min. Amplified fragments
were separated by electrophoresis on DNA denaturing 6%
polyacrylamide sequencing gels, and MS alleles were visu-
alized by silver staining. To estimate allele sizes the length
of bands was compared to a 10 bp DNA ladder (Invitro-
gen Inc., Carlsbad, CA, USA) over the migration/size of
each MS allele using Quantity One® software (Biorad Lab-

http://www.malariajournal.com/content/8/1/259

oratories, Hercules, CA, USA). The most frequent
homozygote MS alleles per locus were sequenced to pro-
vide reference sizes to estimate the number of repeats of
other alleles. Allele sequences are available in GenBank
[GenBank: FI785408-F]785419].

Data analyses

Descriptive statistics

Indices of population and overall genetic diversity for An.
albimanus were determined per locus using both haplo-
type frequencies of mtDNA COI gene and allelic frequen-
cies of MS loci. Haplotype and nucleotide diversities were
generated using DnaSP version 4.50.2 [50] and Arlequin
version 3.11 software [51]. Nucleotide composition and
patterns of nucleotide substitution were characterized
using MEGA version 4.0 [52]. For the complete COI data
set, an appropriate model of nucleotide substitutions was
determined using the programme Modeltest 3.8 [53,54].

MICRO-CHECKER 2.2.3 software [55] was used to detect
potential errors that may occur at each MS locus during
genotyping or the interpretation of data such as null alle-
les, stuttering and large allele dropout. Allele and geno-
type frequencies of the amplified alleles were compared
and adjusted if necessary for population genetic analysis.
Number of alleles (Na), expected heterozygosity (H,),
observed heterozygosity (H,), allele richness (Rs) and
Hardy-Weinberg Equilibrium (HWE) were estimated for
MS loci using GenAlEx version 6.1 [56] and FSTAT v
2.9.3.2 [57]. Statistical significance for HWE and linkage
disequilibrium (LD) for each pair of loci was assessed
using exact probability tests available in GENEPOP ver-
sion 4.0 [58]. Whenever multiple comparisons were car-
ried out simultaneously, the sequential Bonferroni
procedure [59] was applied.

Population differentiation test

Using COI and MS data, genetic differentiation between
populations was measured by estimating the fixation
index Fg;, using Arlequin software, and the significance
was tested by permutation tests (10,000 replicates).
Inbreeding coefficient (Fg) for each locus and overall loci
by population [60] and the number of migrants per gen-
eration (Nm) between localities were also calculated in
Arlequin. Effective population size (Ne) was estimated for
each population under two methods, heterozygosity
excess (HE) and linkage disequilibrium (LD) using NeEs-
timator software version 1.3 [61]. Geographical coordi-
nates and distances of each sampling location were
obtained using Google earth® software [62], and the pro-
gramme SAMOVA 12.02, Spatial Analysis of Molecular
Variance, was used to maximize the proportion of total
genetic variance due to differences between groups of
populations as well as identifying possible genetic barriers
between them, without prior information of the sampling
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locations as is necessary for AMOVA [63]. Analysis of
Molecular Variance (AMOVA) was used to examine popu-
lation variation among, within, and between collection
sites. The probability that a sampled individual belonged
to each reference population was estimated using assign-
ment statistics in Geneclass 2.0 [64]. The Bayesian
method of Rannala and Mountain [65] was selected as the
computation criterion and the re-sampling algorithm; the
method was performed with a minimum number of sim-
ulated individuals of 10,000 and a type I error of 0.01. In
addition, the BAPS 5 programme (Bayesian Analysis of
Population Structure) was used for Bayesian inference of
genetic structure and admixture analyses performed for
the An. albimanus populations [66]. A dendogram based
on MS genetic distances was constructed using the
Unweighted Pair Group Method Arithmetic average
(UPGMA) cluster analysis in TFPGA programme version
1.3 [67] to test the genetic relationship among different
populations. The correlation between genetic distance
estimated from MS and geographical distances, assuming
isolation by distance, was evaluated by the regression Fg;/
(1-Fg;) on the natural logarithm (Ln) of pairwise geo-
graphical distances between collection sites. Significance
of the correlation coefficient was assessed applying the
Mantel test (10,000 randomizations) [68] using the Isola-
tion By Distance Web Service version 3.15 [69].

Demographic inference and neutrality tests

DnaSP and Arlequin software were used to test the
hypothesis that all mutations on COI gene are selectively
neutral [70], employing Tajima's D [71] and Fu's F, [72].
Confidence intervals were tested by 10,000 coalescent
simulations. Analyses for constant size and for growing
populations were carried out to determine the distribu-
tion of the observed pairwise nucleotide site differences or
mismatch distribution and the expected values (at equi-
librium for no recombination) in a stable population or
in growing and declining populations. Statistically signif-
icant differences between observed and model distribu-
tions were evaluated with the Sum of Squared deviation
(SSD) and the raggedness statistic (1) [73] to reject the
hypothesis of demographic expansion. Time since the
population expansion can be estimated from t = 7/24,
where 7 (tau) is the date of the growth or decline meas-
ured in units of mutational time [z = 2, ¢ is the time in
generations, and y is the mutation rate per site (sequence
size) and per generation] [74,75]. To analyse patterns of
An. albimanus population history, haplotype networks
were estimated by a parsimony-based method, which cal-
culates the maximum number of mutational connections
between pairs of sequences by the 95% parsimony crite-
rion using the TCS computer software [76]. To obtain the
most likely connection between two haplotypes and
resolve some ambiguous loops in the network, several rec-
ommendations were followed [77-79]. Also, data were

http://www.malariajournal.com/content/8/1/259

analysed using a neighbour-net network, which constructs
split networks from inferred distance matrices, in the
computer programme SplitsTree4, version 4.10 [80] and a
neighbour-joining (NJ) algorithm was used to generate a
tree in PAUP Version 4.0 [81] based on the genetic dis-
tance between haplotypes. For the latter method some
analyses including an outgroup [82] were performed with
COI gene sequences of An. darlingi collected from Colom-
bia (unpublished data). The NJ tree and neighbour-net
network analyses were performed with 1,000 bootstrap
replications under the probability model identified using
Modeltest. MS data were also used to estimate demo-
graphic processes such as recent population bottleneck
and/or expansion, and heterozygosity tests were used to
analyse deviations from Mutation-Drift Equilibrium
(MDE) for each sample across all loci. At selectively neu-
tral loci, the expected heterozygosity calculated from
allele frequencies data (He) assuming HWE, and from the
number of alleles and sample sizes (Heq), assuming a
population at MDE, are expected not to be significantly
different. Thus, if a significant number of loci show
He>Heq, this indicates that the population recently expe-
rienced a bottleneck, conversely, a He<Heq, may suggest
population expansion. Estimates of expected heterozygos-
ity were calculated assuming Stepwise Mutation Model
(SMM), Infinite Alleles Model (IAM) and Two Phase
Model (TPM) with one-step mutation occurring at a fre-
quency of 90% of the total. Statistical significance of the
deviation from MDE was assessed by the sign test availa-
ble in Bottleneck 1.2.02 [83].

Results

Intra-population genetic diversity

A 1,058-bp sequence of the An. albimanus COI gene corre-
sponding to positions 1,802-2,859 of Anopheles gambiae
s.s. mitochondrion complete genome and aligned with
RefSeq NC 002084 [84] was analysed for 220 An. albi-
manus mosquitoes from eight localities (Figure 1A, Table
2). All 112 haplotype sequences are available in GenBank
under the accession numbers: FI015158-FI0152609.
Sequences contained no missing data such as ambiguous
base pairs and alignment revealed 107 variable sites, 67 of
which were parsimony informative. A total of 115 nucle-
otide substitutions (with a majority predicted to intro-
duce synonymous amino acid changes), 101 transitions
and 14 transversions were observed. The best-fit DNA sub-
stitution model selected by the hierarchical likelihood
ratio test (hLRT) was TtN+I+G [85], with invariable sites
(I = 0.7675) and Gamma distribution shape parameter
(G: 0.9555). Using Akaike Information Criterion (AIC)
and Bayesian Information Criterion (BIC), the best-fit
model was the Transitional model: TIM+1+G [86], with
invariable sites (I = 0.7664) and Gamma distribution
shape parameter (G: 0.8906), A-T composition of the COI
sequences was 39.7% and 29.5%, respectively, similar to
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Table 2: Description of shared COI haplotypes and statistics of genetic polymorphisms for An. albimanus

Population Haplotypes n S h Hd (SD) Pi (SD)

ACH AQ3), C(9), F(2), 24 18 13 0.8551 +/- 0.065 0.0028 +/- 0.002
SRL A(10), C(2), F(2), G(I), N(1), 30 26 19 0.8920 +/- 0.052 0.0031 +/- 0.002
MON A(8), C(1), F(1), G(2), O(l), P(I) 29 27 20 0.9261 +/- 0.041 0.0030 +/- 0.002
TUR A(6), C(1), G(1), H2), M(l), N(I), O(I), P(I) 29 28 22 0.9581 +/- 0.028 0.0038 +/- 0.002
Caribbean Region A(27), C(13), F(5), G(4), H(2), M(1), N(2), O(2), P(2) 112 58 6l 0.9274 +/- 0.018 0.0035 +/- 0.002
NUQ B(8), D(4), E(2), H(2), K(2), L(I) 30 50 I5 0.9103 +/- 0.037 0.0103 +/- 0.005
PIZ B(5), D(4), E(1), 1(3), J(2), L(1) 24 42 14 0.9275 +/- 0.033 0.0097 +/- 0.005
BUE B(11), E(I), I(1), J(I), M(1) 30 42 15 0.8483 +/- 0.056 0.0088 +/- 0.005
TUM E(1), K(I), 24 33 19 0.9710 +/- 0.024 0.0078 +/- 0.004
Pacific Region B(24), D(8), E(5), H(2), 1(4), J(3), K(3), L(2), M(1) 108 72 53 0.9396 +/- 0.016 0.0098 +/- 0.005
All localities - 220 107 112 0.9666 +/- 0.006 0.0152 +/- 0.007

n, number of mosquitoes sequenced; S, number of segregating sites; h, number of haplotypes; Hd, haplotype diversity; Pi, nucleotide diversity; (SD),
Standard deviation. Number in parentheses represents the frequency of each haplotype by region or locality. Underlined haplotypes are shared

between Caribbean and Pacific populations.

that found in other Anopheles species [23], and the above
parameters were adjusted to construct the split networks
from inferred distance matrices and the neighbour-join-
ing analyses.

Although diversity values were low overall, Pacific region
populations had higher nucleotide diversities (0.0098,
range 0.0078-0.0152) than Caribbean populations
(0.0035, range 0.0028-0.0038), and haplotype diversity
values were similar. There were 112 unique haplotypes
(Table 2), 16 shared between different localities (named
in order of frequency using capital letters), with the
remainder exclusive to a particular geographic site (Figure
2, Table 2). In concordance with the parsimony-based
network, the distance-based haplotypes networks (data
not shown) and neighbour-joining tree (Figure 3) illus-
trated mainly two distinctive groups, corresponding to
samples from the Caribbean or the Pacific regions.

For MS analyses, 280 An. albimanus were genotyped and
the four microsatellite loci were polymorphic in all collec-
tion sites studied (Figure 1B). The number of alleles per
locus ranged from three to twelve: locus 6-41 showed the
lowest value and 1-90 the highest (Table 3). Allelic rich-
ness (Rs) per locus ranged between three in MON and
MTU (6-41) to eleven, also, in MTU (2-25). STU showed
the lowest average allelic richness (6.125), while BUE
showed the highest (8.144) compared to all other locali-
ties. The expected heterozygosity (He) across all samples
ranged from 0.503 (ACH) to 0.87 (MTU), while the aver-
age expected heterozygosity ranged from 0.681 (STU) to
0.784 (TUR). Of 32 tests performed for HWE, 12 (37.5%)
remained significant after the sequential Bonferroni cor-
rection (p < 0.01); all of them were associated with heter-
ozygote deficits, in each locus as follows: 6-41 (STU), 1-90
(TUR and BUE), 2-14 (ACH, MON, NUQ and BUE) and

2-25 (ACH, SRL, TUR, NUQ and BUE). Of 48 tests con-
ducted, no locus was at linkage disequilibrium after the
sequential Bonferroni correction (p < 0.05) (Table 3). The
frequency of null alleles at each locus was compared;
however, there were no significant changes in comparison
with the initial results. Under LD the average Ne calcu-
lated for all populations was 308 individuals (CI 215-
493) and the average Ne for all Caribbean populations
(including TUR) was an infinite number of individuals
(CI 1,613- ), while for all Pacific populations it was 256
individuals (CI 136- «). SRL showed the lowest value
(231 individuals), and TUR, NUQ, STU and MTU showed
an infinite result (). Under the HE model all of popula-
tions showed infinite values (See Additional file 1: Esti-
mates of effective population size (Ne) and heterozygosity
tests based on MS data for An. albimanus).

Genetic structure and differentiation

In the AMOVA analyses using haplotype frequencies with
the eight populations separated into two groups, includ-
ing TUR in the Caribbean region, 5.85% (p < 0.05) of the
total variance was explained at the among regions level.
When populations were separated into two groups,
including TUR in the Pacific region, only 3.86% (p < 0.05)
of the total variance was due to the variation among
regions (Table 4).

The Fgvalue estimated from COI sequences for the com-
parison between the Caribbean and Pacific regions was
0.07 (p < 0.05), and most of the pairwise comparisons of
Fyrbetween localities were significant; however, no signif-
icant Fgpvalues at p < 0.01 were observed in comparisons
between SRL, MON and TUR from the Caribbean coast, or
between NUQ, PIZ and BUE from the Pacific coast (Table
5). Estimates of pairwise genetic differentiation (Fg;) and
gene flow (Nm) among populations using MS data are
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Figure 2

Parsimony-based haplotype networks of 112 haplotypes from 1058 bp of the COI gene sequenced from 220
specimens of An. albimanus. The color of the circles and numbers in parentheses depict the origin and frequency of each
haplotype, respectively. Each black bar represents one mutational step; the dashed line and m.h represent missing haplotypes.
Unique haplotypes from Caribbean populations are represented in the network as Los Achiotes (A), Santa Rosa de Lima (SR),
Moiiitos (M) and Turbo (Y and C), and haplotypes from Pacific populations as Nuqui (N), Pizarro (P), Buenaventura (B) and

Tumaco (T).

shown in Table 6. Overall significant Fg; values were
observed between population belonging to the same
region, Caribbean or Pacific. Of 28 differentiation tests,
18 were significant (p < 0.01). Comparisons between ACH
and STU showed the highest degree of differentiation. An.
albimanus samples collected from TUR, located in the
middle of the collection range, showed lower differentia-
tion with its nearest localities: NUQ (Pacific) and MON
and SRL (Caribbean). Nm estimates among An. albimanus
populations ranged from 4 to 59 individuals, presenting
an average value of 21 individuals.

The SAMOVA was used to estimate heterogeneity among
populations from the Caribbean and Pacific regions. This
test maximized the proportion of total genetic variance
between populations at six groups: 1) ACH, SRL and
MON, 2) TUR, 3) NUQ, 4) BUE, 5) STU, 6) MTU (Figure

4A). In agreement with SAMOVA data, the UPGMA den-
dogram based on genetic distances showed two distinctive
groups in which ACH, SRL and MON constituted a cluster
(82% support) and TUR, NUQ, BUE, STU and MTU were
included in a second one at 61% support (Figure 4B).
Given the number of MS loci tested in this study and in
the low support values for the UPGMA dendogram, the
possibility that data on the apparent relationship between
populations from the Caribbean and Pacific regions may
be biased cannot be excluded. However, BAPS clustering
was also congruent with the results obtained by SAMOVA
and UPGMA analyses, which proposed two groups with-
out admixture among them, except for TUR which
showed signs of admixture with both. AMOVA was con-
ducted with both the COI and MS data to test the Isthmus
of Panama as a putative barrier between the Caribbean
and Pacific regions, including and excluding TUR. The
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Neighbour-Joining tree based on 112 haplotypes from 1058 bp of the COI gene sequenced from 220 specimens
of An. albimanus. The percentage of trees in which the associated haplotypes clustered together in the bootstrap test (1,000
replicates) is shown next to the branches, retaining only groups with frequency >75%. Shared haplotypes (M, H) from the Car-

ibbean and Pacific populations are represented in the tree.

AMOVA corresponding to two groups: the Caribbean and
the Pacific samples (excluding TUR), showed the highest
percentage of the total variance and Fg; value, 4.3% (p <
0.05) and 0.06049 (p < 0.05), respectively (Table 4).
Results of the assignment statistics showed that on aver-
age 28.6% (80 of 280) of the individuals were correctly
assigned to their original reference site. Samples from STU
and BUE presented the highest proportion of correctly

assigned individuals (38%). In general, mis-assignments
occurred between samples of the same region, either the
Caribbean or the Pacific (Table 7).

A correlation test between genetic distance based on MS
loci, measured by Fq/(1- Fgp), and the geographic distance
(Ln) was statistically significant, although with low val-
ues, for the whole dataset (Mantel tests: R?2 = 0.36, p =
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Table 3: Genetic variability estimates at MS loci in An. albimanus from three biogeographic provinces of Colombia

Locus ACH SRL MON TUR NUQ BUE STU MTU All samples
Maracaibo/Caribbean Region Magdalena Chocé/Pacific Region
N 40 40 40 40 40 40 21 19 280
6-41 Na 4 4 3 4 4 5 4 3 7
Rs 3473 3.475 3.000 3.475 3.921 4.334 3.898 3.000 3.675
H, 0.503 0617 0.627 0.662 0.583 0.623 0.484 0.555 0.659
H, 0.325% 0.425% 0.625 0.575 0.525 0.450 0.381**  0.263* 0.446
Fs 0.365 0.323 0.016 0.143 0.113 0.289 0.236 0.545
1-90 Na 8 12 8 13 9 12 7 7 16
Rs 7.075 9.702 7.68l 10.63 8.077 9.526 6.904 7.000 8.866
H, 0.742 0.838 0.813 0.848 0.805 0.819 0.746 0.742 0813
H, 0.650 0.800 0.7 0.8007** 0.775 0.500%** 0.714 0.632 0.683
Fis 0.136 0.058 0.151 0.069 0.05 0.4 0.067 0.176
2-14 Na 8 9 8 I 10 10 6 8 14
Rs 7.321 7.886 6.132 8.469 8512 8.902 5.898 8.000 8.606
H, 0.811 0.807 0.674 0.792 0.802 0.830 0.717 0.794 0.812
H, 0.700%** 0.575% 0.600%** 0.825 0.500%+* 0.525%#* 0.857 0.579 0.604
Fs 0.149 0.299 0.122 -0.029 0.387 0.379 -0.173 0.295
2-25 Na 10 9 10 9 9 I 8 I 12
Rs 8.373 7.799 8.371 7.991 7.772 9.814 7.802 11.000 8.926
H, 0.832 0.829 0.833 0.834 0.802 0.860 0.776 0.871 0.858
H, 0.475%%* 0.600%* 0.725 0.750%* 0.375%%* 0.500%#* 0.571 0.789 0.558
Fis 0.439 0.288 0.142 0.114 0.541 0.429 0.286 0.121
Allloci Na 7.5 85 7.25 9.25 8 9.5 6.25 7.25 7.94
Rs 6.56 7.215 6.296 7.64 7.071 8.144 6.125 7.25 7.037
H, 0.722 0.773 0.737 0.784 0.748 0.783 0.681 0.741 0.746
H 0.537 0.600 0.663 0.738 0.544 0.494 0.631 0.566 0.596

N: Number of mosquitoes, Na: number of alleles, Rs: Allele richness; H,: expected heterozygosity, H,: observed heterozygosity, Fs: inbreeding
coefficient. All loci/samples: mean values over loci or collecting sites. Asterisks are showing significant heterozygote deficits according to exact tests
against Hardy-Weinberg proportions after the sequential Bonferroni correction; *p < 0.05, *p < 0.01, **p < 0.001.

0.003). The IBD model best explains genetic differentia-
tion among populations from the Caribbean region:
ACH, SRL and MON (excluding TUR), but it could not
explain the low differentiation observed within the Pacific
region populations (NUQ, BUE, STU and MTU). No sta-
tistically significant correlation was detected when tests of
IBD were carried out separately for the Caribbean (includ-
ing TUR) or the Pacific region (with or without TUR).

Demographic inference and neutrality tests

The most common haplotypes were A (n = 27), exclu-
sively Caribbean, and B (n = 24), exclusively Pacific. Three
localities (TUR, NUQ and BUE) share haplotypes H and
M from both regions (Figure 2, Table 2). Haplotypes from
the two regions differed by more than 13 mutational
steps. Interestingly, the shared haplotypes (H, M) and the
Pacific haplotypes ], P38, B357, B857 and N2865 clus-
tered with the Caribbean region (Figure 2). Haplotypes A

and B were the most common interior haplotypes and so
are most likely to be ancestral [87]. The majority of haplo-
types in both regions were tip alleles, considered to be
more recently derived and geographically restricted
[77,87]. In addition, private haplotypes located peripher-
ally are suggestive of a demographic expansion [72,75]
within the Caribbean region with subsequent limited
gene flow between the two regions. In general, the parsi-
mony-based network (Figure 2), distance-based haplo-
type networks and neighbour-joining tree (Figure 3)
consistently show two distinctive groups, with a large star-
shaped Caribbean network surrounding haplotype A, a
smaller network around haplotype C, and a small Pacific
network surrounding haplotype B. In the NJ tree, the Car-
ibbean haplotypes were supported at 86% and the Pacific
haplotypes at 98% (Figure 3), and the bootstrap support
level was 99.9% for the branch that connects Caribbean
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Table 4: Analysis of Molecular Variance (AMOVA) using COl and MS data in An. albimanus from Colombia

Source of variation Variance components Percentage of variation Fsr
MS Two groups 0.04944 3.08 0.05040*
Among the Caribbean and the Pacific regions
(including TUR in the Caribbean region)
Among populations within regions 0.03140 1.96
Within populations 1.52313 94.96
MS Two groups 0.05419 3.37 0.05162*
Among the Caribbean and the Pacific regions
(including TUR in the Pacific region)
Among populations within regions 0.02871 1.79
Within populations 1.52313 94.84
COI Two groups 0.02925 5.85 0.08934*
Among the Caribbean and the Pacific regions
(including TUR in the Caribbean region)
Among populations within regions 0.01539 3.08
Within populations 0.45509 91.07
COI Two groups 0.01916 3.86 0.08262*
Among the Caribbean and the Pacific regions
(including TUR in the Pacific region)
Among populations within regions 0.02183 4.40
Within populations 0.45509 91.74

* p < 0.05; significant level based on 1,023 permutations

and Pacific haplotypes in the An. albimanus neighbour-net
network.

Both neutrality tests found the Caribbean populations
have significant negative values, and one test was signifi-
cant for the Pacific populations (see additional file 2:
Results of neutrality tests based on COI sequences of An.
albimanus from Colombia), which suggested a possible
past demographic expansion event. The distribution of
the number of differences (mismatches) between pairs of
DNA sequences from Caribbean populations demon-
strated the expected unimodal distribution for Caribbean
all populations together and also for each population. The
expected distribution did not differ significantly from the
sudden-expansion model. The distribution for each local-
ity from the Pacific region and for the grouped Pacific

region showed a multimodal distribution typical of pop-
ulations at equilibrium. Although the r (0.009; p = 0.91)
and SDD (0.002; p = 0.75) values were not significant for
Caribbean populations, the estimated values were small,
also supporting a population expansion. As in previous
Anopheles studies [23,31], the Drosophila (D. melanogaster
and D. yakuba) mutation rate values of 10-8/site/year [88]
and 10 generations/year [89] were assumed to estimate
the time for the Caribbean population expansion. For An.
albimanus, using 7 = 4.654, this is approximately 21,994
years ago (95% CI, 8,969-34,347) during the late Pleis-
tocene.

The heterozygote test performed under SMM, IAM and
TPM using MS data showed different results. Using 1AM,
heterozygote excess was detected for all of the populations

Table 5: F-Statistics based on pairwise estimates of COI haplotype frequencies of An. albimanus from 8 localities in Colombia

Populations ACH SRL MON TUR NUQ PIZ BUE TUM
ACH —

SRL 0.05820%* _

MON 0.06177** -0.00873 -

TUR 0.056 | 4** 0.00155 -0.00548 _

NUQ 0.11671%* 0.09885%** 0.08179** 0.06150%** _

PIZ 0.10870%** 0.09058** 0.07319** 0.05698** -0.00089 _

BUE 0.14841** 0.12989** 0.11293** 0.0959 ¥ 0.02299 0.03041* _

TUM 0.08696™* 0.069 | 4** 0.05171* 0.03550%* 0.05450%* 0.04907+* 0.09020%*

#p < 0.01; % p < 0.05
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Table 6: Estimates of pairwise genetic differentiation (Fs;) and gene flow [48] among populations of An. albimanus based on MS data

Populations ACH SRL MON TUR NUQ BUE STU MTU
ACH _ 59 31 13 6 9 4 7
SRL 0.00834 _ 56 38 8 I 5 10
MON 0.01602* 0.00889 _ 26 10 15 5 I
TUR 0.03596*** 0.01286* 0.01880%** _ 47 22 12 24
NUQ 0.0812 |#¥* 0.05584%+* 0.0489 |#+* 0.01046 _ 18 41 35
BUE 0.05404++* 0.04186** 0.03227#%* 0.022] |** 0.02697** _ 10 35
STU 0.1 1405%#* 0.091 | 27%F* 0.09023%¥* 0.040 5%F* 0.01188 0.0472 |#%* _ 15
MTU 0.06623*F* 0.04589** 0.04233#** 0.02050* 0.01439 0.01421 0.03274*

Above diagonal: N, values; below diagonal: F¢;values; * p < 0.05; ** p < 0.01; * p < 0.001

tested; however, none were statistically significant. Under
SMM four populations showed heterozygote deficits:
STU, BUE, NUQ and ACH; only STU was statistically sig-
nificant. For TPM three populations presented heterozy-
gote excess: MON, SRL and NUQ; only NUQ was
statistically significant. STU showed heterozygote deficits
that were not statistically significant.

Discussion

Distinctive evolutionary genetics and demographic history
evidence

Nucleotide diversity values for An. albimanus COI
sequences, including synonymous and non-synonymous
changes, were similar to those found for An. darlingi COI
sequences from Central and South America [23], An. gam-
biae [84] and other species within the Insecta class. In par-
ticular, all are characterized by having an adenine-
thymine rich mitochondrial genome. Anopheles albimanus
COI sequences presented a combined frequency of ~70%
AT. The results show that An. albimanus populations from
the Caribbean and Pacific regions in Colombia have mod-
erately high genetic diversity, in contrast to the lower
diversity in Pacific localities detected using isozymes [30].
This difference is likely a result of the greater sensitivity of
DNA markers to detect genetic variability, since DNA pol-
ymorphic sites are not necessarily seen at the protein level
[90]. Nucleotide diversity was higher in most of the Pacific
populations; this may indicate that different An. albimanus

maternal lineages invaded these two Colombian regions
at different times and (or) that the Pacific populations are
older relative to the Caribbean ones, perhaps most closely
related to populations from Cuba and Central America,
which had similar values using ND5 sequence [29].

Panmictic populations of An. albimanus (within ~665 km)
had been observed in Central America, Costa Rica and
Panama, Colombia and Venezuela. It appears that An.
albimanus populations have had different periods of isola-
tion followed by secondary contact throughout the spe-
cies range in America [27-29]. The data showed some
haplotypes from Pacific populations clustering with the
Caribbean group (Figure 2), possibly a genetic signature
of a panmictic gene pool that existed before the late Pleis-
tocene. Multiple factors may be responsible for the
observed distribution and frequency of haplotypes from
the Caribbean and Pacific regions in Colombia. Most hap-
lotypes are not shared between regions, perhaps because
of the distance between populations (>200 km), distinc-
tive demographic history, human impact (insecticide use
could have led to local haplotype extinctions) and/or dis-
tinctive ecological conditions in each region. Previous
mtDNA analysis of An. albimanus did not detect a signifi-
cant correlation between genetic and geographic distance
[29]. Although, genetic differences and geographical dis-
tances were not directly compared because the popula-

Table 7: Data of assignment tests based on MS among samples of An. albimanus from Colombia

Populations ACH SRL MON TUR NUQ BUE STU MTU
ACH 0.25% 0.20 0.18 0.08 0.05 0.08 0.03 0.15
SRL 0.20 0.20* 0.20 0.13 0.10 0.05 - 0.13
MON 0.18 0.10 0.35* 0.05 0.13 0.10 0.03 0.08
TUR 0.03 0.18 0.10 0.33* 0.18 0.05 0.08 0.08
NUQ 0.05 0.03 0.10 0.23 0.25%* 0.05 0.15 0.15
BUE 0.10 0.03 0.08 0.05 0.10 0.38* 0.15 0.13
STU - - - - 0.33 0.10 0.38* 0.19
MTU 0.11 0.16 0.11 - 0.11 0.05 0.37 0.11*

Values are proportions of mosquitoes from the original reference site (rows) assigned to each population site (columns), *Proportions of samples

correctly assigned.
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Cluster analysis based on MS data. A: Map of the sampling points and the barriers between the groups of populations
defined by SAMOVA. B: UPGMA dendogram based on Nei's genetic distance for the eight populations of An. albimanus.

tions were not in MDE, distance did not appear to be a
significant factor affecting the data.

The neutral model is rejected for the Caribbean popula-
tions, indicating possible previous population expansion
and/or natural selection. In general, all tests illustrate two
distinctive groups, corresponding to haplotypes from the
Caribbean and from the Pacific regions. The data did not
show significant differences between An. albimanus popu-
lations from TUR, located in the Magdalena province as
described by Morrone [6], and the other populations from
the Caribbean coast. The relatively strong mtDNA support
for expansion in the Caribbean An. albimanus populations
may indicate different demographic histories for this spe-
cies in these two regions of Colombia, and the AMOVA
support for variance resulting from these two groups is
significant, albeit low. Population expansion for An. albi-
manus from the Caribbean coast in Colombia is estimated
to the late Pleistocene, similar to An. darlingi [23].

Contemporary population structure

Microsatellite loci used in this study have not been physi-
cally mapped in An. albimanus polytene chromosomes,
consequently, their location on chromosome inversions is
unknown and neutrality cannot be assumed [91]. Chro-
mosomal inversions have not been detected in An. albi-
manus and it is conspecific along its distribution [30,92];
however, the microsatellite loci analysed in this study
were highly polymorphic (Table 3), showing their useful-
ness for evaluating the population structure of An. albi-
manus in Colombia.

Significant departures from HW equilibrium were
detected associated with heterozygote deficits (Table 3),
similar to that reported in other anopheline microsatellite
studies [25,29,34,93,94]. Heterozygote deficits are attrib-
uted to either significant inbreeding, Wahlund effect, nat-
ural selection or the presence of null alleles [24,95,96].
Inbreeding as the possible cause of heterozygote deficits is
not considered due to the fact that it affects all loci
equally, which is not compatible with the heterogeneity
detected in this study (Table 3). The Wahlund effect refers
to reduction of heterozygosity in a population caused by
subpopulation structure [97]. In the data, SAMOVA,
UPGMA and BAPS based on MS loci identified some
degree of population subdivision, mainly among the Car-
ibbean and the Pacific regions, and within the Pacific
region, thus a part of the heterozygote deficits detected
could be the result of Wahlund effect. High levels of het-
erozygote deficits could also be the result of null alleles, as
a result of accumulation of mutations in the primer bind-
ing sites [34]. In this study, there was failure of amplifica-
tion of different loci for some specimens; however poor
DNA quality was discarded as a cause, similarly, Molina-
Cruz et al [29], observed similar cases of amplification
failure. In summary the most likely causes of heterozygote
deficits in the present study were null alleles and Wahlund
effect.

The moderate level of population differentiation detected
(Fsr) was not observed with isozyme markers [30]. In the-
ory, the analysis of a low number of loci could potentially
increase population differentiation values (Fq;), but at the
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same time, the Fgis the estimate presenting the lowest
differentiation bias [98]. The SAMOVA, UPGMA and
BAPS detected two distinctive clusters: ACH, SRL, MON
and TUR, NUQ, BUE, STU and MTU. Unlike the COI data,
the TUR population clustered with the Pacific region pop-
ulations. Low admixture was detected between the cluster
represented by ACH, SRL and MON from the Caribbean
region and the other five populations. Thus, the largest
genetic differentiation was observed in comparisons
among the Caribbean and the Pacific region, and SAM-
OVA analyses placed TUR, NUQ, BUE, STU and MTU in
five different groups perhaps suggesting a specific barrier
that reduces gene flow between these populations.

Data could suggest that features related to the three differ-
ent biogeographic provinces, Maracaibo, Magdalena and
Chocé [6], such as vegetation, weather, moisture, precipi-
tation and temperature (Figure 1B-E) [5], constitute a
semi-permeable barrier that reduces gene flow of An. albi-
manus populations at the inter-regional or the inter-bioge-
ographic provinces level. Also the differences in N,
detected among the populations may have contributed to
the genetic differentiation of these regions [99]. Because
some differentiation was observed between populations
in the Chocé province (Pacific region) it is possible that
other processes besides ecological conditions may affect
free gene flow between An. albimanus populations.

The level of differentiation (Fg;), among the Caribbean
and the Pacific region of Colombia is comparable to that
reported among countries in South America and between
Cuba and continental An. albimanus populations (Fg; =
0.057 and 0.059, respectively) [29]. Similar levels of dif-
ferentiation were also found among Anopheles nuneztovari
s.] from Cordoba, Norte de Santander and Valle in the
east, west and southeast of Colombia (Fg¢; = 0.024-0.06),
using RAPDs (Randomly Amplified Polymorphic DNA)
[100]. In this study, the authors suggested IBD could
explain their results. In a study of An. darlingi populations
from Cordoba, Meta and Chocé in the northwest and
west of Colombia, using AFLPs (Amplified Fragment
Length Polymorphism) and RAPDs (RAPD Fg.= 0.084,
AFLP Fgp = 0.229), results suggested that the observed
genetic differences could be the result of the biogeo-
graphic characteristics of each particular region [101]. The
data showed that in addition to the differences in the
demographic history of each region, the presence of semi-
permeable biogeographic barriers, could contribute to the
differentiation observed using MS.

In general, in the Caribbean region, there was low genetic
differentiation, partly explained by the high Ne, that could
have increased gene flow and decreased population
genetic structure [24]. IBD was the model that best
explained differentiation among ACH, SRL and MON;

http://www.malariajournal.com/content/8/1/259

however, if TUR was included in the analysis, the resulting
data did not fit this model. TUR, the most genetically dis-
tant Caribbean region population, (Figure 4B), could be
influenced by its location in Magdalena biogeographic
province [6], and by differences in the effective popula-
tion sizes. Similarly, low non-significant differentiation
was observed among the Pacific region populations
between NUQ-STU (362 Km), NUQ-MTU (371 Km) and
BUE-MTU (217 Km) (Table 5) and the level of differenti-
ation observed was not congruent with IBD.

A significant level of differentiation among the popula-
tions closer to BUE was detected, probably influenced by
ecological characteristics [5] that could reduce gene flow
with NUQ and STU (Figure 1B-E), in addition to their dif-
ferences in effective population sizes. Ecologic and cli-
matic variation with appropriate conditions for mosquito
development have been recognized among the main
causes for peaks of mosquito abundance and subsequent
peaks of malaria cases [102]. Therefore, further studies
would be essential in BUE in comparison with others
localities from the Pacific region. Even though there was
restricted gene flow with respect to adjacent populations,
BUE presented the highest genetic diversity, characterized
by a high proportion of private alleles in low frequency.
This could be explained by the characteristics of BUE, the
main Colombian port city, where human migration and
activities may promote gene flow among mosquito popu-
lations with different genetic pools, thereby increasing
variability, as has been reported for An. gambiae
[35,103,104]. The levels of differentiation observed
between MTU and STU could also be due to ecological dif-
ferences [5]; however, an overestimation of differentia-
tion (Fgp), is not discarded given the low sample number
[97,105].

Most population structure analyses assume equilibrium,
however, in several studies on anopheline vectors this has
been violated, for example for An. gambiae and Anopheles
arabiensis [106], Anopheles dirus [94], Anopheles moucheti
[36] and An. darlingi [34]. In this study, the heterozygosity
test did not detect a significant departure from equilib-
rium for most of the populations. Nevertheless, under the
TPM model, there was evidence of a bottleneck for NUQ
which was not sustained by the SMM and IAM models
and in disagreement with the effective population size
observed, perhaps because of the mutational model and
low number of analysed loci [83]. Under the SMM model,
the STU population appears to be expanding, consistent
with the effective population size.

The Ne calculated under the HE model assumes equilib-
rium [107]. Some of the Caribbean and Pacific popula-
tions were at H-W disequilibrium for some loci; it is
possible that the departure from equilibrium influenced
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the values detected with HE, nevertheless, the confidence
intervals obtained with LD agreed with those of HE. In
general, high Ne values were obtained for all localities and
on average, the effective population size (Ne = 308 indi-
viduals) was three fold higher than in the study with An.
albimanus from Central and South America (Ne = 96 indi-
viduals) [29]. For TUR and the Pacific region populations,
except BUE, an infinite Ne was obtained under both mod-
els. According to Donnelly et al. [99] heterogeneity in the
Ne could contribute to the levels of population genetic
differentiation seen in this study. Similarly, Ne heteroge-
neity has been reported for An. darlingi [24,34] and within
the An. gambiae complex [108-111]. In An. gambiae, the
Ne heterogeneity observed in the savana cytotype was
demonstrated to be region specific [111]. In the present
study, high Ne might be associated with a wide availabil-
ity of breeding places that are suitable for An. albimanus,
such as lakes, ponds, mine excavations and fish ponds
[3,112]. The high precipitation levels characteristic of the
Pacific region [5], could contribute significantly to the
availability of a variety of breeding sites for An. albimanus.

Conclusion

The genetic diversity of Caribbean and Pacific populations
of An. albimanus detected using COI gene sequences
appears to be mostly influenced by demographic events in
An. albimanus populations during the late Pleistocene. The
data indicated little to moderate genetic differentiation
among An. albimanus populations from the Caribbean
and the Pacific regions. Current gene flow patterns may be
mainly influenced by semi-permeable natural barriers in
each biogeographical region that lead to the genetic differ-
ences and effective population sizes found in this study.

Current hydrological and climatic variation in Colombia
is a factor associated with malaria outbreaks for multiple
localities throughout endemic regions of the country
[113]. Therefore additional studies could test the influ-
ence of specific ecological and climatic conditions on the
genetic differentiation in An. albimanus populations from
the Caribbean and Pacific regions. It would also be of
interest to examine additional populations of other
Anopheles species to evaluate the generality of these pat-
terns and to test the hypothesis that Caribbean expansion
occurs among the Anopheles species whose distributions
include these Colombian geographic areas.

In summary, this study showed current patterns of gene
flow among the different An. albimanus populations from
Colombia. This knowledge could be applied to existing
vector control strategies since data on vector population
genetics allow the inference of the spread of genes impor-
tant for insecticide resistance or refractoriness to malaria
parasites. In addition, this information contributes to the
understanding of the epidemiology and the dynamics of

http://www.malariajournal.com/content/8/1/259

disease transmission [99]. Moreover, effective population
sizes calculated in this study may be used to evaluate local
control measure effectiveness.
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